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Simple Summary: Several genes are essential for tumor growth and predict poor prognoses of
patients, however, most of their roles in lung adenocarcinoma (LUAD) are unclear. In addition,
a good classification strategy for cancer patients would be a useful tool for future personalized
medicine. In LUAD, the existing subtype classification, including the terminal respiratory unit (TRU),
proximal-inflammatory (PI), and proximal-proliferative (PP) subtypes, is mainly based on genes with
variant expression levels across patients without considering the oncogenetic roles of those genes.
Thus, the LUAD essential genes were identified and used to stratify patients into distinct survival
outcomes, TP53 mutation statuses, E2F target activities, and tumor mutation burdens. Moreover,
TRU-type patients could be further divided into clinically and molecularly different subgroups
based on our classifier. Integration of existing subtypes with our classification strategy provides a
more comprehensive understanding of the heterogeneity of LUAD, and can guide us to identifying
potential targets for future personalized medicine.

Abstract: Background: Heterogeneous features of lung adenocarcinoma (LUAD) are used to stratify pa-
tients into terminal respiratory unit (TRU), proximal-proliferative (PP), and proximal-inflammatory
(PI) subtypes. A more-accurate subtype classification would be helpful for future personalized
medicine. However, these stratifications are based on genes with variant expression levels without
considering their tumor-promoting roles. We attempted to identify cancer essential genes for LUAD
stratification and their clinical and biological differences. Methods: Essential genes in LUAD were
identified using genome-scale CRIPSR screening of RNA sequencing data from Project Achilles and
The Cancer Genome Atlas (TCGA). Patients were stratified using consensus clustering. Survival
outcomes, genomic alterations, signaling activities, and immune profiles within clusters were inves-
tigated using other independent cohorts. Findings: Thirty-six genes were identified as essential to
LUAD, and there were used for stratification. Essential gene-classified clusters exhibited distinct
survival rates and proliferation signatures across six cohorts. The cluster with the worst prognosis
exhibited TP53 mutations, high E2F target activities, and high tumor mutation burdens, and har-
bored tumors vulnerable to topoisomerase I and poly(ADP ribose) polymerase inhibitors. TRU-type
patients could be divided into clinically and molecularly different subgroups based on these essential
genes. Conclusions: Our study showed that essential genes to LUAD not only defined patients with
different survival rates, but also refined preexisting subtypes.
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1. Introduction

Lung cancer, a leading cause of cancer-associated mortality, can be categorized into
small-cell lung carcinoma (SCLC) and non-SCLC (NSCLC). Lung adenocarcinoma (LUAD)
is the major subtype of NSCLC which accounts for around 40% of all lung cancer pa-
tients [1]. Although various drugs for treating LUAD have been extensively investigated,
survival rates of LUAD patients have still not dramatically improved [2]. Therapeutic
strategies for LUAD are based on histopathological features or tumors presenting with
targetable genomic alterations like epidermal growth factor receptor 1 (EGFR1) mutations [3],
or translocation of ALK, RET, or ROS1 [4–6]. However, these factors still do not completely
capture the highly heterogeneous features of LUAD. Thus, it is necessary to characterize
this complex disease using more-sophisticated approaches.

With the development of high-throughput sequencing technology, several studies
have tried to define LUAD based on transcriptome profiles. Initially, LUAD was stratified
into bronchoid, magnoid, and squamoid subtypes with significant clinical differences such
as stage-specific survival [7]. Through large-scale multiomics investigations of LUAD by
The Cancer Genome Atlas (TCGA), these subtypes were renamed terminal respiratory
unit (TRU), proximal-proliferative (PP), and proximal-inflammatory (PI) subtypes [8].
Among these types, TRU has favorable prognoses and harbors tumors presenting EGFR
mutations. The PP and PI subtypes have poorer survival outcomes. The former harbors
KRAS mutations and inactivation of STK11, while the latter has co-mutations of NF1 and
TP53. However, stratification of these subtypes is mainly based on gene candidates with
highly variant expressions across tumor samples without considering the roles of these
candidates in tumor malignancy. Thus, we attempted to identify a subset of cancer essential
genes to reclassify LUAD patients.

Project Achilles uses a genome-scale CRISPR-Cas9 tool to individually knock out
each gene, thereby identifying candidates which are critical for cancer survival [9]. Taking
advantage of Project Achilles and RNA sequencing (RNA-Seq) data from LUAD patients,
we were able to pinpoint essential genes responsible for LUAD malignancy. These essential
genes were used to classify LUAD patients into different molecular types. Clinical differ-
ences of these molecular types in multiple cohorts were investigated. Additionally, a new
subset of patients with distinct prognoses in the TRU subtype was identified using our
classification. These findings may allow us to refine the preexisting subtype classification
of LUAD, and also guide us in identifying tumors that may be vulnerable to specific
treatments.

2. Materials and Methods
2.1. Retrieving LUAD Patient Data and Identifying Essential LUAD Genes

RNA Seq data and clinical information of TCGA LUAD patients (n = 511) were
retrieved from UCSC Xena (https://xena.ucsc.edu/; 20 July 2019). Other LUAD datasets
were obtained from Gene Expression Omnibus (GEO) datasets. Expression data from TCGA
and GSE140343 (n = 51) were normalized as fragments per kilobase of transcripts of million
mapped reads (FPKM) and then log2 transformed. The GSE68465 (n = 432), GSE72094
(n = 398), GSE50081 (n = 127), and GSE31210 (n = 226) datasets consisted of microarray
data, and their expressions were normalized by robust multichip averaging with log2
transformation. Genome-wide CRISPR screening of LUAD cells was downloaded from
the DepMap portal (https://depmap.org/portal/download/; 20 July 2019). Dependency
scores for around 17,000 candidate genes were calculated using the CERES algorithm [9].
Candidate genes were defined as essential genes with a CERES score of <−1 across 75%
of LUAD cell lines (n = 31). Using the limma package, differentially expressed gene
(DEG) analyses were conducted between tumor and paired normal tissues from TCGA
and GSE140343 RNA Seq data. Candidates with a false discovery rate (FDR) of <0.01 and a
multiple of change of >1 were considered to be significantly upregulated in tumor tissues.

https://xena.ucsc.edu/
https://depmap.org/portal/download/
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2.2. Classification of LUAD Subtypes and Clinical Feature Analysis

To identify RNA expression subtypes of LUAD, i.e., TRU, PP, and PI, in a previous
study [8], the subtypes were assigned to each LUAD tumor using the nearest centroid
predictor. A Pearson correlation analysis was performed to correlate expression profiles of
each tumor with the nearest centroid predictor. The subtype of each patient was predicted
based on the maximum correlation coefficient. Essential genes we identified were used to
perform an unsupervised consensus clustering with TCGA LUAD data, and a partitioning
around medoids (PAM) clustering algorithm was used. One thousand permutations with
a 0.95 random fraction of essential genes in each iteration were repeated to perform the
clustering analyses. Judging from the delta area plot, the optimal cluster was selected
according to whether no appreciable increase was present. Expressions of essential genes
in TCGA were median centered, and they were used to develop the nearest centroid
classifier that could predict essential gene-classified clusters. The classifier was applied to
the GEO and GDSC datasets to predict subtypes of LUAD. Expressions of essential genes
are shown in a heatmap. To compare 5-year overall survival in each subtype, a log-rank
test was performed. A multivariate Cox regression was conducted to investigate whether
the essential gene-classified cluster was an independent prognostic factor considering
tumor stages. To evaluate the relation between essential-classified clusters and tumor stage,
a logistic regression analysis was performed. The dependent variable was tumor stage,
and we divided it into binary variable. The patients in TCGA, GSE140343, GSE68645 and
GSE72094 were categorized into high stage (stage III and stage IV) and low stage (stage II
and stage I) groups. For the low stage patients in GSE50081 and GSE31210, they were
divided into stage II and stage I. According to previous studies [10–12], four pathological
subtypes with distinct survival have been identified including lepidic predominant non-
mucinous adenocarcinomas (ADCs), acinar/papillary predominant non-mucinous ADCs,
micropapillary/solid predominant non-mucinous ADCs, and invasive mucinous ADCs.
A Fisher exact test was performed to compare the enrichment for a certain essential gene-
stratified cluster in a given pathological type.

2.3. Comparisons of Pathway and Transcription Factor (TF) Activities in LUAD Patients

To compare signaling pathways that differed within essential gene-classified clusters,
a single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate the
degree of activation of Hallmark pathways [13]. TF activity was calculated according to
Garcia-Alonso et al. [14]. Briefly, a group of high-confidence human TFs and their target
genes were defined based on TF-binding site predictions, text mining-derived TF-target
interactions, and chromatin immunoprecipitation coupled with high-throughput (ChIP-X)
data. Transcriptome profiles of these TF targets were used to infer TF activities of each
patient by performing analytical rank-based enrichment analyses (aREAs). The Kruskal-
Wallis test with post-hoc Dunn’s test was conducted to identify the top signaling pathways
or TFs that significantly differed within essential gene-stratified clusters (p < 10−3). A
multivariate linear regression was conducted to evaluate the association between ssGSEA-
inferred E2F targets activity and essential gene-classified clusters considering tumor stage
as a covariate.

2.4. Copy Number Variations and Mutation Analyses

Copy number variations and genomic mutation data of TCGA LUAD were down-
loaded from UCSC Xena (https://xena.ucsc.edu/; 20 July 2019). Copy number segment
data were analyzed using GISTIC 2.0 to identify significant focal copy number alterations
in LUAD patents. Mutation data were generated by the Multi-Center Mutation Calling in
Multiple Cancers (MC3) project. Genes were divided into binary calls as either a non-silent
mutation or wild type (WT). Fisher’s exact test was carried out to explore changes in
genomic mutations and copy numbers that were significantly enriched in specific essential
gene-classified clusters (p < 10−3).

https://xena.ucsc.edu/
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2.5. Drug Discovery in Essential Genes-Stratified Clusters

To uncover the drug candidates that exhibited different efficacy in essential gene-
classified clusters, we queried the genomics of drug sensitivity in cancer (GDSC) database
(https://www.cancerrxgene.org; 16 January 2020). This database contains nearly 1000
genetically characterized human cancer cell lines treated with an array of anti-cancer
therapeutics (367 compounds). Among these cell lines, 46 of them belongs to LUAD. We
applied our KNN prediction to classify these cell lines into our essential genes-stratified
clusters and compared the differences of the area under the receiver operator characteristics
curve (AUC) drug responses among these clusters. Only 257 compounds which were tested
on more than 75% of the LUAD cell lines were selected to analyze. The Kruskal-Wallis test
with a p value < 0.05 was considered as significant difference.

2.6. Evaluating the Tumor Mutation Burden (TMB) and Immune Infiltration in Essential
Gene-Classified Clusters

The TMB was derived from the sum of gene-coding errors, and base substitution
insertions or deletions divided by the length of the human exon (38 MB) [15]. The degree
of immune infiltration was measured using the method described in ESTIMATE. Briefly, an
ssGSEA using RNA expression signatures related to immune cells was conducted to infer
immune infiltration in tumors [16]. This method was applied to GEO and TCGA LUAD
data to estimate the degree of immune infiltration. The TMB and immune infiltration
were compared in essential gene-stratified clusters by the Kruskal-Wallis test with post-hoc
Dunn’s test.

3. Results
3.1. Identification of Essential Genes for Promoting LUAD Malignancy

An analysis pipeline was designed to identify and characterize subtypes, clinical fea-
tures, and molecular profiles of LUAD patients in the present study (Figure 1A). To pinpoint
crucial gene candidates responsible for LUAD malignancy, we investigated genome-wide
CRISPR-based loss-of-function screens derived from DepMap. In total, 693 genes were
found to be crucial for maintaining survival in 31 LUAD cell lines (Table S1). To identify
which candidates among these 693 genes were aberrantly expressed in tumor tissues, DEG
analyses were carried out to compare tumor tissues with paired normal tissues in TCGA
(number of pairs = 59) and GSE140343 (number of pairs = 49) RNA Seq data. Thirty-six
of 693 essential genes were significantly upregulated in tumor tissues (with a multiple
of change of >1 and an FDR of <0.01) (Figure 1B, Tables S2–S4). Gene expression cor-
relation analyses indicated that these 36 candidate genes were strongly associated with
each other in both TCGA (median Pearson’s R = 0.625) and GSE140343 (median Pearson’s
R = 0.621) (Figure 1C and Figure S1). This finding implied that cancer essential genes were
coordinately modulated by common regulators. Functionally, pathway analyses revealed
that these 36 LUAD essential genes were enriched in cell proliferative signaling pathways
including DNA replication checkpoint, transcription involving the G1/S transition, and
DNA replication initiation (Figure 1D).

https://www.cancerrxgene.org
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Figure 1. Identification of cancer essential genes in lung adenocarcinoma (LUAD). (A) Flowchart demonstrating our investi-
gation of the clinical importance and molecular associations among LUAD essential gene-stratified clusters. (B) Heatmap
showing significantly upregulated genes in LUAD tumor tissues compared to paired normal tissues using RNA sequencing
data of TCGA and GSE140343. The horizontal bar plot represents the median CERES score in LUAD cells from Project
Achilles. (C) Associations of cancer essential genes from TCGA data are shown as a correlation heatmap. (D) Horizontal bar
plot demonstrating the top essential gene-enriched signaling pathways using pathway enrichment analyses.

3.2. Essential Genes Stratified LUAD Patients with Different Prognoses and E2F
Signaling Activities

Unsupervised consensus clustering was performed to classify TCGA LUAD patients
into three robust clusters using the 36 identified essential genes (Figure 2A,B). A log-rank
test demonstrated that these three clusters exhibited significantly different prognoses (log-
rank test p = 0.0039) (Figure 2C). Clusters 1, 2, and 3 respectively exhibited the worst progno-
sis, a moderate survival time, and the most favorable prognosis. The associations between
tumor stages and essential genes-stratified clusters were analyzed by conducting logistic
regression. The cluster 1 patients were significantly associated with higher tumor stage
comparing with cluster 3 (log of the odds ratio = 0.99, p value < 0.01) (Table S5). Besides
tumor stages, the associations between pathological types and clusters were also analyzed.
We identified that cluster 3, cluster 2, and cluster 1 patients were respectively enriched in le-
pidic (odds ratio = 32.86, p value < 0.01), acinar/papillary (odds ratio = 1.96, p value = 0.02),
and micropapillary/solid ADCs (odds ratio = 5.35, p value < 0.01) (Figure S2). A multi-
variate Cox regression analysis indicated that the essential gene-stratified subtype was a
prognostic factor independent of the lung cancer stage in TCGA LUAD patients (cluster 1
vs. cluster 3; hazard ratio (HR) = 1.6, p = 0.039) (Figure 2D). Expression levels of essential
LUAD genes subsequently increased in the order of clusters 3, 2, and 1 (Figure 2E). To
identify central regulators associated with distinct expression profiles of LUAD essential
genes, we compared genomic alterations among these three clusters. Genomic mutation
and copy number variation analyses revealed that the TP53 mutation and chromosome
3q26.2 amplification were significantly enriched in cluster 1 (Figure 2F,G). The ssGSEA
identified that E2F targets, the G2M checkpoint, and mitotic signaling were significantly
upregulated in cluster 1 (Figure 2H, upper panel). Additionally, an aREA was performed
to infer TF activities in LUAD patients. Activities of multiple E2F TFs, including E2F2,
E2F3, and E2F4, were significantly higher in cluster 1 (Figure 2H, lower panel). A multivari-
ate linear regression analysis demonstrated that the association between E2F targets and
essential gene-classified clusters was independent of tumor stage (Table S6). Combining
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findings of the pathway and transcription factor analyses, these clusters exhibited distinct
E2F activities. Thus, these three clusters were denoted as having high (cluster 1), medium
(cluster 2), and low (cluster 3) E2F activities.
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Figure 2. Essential gene-stratified clusters exhibit distinct survival and molecular profiles. (A) Similarity matrix of TCGA
patients derived from consensus clustering assays shown as a heatmap. (B) Cumulative distribution function (CDF) plot
used to decide optimal cluster numbers. (C) Survival differences within each cluster compared using a log-rank test
and demonstrated as a Kaplan-Meier plot. (D) Forest plot indicating hazard ratios of essential gene-stratified clusters
considering tumor stages. (E) Heatmap indicating expressions of essential genes within clusters. The status of the TP53
mutation and chromosome 3q26.2 alterations are demonstrated as annotation plots. The frequency of TP53 mutations
(F) and chromosome 3q26.2 alterations (G) within each cluster are demonstrated. (H) Violin plots demonstrating the top
signaling and transcription factor (TF) activities that significantly differed within essential gene-classified clusters. * means
p < 0.05.

3.3. Essential Genes Identify a New Subgroup from TRU-Type Patients with a Favorable Prognosis

A previous study divided LUAD patients into different molecular subtypes including
TRU, PP, and PI based on 506 candidate gene expressions [8]. The TRU type had favorable
prognoses, but PP and PI type patients had poor survival rates. The three essential gene-
classified clusters were used to compare existing molecular subtypes (Figure 3A). Cluster 1
and 2 patients were highly enriched in PI (65.0% in cluster 1, 31.6% in cluster 2, and 3.4%
in cluster 3) and PP (64.0% in cluster 1, 34% in cluster 2, and 2% in cluster 3). Cluster 3
patients were significantly enriched in TRU (8.1% in cluster 1, 43.8% in cluster 2, and 48.1%
in cluster 3). Although both cluster 3 and TRU-type patients had favorable prognoses,
nearly half (51.9%) of TRU patients contained cluster 1 and 2 types, which are poor survival
groups. Therefore, we wondered whether essential gene-classified clusters could further
subdivide TRU-type patients into distinct survival groups. By performing a log-rank test,
TRU belonging to the cluster 3 subtype exhibited more-favorable prognoses compared to
the other molecular types (Figure 3B). No survival differences were found among TRU
without cluster 3, and PP and PI subtype patients. Additionally, we found that patients with
lepidic pathological type were significantly enriched in TRU-cluster 3 (odds ratio = 36.86,
p value < 0.001) (Figure S2). From these results, essential genes provide an additional
characterization from preexisting molecular types of LUAD.
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3.4. Validation of the Survival Significance of Essential Gene-Stratified Clusters in
Multiple Cohorts

To validate the prominent roles of essential gene-classified clusters, TCGA LUAD
patients were used as a training set to build a prediction model using the nearest centroid
classifier. Because 14 of the 36 essential genes overlapped with candidates that stratified
preexisting molecular types, only 22 genes remained for establishing the classification
model (Figure S3A). In addition, 13 of the 36 essential genes directly belonged to E2F
targets (Figure S3B). LUAD patients derived from GSE140343 (n = 51), GSE68465 (n = 432),
GSE72094 (n = 398), and low-stage LUAD patients derived from GSE50081 (n = 127) and
GSE31210 (n = 226) were divided into three clusters based on the classification model.
Expressions of essential genes and E2F target signaling were obviously activated in the
order of clusters 3, 2, and 1 (Figures S4 and S5). Logistic regression analysis demonstrated
that cluster 1 patients were significantly associated with higher tumor stage comparing with
cluster 3 in GSE50081 (log of odds ratio = 1.16, p value = 0.04) and GSE31210 (log of odds
ratio = 2.05, p value < 0.01) (Table S5). Additionally, GSE68465 contained the tumor grade
information, and we identified that cluster 1 (log of the odd ratio = 2.16, p value < 0.01) and
cluster 2 (log of the odd ratio = 2.89, p value < 0.01) patients associated with higher tumor
grade compared with cluster 3 patients (Table S6). Multivariate linear regression analysis
showed that the clusters were correlated with E2F target activity independent of tumor
stages in all the cohorts (Table S7). Log-rank survival analyses demonstrated that cluster
1 patients had the significantly worst prognoses, while cluster 3 patients had favorable
survival rates in the GSE68465, GSE72094, GSE50081, and GSE31210 datasets (Figure 4A).
Although survival times did not significantly differ across essential gene-classified clusters
in the GSE140343 dataset, their survival trends still followed a similar pattern as the other
cohorts. The insignificant survival differences in the GSE140343 dataset might have been
due to its small sample size (n = 51). Additionally, a multivariate Cox regression confirmed
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that essential gene-classified clusters acted as an independent prognostic factor considering
tumor stages as covariates in the GSE68465, GSE72094, GSE50081, and GSE31210 datasets
(Figure 4B). Similar to TCGA data, around half of TRU patients in these cohorts belonged to
clusters 1 and 2 which exhibited high E2F signaling and proliferative signatures (Figure 4C).
A survival analysis was also used to identify that TRU patients with cluster 3 genetic
features exhibited better prognoses among different molecular types in three (GSE31210,
GSE68465, and GSE50081) of the five datasets. These results suggested that essential
LUAD genes were prominent molecular predicators that could identify LUAD patients
with distinct proliferative signatures and prognoses. Importantly, this signature could be
further used to refine preexisting RNA expression subtypes of LUAD.
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Figure 4. Validation of survival and molecular differences of essential gene-stratified clusters of multiple GEO data.
(A) Kaplan-Meier plots demonstrating survival differences of essential gene-classified clusters in the GSE140343, GSE68465,
GSE72094, GSE50081, and GSE31210 datasets. Survival differences were evaluated using log-rank tests. (B) Forest plot
using multivariate Cox regression analyses showing essential gene-classified clusters as an independent prognostic factor
in the GSE68465, GSE72094, GSE50081, and GSE31320 datasets. (C) Distributions of essential gene-classified clusters in
previously reported expression subtypes shown in stack bar plots. Kaplan-Meier plots demonstrated survival rates of
different molecular types with or without considering cancer essential gene-classified clusters. * means p < 0.05.
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3.5. Potential Drug Discovery and Immune Environment Characterization of Essential
Gene-Classified Clusters

To identify drugs that exhibited distinct efficacy in essential gene-classified clusters, the
prediction model was applied to the GDSC database (Figure 5A). Areas under the receiver
operator characteristics curve (AUC) of drug responses within clusters were compared.
Totally, the GDSC database contains 367 compounds. Only 257 compounds which were
tested on more than 75% of the LUAD cell lines were used for analyses (Tables S8 and S9).
AUCs of SN-38, a topoisomerase I inhibitor, and talazoparib, a poly(ADP ribose) poly-
merase (PARP) inhibitor, were significantly lower in cluster 1 LUAD cells (Figure 5B). This
suggested that cluster 1 tumors with highly proliferative signatures were vulnerable to
drugs targeting DNA-replication mechanisms. Understanding the immune microenviron-
ment and mutation burden in tumors could guide us in identifying tumors sensitive to
immunotherapies. Thus, we compared differences in these factors within essential gene-
classified clusters in TCGA and GEO datasets. The ESTIMATE-derived immune infiltration
score did not prominently differ within these clusters (Figure 5C and Figure S6A), but the
TMB subsequently decreased in the order of clusters 1, 2, and 3 (Figure 5D). Previously
reported expression subtypes exhibited distinct immune profiles with the TRU and PI
subtypes demonstrating higher immune infiltration compared to the PP subtype. Activ-
ities of E2F target signaling were lower in the TRU subtype (Figure 5E and Figure S5B).
Further, categorization of these previously reported subtypes with essential gene-stratified
clusters led to distinct E2F signaling (Figure 5F and Figure S6B). Herein, a combination of
our essential gene-stratified clusters and previously reported expression subtypes more
comprehensively captured proliferative and immune profiles of LUAD (Figure 5G). The
PI type presented high immune infiltration and high proliferative features; the PP type
exhibited low immune infiltration and high proliferative features; the TRU type was subdi-
vided into high immune infiltration/high proliferative and high immune infiltration/low
proliferative groups with distinct prognoses. In conclusion, E2F signaling-related essential
genes could identify highly immune infiltrative TRU patients with distinct proliferative
signatures and prognoses.
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Figure 5. Drug discovery and immune characterization in essential gene-classified clusters of lung adenocarcinoma (LUAD).
(A) Heatmap showing essential gene-stratified-clusters exhibiting distinct expressions in GDSC lung cancer cells. (B) Drug
response area under the receiver operator characteristics curve (AUC) of SN-38 and talazoparib within essential gene-
classified clusters demonstrated as a boxplot. ESTIMATE-derived immune infiltration (C) and the tumor mutation burden
(D) were compared within each cluster and are shown as boxplots Boxplot of immune infiltration and E2F signaling within
previously defined subgroups (E) and essential gene-classified clusters (F). (G) Integration of previously defined molecular
types and essential gene-stratified clusters categorizing LUAD patients into distinct immune infiltration and proliferative
signature groups. * means p < 0.05.

4. Discussion

Inter-patient diversity in LUAD indicates the importance of identifying genetically
different subgroups with distinct survival and druggable targets. By combining Project
Achilles and LUAD patient RNA Seq data, 36 cancer essential genes involved in cell prolifer-
ation pathways were nominated. Clinically, these essential gene signatures stratified LUAD
patients into different survival groups in multiple cohorts. Molecularly, TP53 mutations
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and chromosome 3q26.2 amplification were enriched in patients with the worst prognoses
as identified by essential genes. Additionally, E2F targets and E2F transcription activities
were activated in the group with the worst prognoses. GDSC drug analyses identified
that the high E2F-signaling group was sensitive to cell proliferation inhibitors including
talazoparib and SN-38. Intriguingly, essential gene-classified clusters further identified a
group of TRU patients with favorable prognoses and low proliferative signatures.

In our pathway analysis, we identified distinct E2F activities within essential gene-
classified clusters, and 13 of 36 essential genes directly belonged to E2F targets. Specifically,
we identified that E2F2/3/4 were activated in cluster 1 patients. The E2F family consists
of eight members (E2F1~8), and they are TFs that are responsible for inducing G1/S and
G2/M phase transitions [17–19]. It was indicated that E2F2/3 exhibit higher expressions in
LUAD tumors compared to healthy lung tissues [20]. E2F2/4 were correlated with LUAD
stages and negatively associated with relapse-free survival [20]. Functionally, E2F2 was
identified as a direct microRNA (miR)-99a target and is involved in miR-99a- suppression
of lung cancer stemness and the epithelial-to-mesenchymal transition [21]. Suppression
of E2F3 was shown to synergize the cytotoxicity of paclitaxel in lung cancer cells [22].
However, few studies reported the function of E2F4 in LUAD. Hence, future studies to
achieve a more detailed understanding of E2F4 are still needed. Interestingly, in the present
study, we identified that E2F2, E2F3, and E2F4 were not essential genes in lung cancer
cells from Project Achilles. This result suggests that E2F members have redundant roles,
and knocking-out one of the E2F members might not sufficiently reduce essential gene
expressions. Still, future experimental studies are needed to verify this speculation.

In the copy number variation analyses, amplification of chromosome 3q26.2 was
enriched in cluster 1 patients (48%). The protein kinase C iota (PRKCI) gene, located in chro-
mosome 3q26.2, was indicated to phosphorylate the cancer stemness regulator, SOX2 [23].
PRKCI/SOX2 signaling promotes the Hedgehog pathway and sustains lung squamous cell
cancer stemness [23]. However, few studies have investigated the roles of chromosome
3q26.2 amplification and PRKCI function in LUAD. Gene mutation analyses revealed that
non-silent somatic mutations of TP53 were highly enriched in cluster 1 cancer patients.
TP53 is a well-known tumor suppressor, and it is frequently mutated in various cancers
including LUAD. TP53 functions as a cell cycle suppressor by promoting G1/S and G2/M
arrest [24]. Thus, the loss of function of TP53 leads to uncontrolled proliferative features of
lung cancers. Moreover, one study reported that TP53 suppresses transcription activities
of E2F proteins [25]. A pan-cancer analysis of genomic profiles of patients indicated that
E2F signaling is activated in TP53-mutant tumors [26]. Those previous results echo our
findings that activation of E2F signaling accompanies TP53 mutations. However, 24% of
LUAD patients in cluster 1 harbored tumors with WT TP53. No significant differences in
E2F activities between WT and mutant TP53 were found in cluster 1 (Wilcox p = 0.1794,
data not shown). These findings might be explained by other non-mutational mechanisms
suppressing TP53’s functions, since MDM2, MDM4, and PPM1D were identified to func-
tion as negative regulators of TP53 [27–29]. It is worth noting that MDM2 gene expression
was significantly higher with WT TP53 compared to the mutant type (Wilcox p = 0.03829,
data not shown) in cluster 1. Taken together, these findings imply that upstream genomic
mutations might not comprehensively capture clinically distinct patients, since alternative
signaling might compensate for their roles. In contrast, cancer essential genes which are
predominately involved in direct processes of the cell cycle can more accurately reflect
clinical differences in LUAD patients.

Immune infiltration and the TMB are crucial factors determining the efficacy of im-
munotherapy. Our data demonstrated significant differences in the mutation burden within
essential gene-classified clusters. Cluster 1 patients had the highest mutation burden. Be-
cause TP53 maintains genomic stability [30], loss of function of TP53 accompanied by
activation of cell proliferative signatures might lead to genomic instability and the high
TMB in cluster 1 patients. No significant differences in immune cell infiltration within
essential gene-classified clusters were identified, since these essential genes were derived
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from cancer cell line knockout experiments without considering the tumor microenviron-
ment. In contrast, previously reported expression subtypes were demonstrated to possess
distinct immune infiltration levels [31], but they did not exhibit prominent differences in
E2F signaling activities.

In our analysis, we identified that essential genes expression exhibited an increased
trend in an order of cluster 3, 2 and 1 judging from the heatmap from Figure 2E, Figures
S4 and S5. Further, a strong association among these essential genes implicated that it
is feasible to reduce the genetic signature and develop a simplifier prediction model. In
the future, a functional study is needed to better characterize the roles of essential genes
in LUAD. This could further guide us to categorize those genes into functional distinct
subsets. Then, we could select more representative genes from those subsets to refine our
predictive model.

5. Conclusions

An integration of our classification with previously reported subtypes provides a more-
thorough understanding of immune and proliferative profiles of LUAD. The TRU subtype
with high immune infiltration could be further divided into low and high proliferative
groups based on our identified essential genes. Consequently, these findings can guide us
in identifying subgroups of LUAD tumors that may be vulnerable to immunotherapy or
cell proliferation inhibitors in the future.
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