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Abstract: Recent studies have highlighted that a novel class of neuroprotective peptide, known as
cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly
effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying
the anti-excitotoxic properties of CARPs, using poly-arginine-18 (R18; 18-mer of arginine) as
a representative peptide. Cortical neuronal cultures subjected to glutamic acid excitotoxicity were
used to assess the effects of R18 on ionotropic glutamate receptor (iGluR)-mediated intracellular
calcium influx, and its ability to reduce neuronal injury from raised intracellular calcium levels
after inhibition of endoplasmic reticulum calcium uptake by thapsigargin. The results indicate
that R18 significantly reduces calcium influx by suppressing iGluR overactivation, and results in
preservation of mitochondrial membrane potential (∆Ψm) and ATP production, and reduced ROS
generation. R18 also protected cortical neurons against thapsigargin-induced neurotoxicity, which
indicates that the peptide helps maintain neuronal survival when intracellular calcium levels are
elevated. Taken together, these findings provide important insight into the mechanisms of action
of R18, supporting its potential application as a neuroprotective therapeutic for acute and chronic
neurological disorders.

Keywords: poly-arginine-18 (R18); cationic arginine-rich peptides (CARPs); neuroprotection; ROS;
mitochondrial membrane potential (∆Ψm); ionotropic glutamate receptors

1. Introduction

Glutamate excitotoxicity is a critical neurodamaging event responsible for neuronal death in
acute forms of brain injury, such as stroke, traumatic brain injury (TBI) and hypoxic-ischaemic
encephalopathy (HIE), as well as chronic neurodegenerative disorders such as Alzheimer’s disease
(AD) [1,2], Huntington’s disease (HD) [3,4], Parkinson’s disease (PD) [5,6], and amyotrophic lateral

Molecules 2020, 25, 2977; doi:10.3390/molecules25132977 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-6432-4675
https://orcid.org/0000-0003-0964-0648
http://dx.doi.org/10.3390/molecules25132977
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/13/2977?type=check_update&version=2


Molecules 2020, 25, 2977 2 of 16

sclerosis (ALS) [7,8]. The excessive release of the excitatory neurotransmitter glutamate from
pre-synaptic neurons can trigger the overactivation of ionotropic glutamate receptors (iGluRs), such as
N-methyl-D-aspartate (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR),
and kainic acid (KAR) receptors [9]. The overactivation of iGluRs causes excessive neuronal calcium
uptake and triggers a range of harmful intracellular biochemical cascades, culminating in cell death [9].
As such, the modulation of intracellular calcium concentrations and the preservation of intracellular
organelles that store calcium, primarily the mitochondria, are critical neuroprotective targets against
excitotoxic neuronal injury [10].

Mitochondria represent an important regulator of intracellular calcium levels, due to several direct
and indirect mechanisms. For example, mitochondria can sequester calcium via the mitochondrial
calcium uniporter (MCU), cause calcium release from internal stores (i.e., endoplasmic reticulum;
ER), and supply ATP for plasma membrane calcium extrusion pumps [see reviews [11–13]. However,
excessive intracellular calcium levels can cause a toxic influx of calcium into mitochondria, loss of the
mitochondrial membrane potential (∆Ψm) across the inner mitochondrial membrane, and inhibition
of the electron transport chain (ETC) and oxidative phosphorylation, leading to reduced ATP
synthesis. In addition, uncoupling of the ETC leads to increased generation of reactive oxygen
species (ROS), further contributing to mitochondrial dysfunction and the release of pro-apoptotic
factors, such as cytochrome c and apoptosis-inducing factor (AIF), and ultimately the demise of
the cell. While several key cell death pathways are involved in neuronal NMDA and non-NMDA
receptor-mediated excitotoxicity, mitochondrial dysfunction is considered a critical event [12–17].

Recent studies in our laboratory have identified cationic arginine-rich peptides (CARPs),
which include poly-arginine peptides, have intrinsic neuroprotective and cell-penetrating properties
(reviewed in [18]). In particular, we have demonstrated that poly-arginine-18 (R18, 18-mer of arginine)
is neuroprotective in in vitro neuronal excitotoxicity models and in in vivo rodent and non-human
primate models of stroke [19–24], as well as rodent models of HIE [25,26] and TBI [27,28]. Given the
neuroprotective properties of R18, it is imperative that the molecular pathways that underlie its
neuroprotective action are fully elucidated in order to gauge its therapeutic potential. We have
previously demonstrated that R18 can reduce glutamic acid-induced excitotoxic neuronal death and
intracellular calcium influx, and that the poly-arginine-12 peptide (R12) reduces cell surface neuronal
NMDA receptor levels [29]. Because of their cell-penetrating properties, CARPs have additional
intracellular mechanisms of action, including beneficial effects on mitochondrial function and structural
integrity [30]. However, these have not been fully investigated.

In this study, we aimed to confirm that the anti-excitotoxic properties of the R18 peptide were
also associated with the preservation of mitochondrial function in cortical neurons. We explored the
ability of R18 to attenuate excessive calcium influx and excitotoxic neuronal death induced by a variety
of ionotropic glutamate receptor agonists, namely glutamate, NMDA, KA, and AMPA. Given that
mitochondria are a critical modulator of intracellular calcium levels during neuronal excitotoxicity and
are responsible for a significant share of the ensuing oxidative stress and energy collapse, we examined
whether R18 could preserve mitochondrial bioenergetics, in particular via the maintenance of the
mitochondrial membrane potential (∆Ψm) and ATP production, and through limiting ROS generation.
Lastly, we investigated whether R18 could prevent neurotoxicity following thapsigargin-mediated
inhibition of ER calcium uptake, representing a receptor-independent mechanism for raising
intracellular calcium levels.

2. Results

2.1. R18 is Neuroprotective against Different Ionotropic Glutamate Receptor Agonists

Since L-glutamic acid can activate NMDA, AMPA and KA ionotropic receptors, the involvement
of each glutamate receptor agonist in excitotoxicity and the potential capacity of R18 to reduce toxicity
was examined. Dose–response studies revealed that cortical neurons were most sensitive to NMDA,
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followed by KA and AMPA receptor overstimulation (Figure 1). Based on CellTiter 96® AQueous
Non-Radioactive Cell Proliferation MTS assay (MTS) and CytoTox 96® Non-Radioactive Cytotoxicity
LDH release (LDH) assays, exposure of cortical neurons to NMDA at concentrations of ≥100 µM
resulted in > 90% cell death (p < 0.0001). In contrast, exposure of cortical neurons to KA and AMPA
at 200 µM (highest concentration examined) resulted in approximately 30% (p < 0.0001) and 20%
(p < 0.0001) cell death, respectively.
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Figure 1. Ionotropic glutamate receptor agonists induce dose-dependent neuronal death at 24 h
post-exposure. Dose–response studies of DIV10 primary cortical neurons exposed to ionotropic
glutamate receptor agonists (10–200 µM) for 5 min. Neuronal viability and cell death were measured
using MTS and LDH assays, respectively, at 24 h post-exposure to (a,b) NMDA, (c,d) KA, and (e,f) AMPA.
Absorbance values were adjusted to represent cell viability (untreated control as 100%) and fold change
in LDH release. Values are means ± SEM; n = 3, with a minimum of eight biological replicates per
sample in each experiment; * p < 0.05. Experiments were conducted at least twice with independent
neuronal cultures.

Dose–response efficacy studies with R18 (1, 2 and 5 µM) following exposure of cortical neurons
to different glutamate receptor agonists revealed that the peptide significantly reduced neuronal cell
death (p < 0.0001) following exposure to glutamic acid, NMDA and KA (Figure 2A–C). R18 provided
almost complete protection at the 1 and/or 2 µM concentrations following exposure to glutamic acid
and NMDA, and at the 5 µM concentration following exposure to KA. The exposure of cortical neurons
to AMPA (100 µM) did not result in a significant level of neuronal death (p = 0.7622) (Figure 2D),
and therefore the efficacy of R18 to reduce injury could not be determined.
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Figure 2. R18 protects primary cortical neurons against excitotoxicity induced by various ionotropic
glutamate receptor agonists. Neuronal cultures were pre-treated with R18 (1, 2, and 5 µM) for 10 min
and exposed to a 100 µM final concentration of specific iGluR agonists for 5 min. The medium
was then replaced, and neuronal viability and death were measured at 24 h post-insult via MTS
and LDH assays, respectively. Receptor agonists included (a,b) glutamate, (c,d) NMDA, (e,f) kainic
acid, and (g,h) AMPA. The receptor antagonists, MK801 (10 µM) and CNQX (10 µM), were used as
positive controls. Absorbance values were adjusted to represent cell viability (untreated control as
100%). Values are means ± SEM; n = 3, with a minimum of eight biological replicates per sample
in each experiment; * p < 0.05. Experiments were conducted at least three times with independent
neuronal cultures.

2.2. R18 Attenuates Excitotoxic Calcium Influx Stimulated by Ionotropic Glutamate Receptor Agonists

An initial study examined neuronal intracellular calcium influx after exposure to the different
iGluR agonists at the 100 µM concentration with use of Fura-2 AM to measure rapid intracellular
Ca2+ transients. The ratiometric dye can be excited at 340 and 380 nm, representing bound and
unbound Fura-2 AM dye, and measured at 540 nm to determine the proportion of total calcium
that is intracellularly localised (i.e., influx). Glutamic acid elicited the greatest fold increase in
intracellular calcium (~2.2-fold), followed by KA (~2-fold), NMDA (~1.5-fold) and AMPA (~1.3-fold)
(Figure 3A). To examine whether R18 neuroprotection against excitotoxicity is associated with attenuated
intracellular calcium influx, calcium kinetics studies in neuronal cultures were performed using the
peptide at the 2 and 5 µM concentrations and iGluR agonists at the 100 µM concentration.
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Figure 3. R18 protects primary cortical neurons against iGluR-mediated calcium influx. Cortical neurons
were loaded with Fura-2 AM (5 µM in MEM/B27) for 30 min at 37 ◦C, and the medium was replaced
with 50 µL phenol-free Hank’s Balanced Salt Solution (HBSS). Baseline calcium levels were measured
every 30 s for 1.5 min prior to the addition of (a) iGluR agonists, glutamate, NMDA, AMPA, and KA
(100 µM final concentration). Subsequent calcium measurements were made every 30 s for 5 min.
To assess the neuroprotective ability of R18 against receptor-mediated calcium influx, neurons were
treated with R18 (2 and 5 µM) or receptor blockers (MK801 and/or CNQX; 10 µM) for 10 min prior to
stimulation with individual iGluR agonists, (b) glutamate, (c) NMDA, (d) kainic acid, (e) or AMPA,
and calcium levels were collected every 30 s for a further 5 min. Values are means ± SD; n = 3,
with a minimum of four biological replicates per sample in each experiment; * p < 0.05. Experiments
were conducted at least three times with independent neuronal cultures. Fluorescent readings were
adjusted to remove background signal and displayed as ∆F ratio (340/380 nm) relative to the untreated
control at each timepoint.
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Glutamic acid: R18 at 5 µM completely attenuated intracellular calcium influx. In contrast, R18
at 2 µM only had a slight effect in reducing intracellular calcium influx. Treatment with glutamate
receptor inhibitors, MK801/CNQX (10 µM/10 µM), resulted in an initial slight reduction in calcium
influx. However, the levels of intracellular calcium decreased to untreated control levels by 3 min after
glutamic acid addition (Figure 3B).

NMDA: R18 at 2 and 5 µM and MK801 (10 µM) completely attenuated intracellular calcium influx
(Figure 3C).

KA: R18 at 2 and 5 µM attenuated intracellular calcium influx equal to or slightly above baseline
levels (Figure 3D). Interestingly, the AMPA/KA receptor antagonist, CNQX (10 µM), did not appear to
attenuate intracellular calcium influx.

AMPA: R18 at 5 µM completely attenuated intracellular calcium influx. In contrast, R18 at 2
µM and CNQX (10 µM) only had a slight effect in reducing intracellular calcium influx (Figure 3E).
Interestingly, the AMPAR inhibitor, CNQX, did not appear to prevent AMPAR-induced calcium influx.

2.3. R18 Preserves Mitochondrial Bioenergetics after Glutamic Acid Exposure

A central mechanism in excitotoxic neuronal death is mitochondrial calcium overload and
dysfunction [31,32]. Therefore, we examined whether R18 exerted any additional abilities to preserve
neuronal mitochondrial bioenergetics by measuring mitochondrial membrane potential (∆Ψm),
and ATP and ROS levels in neurons treated with R18 alone and exposed to glutamic acid. R18 treatment
at 2 and 5 µM did not cause any adverse effects on ∆Ψm, ATP and ROS levels in neurons not exposed
to glutamic acid (Figure 4A,C,E). As expected, exposure of neurons to glutamic acid significantly
decreased ∆Ψm and ATP levels (p < 0.0001), and increased ROS levels (p < 0.0001). In neurons exposed
to glutamic acid, R18 treatment at 2 and 5 µM significantly preserved ∆Ψm (p = 0.0014; p = 0.0003) and
ATP levels (p < 0.0001) and reduced ROS levels (p = 0.0021; p = 0.0002) (Figure 4B,D,F).
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Figure 4. R18 does not disrupt mitochondrial bioenergetics and preserves mitochondrial bioenergetics
post-glutamate excitotoxic insult in primary cortical neurons. Cultures received a 5 min glutamate
exposure (100µM final concentration) following a 10 min pre-treatment with R18 (2 or 5µM). Parameters
of mitochondrial bioenergetics were measured fluorometrically post-insult and are represented as fold
change in fluorescent intensity. (a,b) Membrane potential was measured with tetramethylrhodamine
ethyl ester (TMRE) immediately post-insult. (c,d) ATP production and (e,f) were measured at 24 h
post-insult. Background fluorescent values were removed. Background fluorescent values were
removed, and experiments were conducted at least three times with independent neuronal cultures.
Values are means ± SEM; n = 3, with a minimum of eight biological replicates per sample in each
experiment; * p < 0.05. FCCP (carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; 20 µM) was
used as a positive control for mitochondrial membrane depolarization.
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2.4. R18 Provides Neuroprotection against Thapsigargin-Induced Injury

Inhibition of the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump causes the gradual
increase in cytosolic calcium due to the inability of the ER to sequester calcium, which eventually
results in neuronal death [33,34], independent of iGluR-mediated calcium influx. Exposure of cortical
neurons to thapsigargin for 24 h resulted in a concentration dependent reduction in cell viability and
cell death (Figure 5A,B). Based on MTS and LDH release assays, thapsigargin at the 25 µM (p < 0.0001)
and 50 µM (p < 0.0001) was highly toxic, causing greater than 70% neuronal death. In contrast,
lower doses of thapsigargin (1, 5 and 10 µM) resulted in modest toxicity causing between 10–20% cell
death. Treatment of neurons with R18 at 2 µM (p = 0.0467) and 5 µM (p = 0.001) significantly reduced
neuronal death following exposure to thapsigargin (10 µM) (Figure 5D). Interestingly, based on LDH
release, R18 at 5 µM completely inhibited cell death, whereas MTS metabolism in the same neuronal
cultures was significantly reduced (p = 0.001), but above the thapsigargin treated control (Figure 5C).
This indicates that while R18 was able to preserve neuronal viability, the continued exposure of neurons
to thapsigargin and ER stress affected the ability of the neurons to metabolise the MTS substrate.
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Figure 5. R18 protects primary cortical neurons against thapsigargin-induced neuronal death and
ER-mediated calcium release. A 24 h exposure of primary cortical neuronal cultures to thapsigargin (TPG)
causes (a) a significant reduction in MTS metabolism and (b) increased LDH release in a dose-dependent
manner. Neuronal cultures were pre-treated with R18 (1, 2, and 5 µM) and exposed to 10 µM final
concentration of TPG for 24 h exhibited (c) significantly improved MTS metabolism and (d) reduced
LDH release compared to TPG control at 24 h post-insult. Absorbance values were adjusted to represent
cell viability (untreated control as 100%). Values are means ± SEM; n = 3, with a minimum of eight
biological replicates per sample in each experiment; * p < 0.05. Experiments were conducted at least
twice with independent neuronal cultures.
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3. Discussion

3.1. Protective Effects of R18 against iGluR agonist Induced Excitotoxicity

In the present study, we further characterised the anti-excitotoxic actions of the poly-arginine-18
(R18) peptide in primary cortical neuronal cultures. In doing so, it was established that R18
provides neuroprotection against iGluR-mediated excitotoxicity induced by NMDA and KA receptor
overstimulation, which is in line with a previous study in our laboratory examining the anti-excitotoxic
actions of the D-enantiomer R9 poly-arginine peptide (R9D) [35]. In addition, we have shown that R18
reduces NMDA-, KA- and AMPA-induced neuronal intracellular calcium influx, which confirms the
broad-acting capacity of the peptide to antagonize NMDA, KA and AMPA receptor activation, thereby
limiting excitotoxic intracellular calcium entry. Interestingly, the competitive AMPAR/KAR inhibitor,
CNQX, did not prevent AMPA- or KA-induced neuronal intracellular calcium influx. At present,
the reason for this result is not known, and therefore future studies should examine AMAP- and
KA-mediated neuronal calcium influx with CNQX alongside other AMPAR and KAR antagonists,
such as perampanel and LY382884. Nonetheless, these findings are supported by an earlier study
which demonstrated that short arginine-rich peptides (2–6-mers) can inhibit NMDA and AMPA evoked
ionic currents and antagonize the vanilloid receptor 1 (VR1/TRPM1) in Xenopus oocytes expressing
NMDA, AMPA, and VR1 receptors, respectively [36,37].

It is of interest that the efficacy of R18 in maintaining neuronal viability at 2 and 5 µM differed with
the different ionotropic glutamate receptor agonists (Figure 2). For example, R18 at 5 µM appeared less
effective than at 2 µM at inhibiting glutamic acid- and NMDA-mediated excitotoxicity, while following
kainic acid exposure R18 followed a dose–response effect. The reduced efficacy of R18 at the higher
5 µM concentration has been observed previously following glutamic acid excitotoxicity and viability
assessment using the MTS assay [35], and is likely due to the peptide exerting an adverse effect on
neuronal metabolism, rather than cell death, as LDH release levels were not elevated in the 5 µM
treatment group compared to the 2 µM treatment group. One explanation is that pre-treatment of
neuronal cultures with R18 at high concentrations causes elevated intracellular levels of the peptide,
which when combined with NMDA receptor activation adversely affects mitochondrial function,
as CARPs are known to target this organelle. Alternatively, R18 may be causing an excessive and
prolonged inhibition or downregulation of neuronal surface receptors such as NMDARs or neurotrophic
receptors that are important for maintaining neuronal biochemical function.

A potential mechanism whereby R18 has the capacity to antagonize the function of neuronal
cell surface ion channel receptors is by inducing the endocytic internalisation of the receptors and
thereby reducing excitotoxic calcium influx [18]. For example, we have previously demonstrated that in
cultured cortical neurons the poly-arginine-12 (R12) peptide reduces neuronal cell surface levels of the
NMDA receptor subunit protein, NR2B [29]. In addition, other CARPs have also been demonstrated to
reduce neuronal cell surface expression of NMDA receptors and of other ion channel receptors including
TRPV1, NCX, CaV2.2, CaV3.3 [38–44]. Whether R18 and other CARPs also reduce neuronal cell surface
levels of AMPA and KA receptors will require further investigation. However, it is noteworthy that
the arginine-rich cell-penetrating peptides R9, TAT, and penetratin induce internalisation of tumor
necrosis factor and epidermal growth factor receptors in HeLa cells [43]. An alternative, but not
mutually exclusive mechanism whereby R18 may antagonize ion channel receptor activity, is through
electrostatic interactions with negatively charged amino acids located in or near the entrance to the
pore of the receptor. For example, positively charged guanidino moieties, which are present in arginine
residues and related molecules, such as agmatine, are capable of interacting with and affecting the
function of NMDA receptors and voltage-gated calcium channels [45,46]. Therefore, further studies
are required to determine the capacity of R18 to reduce neuronal surface levels of iGluRs and other ion
channel receptors, and to inhibit receptor function directly by an electrostatic mechanism.
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3.2. Protective Effects of R18 on Mitochondrial Function

Another important finding of this study is that R18 has the capacity to reduce glutamate
excitotoxicity induced mitochondrial dysfunction by maintaining ∆ψm and ATP production, and to
reduce ROS generation. Previous studies have shown that CARPs are able to preserve mitochondrial
function and integrity through both direct and indirect means. For example, the positively charged
arginine residue containing Szeto–Schiller (SS) tetramers (e.g., SS-20, SS-31; net charge + 3) have
been shown to enter mitochondria and can prevent release of cytochrome c from the mitochondrial
intermembrane space, maintain mitochondrial bioenergetics, and reduce ROS production [47–50].
In addition, in isolated mitochondrial preparations, poly-arginine-4 (R4; net charge + 4) has been
shown to prevent opening of the mitochondrial permeability pore (mPTP) induced by high calcium
concentrations, which represents a critical mitochondrial-regulated signal for irreversible cell death [28].
Moreover, the ability to prevent mPTP opening is charge-dependent and therefore it is likely that longer
poly-arginine peptides (e.g., R18; net charge + 18) are also able to target and inhibit mPTP opening. In
addition, CARPs have exhibited innate antioxidant properties [18], due at least in part to the presence
of arginine residues, which may contribute to their ability to attenuate the damaging effects of ROS
production associated with excitotoxicity. For example, the ROS-scavenging abilities of arginine and
other guanidinium-containing compounds, including guanidine, aminoguanidine, methylguanidine
and creatine, have been demonstrated with superoxide hydrogen peroxide and peroxynitrite,
and neurotoxic reactive aldehyde lipid peroxidation by-products, such as 4-hydroxynonenal and
malondialdehyde [51–57]. However, further studies are required to determine whether the protective
effects of R18 are mediated directly as a result of localisation of the peptide to mitochondria, and/or
through an indirect mechanism.

3.3. Protective Effects of R18 against Thapsigargin Neurotoxicity

While we have confirmed that R18 has potent neuroprotective actions in glutamate receptor-mediated
excitotoxicity, our findings indicate that it also has the capacity to reduce neurotoxicity and prevent
neuronal cell death in a thapsigargin neuronal injury model in which intracellular calcium levels are
raised independent of glutamate receptor-mediated calcium influx [34]. Although the exact mechanism
whereby R18 protects neurons from thapsigargin-induced neuronal death is yet to be elucidated, it is
possible that the peptide helps to maintain mitochondrial integrity following exposure to elevated
intracellular calcium concentrations. To this end, it appears that while R18 was highly neuroprotective
at the 2 µM concentration in the excitotoxicity injury models, this concentration of the peptide in the
calcium kinetic studies did not always result in high-level inhibition of intracellular calcium influx,
suggesting that there were additional factors (i.e., mitochondrial preservation) that contributed to this
overall neuroprotective benefit.

3.4. Potential Future Clinical Application of R18

R18 represents a potential broad-acting neuroprotective agent for the treatment of both acute and
chronic neurological disorders. In acute clinical settings such as stroke and traumatic brain injury,
ideally R18 should be administered intravenously to provide fast delivery to the brain. In chronic
clinical settings such as Parkinson’s disease and Alzheimer’s disease, the peptide could be delivered
as a nasal spray, or alternatively the d-enantiomer version of R18, which is likely to be resistant to
proteolytic degradation could be administered orally, as has been proposed for RD2, a d-isomer CARP
being developed for Alzheimer’s disease [58].

4. Materials and Methods

4.1. Peptides

Poly-arginine-18 (R18; H-RRRRRRRRRRRRRRRRRR-OH) peptide was synthesized by Mimotopes
(Mulgrave, VIC, Australia) and purified to 98% by high-performance liquid chromatography.
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Peptides were prepared as 500 µM stocks in water for irrigation (Baxter, NSW, Australia) and
stored at −20 ◦C prior to use.

4.2. Primary Cortical Neuronal Cultures

Briefly, cortical neuronal tissue was extracted from E18 Sprague–Dawley rat embryos, dissociated,
resuspended in Neurobasal/2% B27 supplement (B27) and seeded at approximately 55,000 cells/well
into clear (Nunc, Scoresby, VIC, Australia) or black (Costar) 96-well plates, pre-coated with poly-lysine
(Sigma-Aldrich, Castle Hill, NSW, Australi). Plates were maintained in a CO2 incubator (37 ◦C, 95% air
balance, 98% humidity, 5% CO2) until use on day in vitro 10, cultures routinely comprise > 97% neurons
and 1–3% astrocytes. Approval for the use of E18 Sprague–Dawley rat embryos for isolation of cortical
tissue was obtained by the University of Western Australia Animal Ethics Committee (RA/3/100/1432).

4.3. iGluR agonist Excitotoxicity Model

Neuronal excitotoxic iGluR activation was achieved by treating cortical neurons with
iGluR agonist glutamic acid (l-glutamic acid; Sigma-Aldrich, #PHR1107), N-methyl-D-aspartate
(NMDA; Sigma-Aldrich, #M3262), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA;
Sigma-Aldrich, #A6816), or kainic acid (KA; Sigma-Aldrich, #K2389). Preparation of primary cortical
neuronal cultures was conducted as previously described [59]. R18 was added to cortical neuronal
cultures 10 min prior to exposure to individual iGluR agonists by removing the medium and adding
50 µL of Minimal Essential Medium (MEM)/2% B27 containing peptide (2 µM). To induce excitotoxicity,
50 µL of MEM/2% B27 containing the agonist (200 µM; final concentration 100 µM) was added to the
culture wells and incubated in a CO2 incubator for 5 min (note: peptide concentration reduced to 1 µM
during this step). Following the 5 min exposure, the medium was replaced with 100 µL of MEM/2%
B27 and cultures were incubated for a further 24 h in a CO2 incubator. Untreated controls with or
without receptor agonist treatment underwent the same incubation steps and medium additions.

4.4. Thapsigargin Intracellular Calcium Injury Model

To induce raised intracellular calcium levels in neurons in a receptor-independent manner, the
irreversible SERCA pump inhibitor, thapsigargin (Sigma-Aldrich, #T9033), was used. Briefly, R18 was
added to cortical neuronal by removing media, adding 50 µL of MEM/2% B27 containing peptide
(2 µM) before incubating for 10 min incubation in a CO2 incubator. After the 10 min incubation 50 µL
of MEM/2% B27 containing thapsigargin (prepared as 2x stock; 10 µM final concentration) was added
to the wells and cultures incubated in a CO2 incubator for 24 h. Untreated controls with or without
thapsigargin treatment underwent the same incubation steps and medium additions.

4.5. MTS Cellular Viability and LDH Cytotoxicity Assays

At 24 h post-injury, cell viability was assessed quantitatively using the CellTiter 96 Aqueous
Cell Proliferation MTS assay (Promega, Hawthorn, VIC, Australia; #G3582) and the CytoTox 96®

Non-Radioactive Cytotoxicity LDH release assay (Promega, #G1780) as per the manufacturer’s
instructions. The MTS assay determines cell viability by assessing the metabolic capacity of cells to
reduce a tetrazolium salt (MTS), which is measured spectrophotometrically at 490 nm.

The LDH release assay measures lactate dehydrogenase activity (LDH) released from dead cells in
an enzymatic reaction involving the conversion of a tetrazolium salt (INT) into a red formazan product
that is measured spectrophotometrically at 490 nm. Cell death was presented as fold change of the
untreated control, after removal of background signal.

4.6. Intracellular Calcium Kinetics

Measurement of iGluR-induced intracellular calcium influx [Ca2+]i was performed using the
fluorogenic Fura-2 AM dye, as previously described [30]. Briefly, cortical neuronal cultures were
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loaded with the Fura-2 AM dye (5 µM in 50 µL MEM/2% B27 per well) and incubated at 37 ◦C for
30 min in the dark. R18 (2 and 5 µM) or iGluR antagonists, MK801 (Sigma-Aldrich, #M107) and CNQX
(Sigma-Aldrich, #C127), were applied for 10 min in MEM/2% B27. The cells were rinsed with 100 µL of
Hank’s Balanced Salt Solution (HBSS, pH 7; Life Technologies, Mulgrave, VIC, Australia), and baseline
intracellular Fura-2 AM calcium measurements recorded (Em/Ex = 340 nm and 380 nm/510 nm) for
3 min. Cells were then exposed to the individual iGluR agonists, glutamic acid, NMDA, AMPA, or KA
(100 µM final concentrations in HBSS) and Fura-2 AM calcium measurements recorded for a further
10 min. Untreated control wells received the same medium additions, without peptide treatment
or iGluR agonists. Background signal (no Fura-2 AM dye) was subtracted for each wavelength at
each timepoint, and data were adjusted to reflect the ∆F ratio (340/380 nm), relative to untreated
control wells.

4.7. ATP Measurement in Cortical Neuronal Cultures

ATP levels in neuronal cultures were measured 24 h after exposure to glutamic acid using the
Luminescent ATP Detection Assay Kit (Abcam, Cambridge, MA, USA, #ab113849) according to the
manufacturer’s protocol. Cortical neurons seeded in black 96-well plates were treated with R18
(2 and 5 µM) by removing the medium in wells and adding 50 µL of MEM/2% B27 containing peptide
before incubating in a CO2 incubator for 10 min. Fifty microliters of the proprietary cell lysis buffer
was added, and the plate was incubated for a further 5 min on an orbital shaker (700 rpm), before
the addition of 50 µL of substrate to wells and a further 5 min incubation on the orbital shaker.
Plates were subsequently measured on a microplate luminometer (Cytation5, BioTek, Winooski, VT,
USA). ATP values represent percentage change compared with untreated controls (taken as 100%)
after subtraction of background values from each treatment (the medium only). Experiments were
performed in triplicate.

4.8. Reactive Oxidative Species (ROS) Detection

ROS levels in neuronal cultures were measured 24 h after exposure to glutamic acid using the
2′,7′-dichlorofluorescin diacetate (DCFDA/H2DCFDA) fluorescent probe (Abcam, #ab113851), which is
a cell-permeable dye that is cleaved by cellular esterases and subsequently oxidized by intracellular ROS,
including hydroxyl and peroxyl species. Oxidized DCFDA forms the fluorescent dichlorofluorescein
(DCF) compound that is detected by fluorescent spectroscopy (Ex/Em = 495 nm/529 nm). Fluorescent
DCF values represent the percentage change compared with untreated control (taken as 100%) after
subtraction of background signal (the medium only). Experiments were performed in triplicate.

4.9. Mitochondrial Membrane Potential (∆Ψm)

Mitochondrial membrane potential (∆Ψm) was assessed in neuronal cultures immediately
after glutamic acid exposure using the TMRE-Mitochondrial Membrane Potential Assay Kit (Abcam,
#ab113852). Tetramethylrhodamine ethyl ester (TMRE) is a cell-permeable dye that accumulates in active
mitochondria resulting in an increase fluorescent intensity, which can be measured fluorometrically.
Briefly, after the removal of the medium in wells containing glutamic acid, 50 µL of MEM/2% B27
containing TMRE (1 µM) was added to neuronal cultures and incubated in a CO2 incubator for
20 min. Cells were washed with 100 µL of HBSS, and TRME fluorescence measured using the
Cytation5 plate reader (Ex/Em = 549 nm/575 nm). As a positive control, to disrupt the ∆Ψm neuronal
cultures were exposed to the electron transport chain (ETC) uncoupler, FCCP (carbonyl cyanide
4-(trifluoromethoxy)phenylhydrazone; 20 µM) for 10 min prior to TMRE fluorescence measurement.
TMRE fluorescence values represented the percentage change in fluorescence relative to untreated
control (taken as 100%) after subtraction of background measurements (the medium only).
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4.10. Statistical Analysis

Statistical analysis was performed using Prism statistical software (Version 8.02, San Diego, CA,
USA). For data relating to viability and biochemical assays, experimental group differences were
analyzed using a one-way analysis of variance (ANOVA) and subsequent Dunnett post-hoc tests.
Data are presented as the mean ± SEM, with p < 0.05 considered statistically significant. Experiments
were repeated at least twice independently, with a minimum of eight biological replicates for cell
viability and cell death assays, or a minimum of four biological replicates for biochemical assays.

5. Conclusions

Together, the findings of this study indicate that glutamate receptor modulation as well as
preservation of mitochondrial bioenergetics represent key neuroprotective actions of poly-arginine
peptides in glutamate excitotoxicity. Such findings therefore support the potential utility and further
investigation of this group of peptides as neuroprotective agents for acute forms of brain injury such as
ischaemic stroke and traumatic brain injury, as well as chronic neurodegenerative disorders, including
ALS, AD and PD in which glutamate excitotoxicity [60], oxidative stress [61], and mitochondrial
dysfunction [11] are considered to be key players in disease pathogenesis.

6. Patents

B.P. Meloni and N.W. Knuckey are named inventors of several patent applications (Provisional
Patents: 2013904197; 30/10/2013 and 2014902319; 17/6/2014 and PCT/ AU2014/050326; 30/10/2104)
regarding the use of arginine-rich peptides as neuroprotective agents.
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