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A B S T R A C T

High concentration Ca2+ in karst soil is harmful to agriculture. Some dominant plants can adapt 
well to karst soil, but how Ca2+ affect plant is unknown. Drynaria roosii is a Ca2+-tolerant fern and 
its dry rhizome is a common Chinese medicine of Miao nationality in Guizhou, China. This study 
analyzed the physiological and proteomic characteristics of the rhizome of D. roosii under calcium 
stress. Physiological results indicated that calcium stress may lead to osmotic stress. Proteomic 
results showed that 147 differentially expressed proteins (96 increased, 51decreased) were 
identified under calcium stress, and these proteins mainly involved in signal transduction, protein 
translation, material transport, antioxidant defense and secondary metabolism. This study will lay 
a foundation for studying the calcium adaptation mechanism of D. roosii at the molecular level.

1. Introduction

China’s karst areas accounts for about 1/6 of the world’s karst area [1,2]. Karst biotope is vulnerable, with high concentration 
calcium ions in their shallow soils [2]. Calcium ions participate in many biological processes of plant cells, such as signaling that 
induced modification of plant development, Ca2+ homeostasis across the plant membranes and cell wall remodeling, etc. [3–5]. High 
concentration Ca2+ affects the soil properties and the mineral elements absorption of plants [6]. Also, Ca2+ is extremely toxic when 
present at a concentration above 10− 4 mol in the cytosol, leading to clumping of proteins and nucleic acids and disrupting the integrity 
of the phospholipid bilayer in the cell membrane due to the precipitation of phosphates [5]. Thus, to ensure normal physiological 
activity, evolution has favored the need of maintaining low cytosolic Ca2+ in the phosphate-rich environment of the cytosol, which 
would in turn grant adequate sensitivity and speed to the signals arising in the cells [5,7]. Plant cells remove excessive calcium ions by 
various systems, such as gated Ca2+ channels (e.g. hyperosmolality-gated calcium-permeable channels and cyclic nucleotide-gated 
channels), energy-driven pumps and exchangers that are localized in organelle membranes, the plasma membrane along with the 
Ca2+-binding proteins localized within the cell and calcium-dependent protein kinase (e.g. CPK12, calcium-dependent protein kinase 
12) [5,8,9]. Under high concentration Ca2+, there is a limit to the amount of Ca2+ that plant cells can absorb, beyond which chlo
roplasts will be directly damaged, photosynthesis will be affected and blade aging was accelerated [10]. So plants adapt to karst high 
concentration Ca2+ environment by thickening cell walls, enriching calcium ions, excreting calcium ions, activating genes and en
zymes induced by high concentration Ca2+, and regulating the synthesis of related metabolites [11–13]. Unfortunately, previous 
studies on karst-specific plant species are scarce, and the adaptation mechanisms of karst-specific plant to karst environmental were 
rarely studied. Yet such information is important for understanding the adaptive strategies of plant species in karst area. Our findings 
provide a basis for discovering the adaptive mechanism of karst plants.

Proteomics technology plays an active role in analyzing plant adaptation to abiotic stress [14,15]. Understanding the regulation 
strategy of calcium stress at the protein level will help the breeding of new varieties in karst areas. Drynaria roosii is a typical plant in 
karst area [16]. Its dry rhizome is a common folk traditional Chinese medicine in Guizhou, China. We observed the physiological and 
proteomic characteristics of D. roosii rhizome under calcium stress. Several pathways, such as signaling, protein translation, material 
transport, antioxidant defense and synthesis and degradation of secondary metabolites were affected by calcium stress. The results are 
helpful to understand the mechanism of adaptation of D. roosii to karst habitat.

2. Materials and methods

The experimental conditions with respect to plant materials, growth conditions and stress treatments were similar to those in Wu 
et al. [17] barring the light condition which was adjusted to 50 μmol m− 2 s− 1. The water content, MDA content, soluble sugar content 
and enzyme activity were carried out as per Wu et al. [17].

The proteins were extracted as described previously [18]. The protein digestion was primarily performed as per the Filter Aided 
Sample Preparation (FASP) protocol [19]. Each sample was separated by a high-performance liquid phase system, EASY-nLC with a 
nanoliter flow rate. The chromatographic column was balanced with 95 % buffer A (0.1 % formic acid aqueous solution). The sample 
was loaded onto the loading column (Thermo Scientific Acclaim PepMap 100, 100 μm × 2 cm, Nanoviper C18) by an automatic 
sampler and then separated by an analysis column (Thermo Scientific EASY-Column, 10 cm, ID75 μm, 3 μm, C18-A2) at a flow rate of 
300 nL‧min− 1 by IntelliFlow technology. Samples were separated by liquid chromatography and analyzed by a Q Exactive mass 
spectrometer. The analysis duration was 60/120/240 min, the positive ion mode was used for detection, the scanning range of the 
parent ions was 300–1800 m/z, the primary mass spectrum resolution was 70,000 at 200 m/z, the AGC target was 3e6, the primary 
maximum IT was 10 ms, the number of scan ranges was 1, and the dynamic exclusion was 40 s. The mass-to-charge ratio of poly
peptides and polypeptide fragments was determined according to the following methods: 10 fragment patterns (MS2 scan) were 
collected after each full scan, the MS2 activation type was HCD, the isolation window was 2 m/z, the secondary mass spectrum res
olution was 17,500 at 200 m/z, there was 1 microscan, the secondary maximum was 60 ms, the normalized collision energy was 30 eV, 
and the underfill was 0.1 %. The nine resulting raw LC-MS/MS files were imported to the Maxquant software (1.6.14) for database 
inquiry and LFQ label-free quantification analysis. The database was uniprot_hbk_20220411.fasta. The database search and differ
entially expressed proteins (DEPs) selection were the same as those of Wu et al. [17]. The CELLO (http://cello.life.nctu.edu.tw/) 
method was used for the predicating subcellular localization of DEPs. The InterProScan (interproscan-5.25-64.0) was used for 
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predicating domain of DEPs. The Gene Ontology (GO) annotations of the DEPs were derived from the UniProtKB (http://www.uniprot. 
org/help/uniprotkb/) at the Gene Ontology Annotation (GOA) (http://www.ebiac.uk/GOA/) database. Function analysis of DEPs was 
performed with Blast2Go (BLASTP 2.8.0+) using GO functional annotation, and proteins were categorized according to their bio
logical process, molecular function, and cellular localization. According to the function of the DEPs, the possible metabolic pathways 
involved in these DEPs were classified.

Statistical analysis was the same as that of Wu et al. [17], and a p-value less than 0.05 was considered statistically significant.

3. Results

3.1. Physiological changes by excessive calcium ions treatment

Water content was decreased 5.14 % and 13.49 % by 600 and 1200 mmol L− 1 Ca2+, respectively (Fig. 1A). Soluble sugar content 
increased 22.79 % and 50.03 %, respectively (Fig. 1B). Meanwhile, MDA content increased 8.82 % and 24.2 %, respectively (Fig. 1C). 
Activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased by excessive calcium ions treatment also; the 
biggest difference was that SOD increased significantly by 600 mmol L− 1 Ca2+, while POD and CAT increased less. (Fig. 1D–F).

3.2. Proteins changes by excessive calcium ions treatment

We identified 743 proteins, among these proteins, 7 proteins are unique to R-0 sample (0 mmol L− 1 Ca2+ treated rhizome), 13 
proteins are unique to R-600 sample (600 mmol L− 1 Ca2+ treated rhizome), 2 proteins are unique to R-1200 sample (1200 mmol L− 1 

Ca2+ treated rhizome); 692 proteins are common to R-0 sample and R-600 sample, 702 proteins are common to R-600 sample and R- 
1200 sample, 683 proteins are common to R-0 sample and R-1200 sample; and 678 proteins are common to R-0 group, R-600 group 
and R-1200 group (Fig. 2).

There are 63 DEPs (47 increased, 16 decreased) in R-600_vs_R-0 group; 44 DEPs (33 increased, 11 decreased) in R-1200_vs_R- 
0 group; 40 DEPs (16 increased, 24 decreased) in R-1200_vs_R-600 group (Fig. 3A–C, 4A-B). For the up-regulated DEPs in the three 
groups, 39 DEPs are unique to R-600_vs_R-0 group; 24 proteins are unique to R-1200_vs_R-0 group; 15 proteins are unique to R- 
1200_vs_R-600 group; 8 DEPs are common to R-600_vs_R-0 group and R-1200_vs_R-0 group; 1 DEP is common to R-1200_vs_R-0 group 
and R-1200_vs_R-600 group; there is no protein common to R-600_vs_R-0 group and R-1200_vs_R-600 group or the three groups 
(Fig. 4A). For the down-regulated proteins in the three groups, there are 14 proteins were unique to R-600_vs_R-0 group; 9 proteins 
were unique to R-1200_vs_R-0 group; 24 proteins were unique to R-1200_vs_R-600 group; 2 DEPs are common to R-600_vs_R-0 group 
and R-1200_vs_R-0 group; there is no protein common to R-1200_vs_R-0 group and R-1200_vs_R-600 group, R-600_vs_R-0 group and R- 
1200_vs_R-600 group or the three groups (Fig. 4B).

Screened differential proteins were divided into biological processes (BP), molecular functions (MF), and cellular components (CC). 
In R-600_vs_R-0 group, the most significant GO terms mainly include protein modification, transferase, and membrane related 
(Fig. 5A). In R-1200_vs_R-0 group, the most significant GO terms mainly include macromolecule biosynthesis and organelle related 
(Fig. 5B). In R-1200_vs_R-600 group, the most significant GO terms mainly include peptide, ribosome, organelle, ribonucleoprotein, 
and vacuole. (Fig. 5C).

According to the function of the differentially expressed proteins, the possible metabolic pathways involved in these differentially 
expressed proteins were classified (Tables 1–6, Supplementary Tables 1–3). In R-600_vs_R-0 group, there are 8 DEPs (8 increased, 
including MPK1, MPKK6, 14-3-3F, ATPase3, BSK1, BSK2, SP2Aγ, and CPK17) participate in Signal transduction; 13DEPs (12 
increased, including GlyRL, L3, L21–1, L10, S25–4, S10–2, S3-3, 26S8A, 26SN6, 26SN11, E2-2 and E2-7; 1 decreased, HSP17.9) 
participate in Protein metabolism; 2DEPs (2 increased, including SL13S-L1 and ACCTβ) participate in Lipid metabolism; 6DEPs (2 
increased, including PEPC and AID; 4 decreased, including G3PDH, FBA8, NDUIS2 and GBSS1) participate in Carbohydrate and energy 
metabolism; 7DEPs (5 increased, including RBP1c, VPAB2, VFA, D2A and TIPA; 2 decreased, including GNDDI and VPAD) participate 
in Material Transport; 6DEPs (3 increased, including US1, UAD1 and actin 3; 3 decreased, including actin, actin-1 and actin-2) 
participate in Cell wall and cytoskeleton; 2 DEPs (2 increased, including CSDS and DRP1E) participate in Cell division; 4 DEPs (3 
increased, including CAT2, chitinase A and CP71B10; 1 decreased, FQR1-3) participate in Antioxidant and defense; 8DEPs (7 
increased, including P2D3DA1, 3PS1CT2, SAMA3, ADD2, 2C4H and a DHF4R; 1 decreased, 2MF3R) involved in Secondary meta
bolism (Tables 1 and 2, Supplementary Table 1). In R-1200_vs_R-0 group, there are 3 DEPs (3 increased, including SAPK7, SP2Aγ and 
calmodulin 1) participate in Signal transduction; 11DEPs (10 increased, including EF2, SerRL, L23, L9-2, 40S-SA, S3-3, Hop1, 
prohibitin-5, 26S8A and 26S6AB; 1 decreased, L15-2) participate in Protein metabolism; 1DEP (1 decreased, GDH) participate in 
Amino acid metabolism; 5DEPs (2 increased, including transketolase and PEPCK; 3 decreased, including PGM, NDUIS2 and NDPK3) 
participate in Carbohydrate and energy metabolism; 8DEPs (7 increased, including Ran-B1, RAB1BV, RABG3b, RABD2c, dynamin-2A, 
CHMP1B and VPAB2; 1 decreased, PIP1-2) participate in Material Transport; 2DEPs (1 increased, UAM1; 1 decreased, Tα3) participate 
in Cell wall and cytoskeleton; 1 DEP (1 increased, CDCP48) participate in Cell division; 3 DEPs (3 increased, Prx2B, chitinase A and 
VAD1) participate in Antioxidant and defense; 6DEPs (5 increased, including 3PS1CT2, 3 PAL and a C4H; 1 decreased, 2MF3R) 
participate in Secondary metabolism (Tables 3 and 4, Supplementary Table 2). In R-1200_vs_R-600 group, there are 1 DEP (1 
decreased, SRK2A) participate in Signal transduction; 1 DEP (1 decreased, H2B) participate in Nucleic acid metabolism; 12DEPs (2 
increased, including PB3 and ubiquitin; 10 decreased, including GlyRL, L13, L21–2, L10, S6, S8, S16, S25–4, L23a and HSP70-2) 
participate in Protein metabolism; 1DEP (1 increased, BAD) participate in Amino acid metabolism; 3DEPs (1 increased, G3PDH; 2 
decreased, 6PFK7 and ADH5) participate in Carbohydrate and energy metabolism; 8DEPs (6 increased, RABG3b, RABC1, RABC2a, 
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GNDDI, VPAE1 and VPAD; 2 decreased, including ATPase 3 and TIPA) participate in Material Transport; 1DEP (1 decreased, Tα4) 
participate in Cell wall and cytoskeleton; 3 DEPs (2 increased, including CPI and HPD; 1 decreased, API5) participate in Antioxidant 
and defense; 5DEPs (5 decreased, including SAMS2, SAMS3, P2D3DA1, D4DR and REF1) participate in Secondary metabolism 
(Tables 5 and 6, Supplementary Table 3).

4. Discussion

4.1. Calcium stress may cause osmotic stress and oxidative damage of D. roosii rhizome

Calcium stress may damages cells by producing reactive oxygen species (ROS) through osmotic stress and eventually leads to 
inhibition of plant growth [20–22]. Soluble sugar can be used as osmotic protective substance [20–22]. In the present research, the 
water content decreased by calcium stress, but the soluble sugar content increased (Fig. 1A and B), suggesting that soluble sugar may 
play a role in regulating osmotic pressure. MDA production indicates membrane peroxidation [23,24]. Calcium stress can cause MDA 
production, which has been confirmed in other studies [20–22]. The same results were obtained in this study (Fig. 1C), suggesting 
oxidative damage to the membrane. In plants, the increase of antioxidant enzyme activity can effectively eliminate the ROS produced 
by stress [25]. In the present research, the increase of the activity of three antioxidant enzymes may indicate that they play an 
important role in scavenging ROS (Fig. 1D–F). However, when plants were subjected to heavy metal, salt and osmotic stress, 
appropriate increase of exogenous calcium ions may alleviate stress toxicity. For example, TaNCL2-A (a sodium/calcium 
exchanger-like transporter) expressing transgenic Arabidopsis lines exhibited significant Cd tolerance with increased Ca (~10 fold) 
accumulation [26]. Meanwhile, the transgenic lines exhibited significant salinity and osmotic stress tolerance, suggesting that the 
TaNCL2-A could mitigate Cd toxicity along with salinity and osmotic stress [26]. These results showed the regulatory role of calcium 
ions when they were not used as a stress factor.

4.2. Calcium stress may affect signal transduction of D. roosii rhizome cells

MPK cascades play important roles in plants response to stresses [27]. Study had shown that the transcription of ATMPK1 was 
promoted by salt stress [28]. Meanwhile, overexpression of MPKK6 in rice showed good salt stress tolerance [29]. In this study, we 
found MPK1 and MPKK6 was increased by 600 mmol L− 1 Ca2+, indicating that MPK1 and MPKK6 mediated signal transduction 
pathways may be enhanced by calcium stress in D.roosii rhizome cells. 14-3-3 proteins can also participate in the signal pathways of 
plant response to environment [30]. CDPKs could convert intracellular calcium signals into reversible phosphorylation of various 
substrates, and which interact with 14-3-3 proteins to further regulate the function of proteins to adapt to stress environment [31]. For 

Fig. 1. Effects of Ca2+ stress on water content, osmotic homeostasis, membrane integrity, activities of antioxidant enzymes in D. roosii rhizome. (A) 
Water content; (B) Soluble sugar content; (C) MDA content; (D) SOD activity; (E) POD activity; (F) CAT activity. The values were determined after 
plants were treated with 0, 600, and 1200 mmol⋅L-1 Ca2+ for 14 days, and were presented as means ± SE (n = 6). The small letters indicate 
significant difference (p < 0.05).

Fig. 2. Venn diagram of identified proteins of different treatments in D. roosii rhizome.
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Fig. 3. Volcano plots of identified proteins of different comparison groups in D. roosii rhizome. (A) R-600_vs_R-0 group; R-1200_vs_R-0 group; R- 
1200_vs_R-600 group. In the plots, the red dots are the significantly up-regulated differentially expressed proteins (DEPs), the blue dots are the 
significantly down-regulated DEPs, and the gray dots are the proteins with no difference changes.

Fig. 4. Venn diagrams of DEPs between different comparison groups in D. roosii rhizome. (A) Up-regulated DEPs of R-600_vs_R-0 group, R- 
1200_vs_R-0 group and R-1200_vs_R-600 group; (B) Down-regulated DEPs of R-600_vs_R-0 group, R-1200_vs_R-0 group and R-1200_vs_R-600 group.
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example, OsCDPK1 can activate 14-3-3 protein in rice seedlings to enhance the tolerance to drought stress [32]. 14-3-3 proteins can 
also interact with H+- ATPase to regulate ion channels to adapt to abiotic stress. Guo et al. [33] reported that Al stress could induce the 
interaction of H+-ATPase and 14-3-3 protein in black soybean. In addition, 14-3-3 proteins may enhance stress tolerance by partici
pating in hormone signaling pathways, such as ABA signaling pathway [34]. Meanwhile, calmodulin 1 participates in the Ca2+

signaling pathway promotes the production of ROS [35].The results in this research indicated that, 14-3-3 F, CPK17, and ATPase3 were 
increased by 600 mmol L− 1 Ca2+, and calmodulin 1 was increased by 1200 mmol L− 1 Ca2+ also (Tables 1 and 3). The plant BSK and 
phosphatase 2A play important roles in brassinosteroid responsive signal transduction [36,37]. And, SAPK7 was activated in response 
to osmotic stress [38]. Our results also indicated that BSK1 and BSK2 were increased by 600 mmol L− 1 Ca2+; and SAPK7 was increased 
by 1200 mmol L− 1 Ca2+; SP2Aγ was increased by the both treatments (Tables 1 and 3). Thus, the signal transduction pathways 
involved in these signal molecules in D. roosii rhizome cells may be affected by calcium stress. Excessive ROS cause oxidative damage to 
plants, but a limited level of ROS play an essential role in signaling during stress response. It has been reported that the respiratory 
burst oxidase homologs (RBOH) enzymes are plant-specific NADPH oxidases responsible for the generation of ROS within the apoplast 
[39]. And the protein-protein interactions predicted the interaction of bread wheat RBOHs proteins with many proteins involved in 
ROS mediated stress response, including calcineurin B-like interacting protein kinases, calcineurin B-like calcium sensor proteins, 
calcium dependent protein kinases, mitogen-activated protein kinase 3, etc. [40]. Thus, these signal transduction mechanisms 
involved in calcium stress still need to be further studied.

4.3. Calcium stress may regulate protein translation in D. roosii rhizome cells

Ribosomes, function in protein synthesis, consist of two subunits [41]. In our proteomics results, a GlyRL, six ribosomal subunits 
were increased by 600 mmol L− 1 Ca2+; an EF2, a SerRL, four ribosomal subunits were increased by 1200 mmol L− 1 Ca2+ (Tables 1 and 

Fig. 5. Top 20 GO terms of the DEPs of different comparison groups in D. roosii rhizome. (A) R-600_vs_R-0 group; R-1200_vs_R-0 group; R- 
1200_vs_R-600 group.
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3). Meanwhile, our proteomics results also revealed that a hop1 and a prohibitin-5 were increased by 1200 mmol L− 1 Ca2+ (Table 3). 
Hsp70 and Hsp90 play a role in the early folding and stability of protein, respectively [42]. The hop1 could regulate the activities of 
Hsp70 and Hsp90 [42]. Prohibitin has a role in stabilizing unassembled membrane proteins [43]. These results suggest that protein 
translation and folding in D. roosii rhizome cells may be regulated by calcium stress. In addition, we found that three 26S proteasome 
proteins and two E2 proteins were increased by 600 mmol L− 1 Ca2+; and two 26S proteasome proteins were increased by 1200 mmol 
L− 1 Ca2+ (Tables 1 and 3). This suggests that protein degradation in D. roosii rhizome cells may also be affected by calcium stress.

Table 1 
Up-regulated DEPs of R-600_vs_R-0 group.

Accession number Protein Name Gene Name R-600/R-0 (FC) p value

Signal transduction (8) ​ ​ 76.121 0.000
Q08436 Plasma membrane ATPase 3 PMA3 2.733 0.021
Q84UI5 Mitogen-activated protein kinase 1 MPK1 3.669 0.025
Q9FJV0 Mitogen-activated protein kinase kinase 6 MKK6 1.858 0.022
O49998 14-3-3-like protein F ​ 1.927 0.049
Q9LS26 Serine/threonine-protein kinase BSK2 BSK2 1.776 0.001
Q944A7 Serine/threonine-protein kinase BSK1 BSK1 1.810 0.028
Q38951 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A gamma isoform PP2AA3 1.789 0.003
Q9FMP5 Calcium-dependent protein kinase 17 CPK17 76.121 0.000
Protein metabolism (12)
O23627 Glycine–tRNA ligase, mitochondrial 1 At1g29880 5.981 0.008
P35684 60S ribosomal protein L3 RPL3 5.207 0.048
Q9FDZ9 60S ribosomal protein L21-2 RPL21E 4.568 0.000
P45633 60S ribosomal protein L10 RPL10 2.004 0.000
Q9T029 40S ribosomal protein S25-4 RPS25E 2.537 0.046
Q9FFS8 40S ribosomal protein S10-2 RPS10B 1.903 0.043
Q9FJA6 40S ribosomal protein S3-3 RPS3C 1.637 0.035
Q9C5U3 26S proteasome regulatory subunit 8 homolog A RPT6A 3.444 0.011
Q93Y35 26S proteasome non-ATPase regulatory subunit 6 homolog RPN7 1.830 0.032
Q9LP45 26S proteasome non-ATPase regulatory subunit 11 homolog RPN6 1.557 0.004
P25866 Ubiquitin-conjugating enzyme E2 2 UBC2 2.490 0.014
P25868 Ubiquitin-conjugating enzyme E2 7 UBC7 1.697 0.001
Lipid metabolism (2)
P08170 Seed linoleate 13S-lipoxygenase-1 LOX1.1 12.481 0.011
A0A5B9RDW7 Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta accD 3.680 0.016
Carbohydrate and energy metabolism (2)
Q8VXK2 Phosphoenolpyruvate carboxylase (Fragment) ppc 1.631 0.025
F4I2X9 Alkaline/neutral invertase D INVD 3.606 0.038
Material Transport (5)
P92985 Ran-binding protein 1 homolog c RANBP1C 12.837 0.008
Q9SZN1 V-type proton ATPase subunit B2 VHA-B2 1.544 0.024
Q9M0Y8 Vesicle-fusing ATPase NSF 3.281 0.044
Q9SE83 Dynamin-2A DRP2A 3.164 0.024
M9YX97 TIP-like aquaporin AQP1 13.674 0.009
Cell wall and cytoskeleton (3)
Q9ZUY6 UDP-D-apiose/UDP-D-xylose synthase 1 AXS1 2.734 0.003
Q8VZC0 UDP-glucuronic acid decarboxylase 1 UXS1 5.230 0.020
O82565 Actin 3 ​ 5.132 0.030
Cell division (2)
Q1PFW3 Cyclin-SDS SDS 1.953 0.045
Q9FNX5 Phragmoplastin DRP1E DRP1E 2.356 0.008
Antioxidant defense (3)
P55308 Catalase isozyme 2 CAT2 2.243 0.032
Q0WYK2 Chitinase A prchiA 5.181 0.019
Q9LVD2 Cytochrome P450 71B10 CYP71B10 1.747 0.016
Secondary metabolism (7)
P21357 Phospho-2-dehydro-3-deoxyheptonate aldolase 1 SHKA 42.900 0.000
P23281 3-phosphoshikimate 1-carboxyvinyltransferase 2 EPSPS-2 2.601 0.039
Q9SSE7 Arogenate dehydratase/prephenate dehydratase 2 ADT2 2.848 0.002
W5XMH0 Cinnamate 4-hydroxylase C4H 2.225 0.008
B9VV87 Cinnamate 4-hydroxylase (Fragment) ​ 1.608 0.032
A0A5P8I1Z5 Dihydroflavonol 4-reductase DFR5 1.730 0.001
P50303 S-adenosylmethionine synthase 3 SAM3 3.191 0.028
Other (3)
A0A126WYQ2 LOV domain-containing protein ​ 2.606 0.038
Q9XF89 Chlorophyll a-b binding protein CP26, chloroplastic LHCB5 4.969 0.028
A0A0B5EH65 Photosystem I P700 chlorophyll a apoprotein A1 psaA 2.183 0.015
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4.4. Calcium stress may regulate material transport in D. roosii rhizome cells

RBP play a role in the transport between nucleus and cytoplasm [44]. Our proteomics results suggested that, an RBP1c was 
increased by 600 mmol L− 1 Ca2+, and a Ran-B1 was increased by 1200 mmol L− 1 Ca2+, respectively (Tables 1 and 3). Meanwhile, we 
also found that a VAB2 was increased by the both treatments (Tables 1 and 3). Ran-B1 functions in nuclear transportation, modulating 
cell cycle, and also the ionic homeostasis of phosphorus deficient plants [45]. VPAB2 directly interact with SOS2 and function in 
sodium ion homeostasis [46]. And the SOS pathway plays an important role in ion transport of plant under salt stress [43]. These 
results suggested that nuclear transport in D. roosii rhizome cells may be affected by Ca2+ stress, and may be function in ionic ho
meostasis. In this research, several proteins participate in vesicle trafficking were increased, including D2A and VFA by 600 mmol L− 1 

Ca2+, D2A, CHMP1B, RAB1BV, RABG3b, RABD2c by 1200 mmol L− 1 Ca2+ (Tables 1 and 3). Dynamin plays a role in the formation of 
endocytic vesicles [47]. VFA functions in the fusion between transport vesicles and target membrane. CHMP1B plays important roles in 
endocytosis vesicles’ sorting process and auxin carriers are cargo proteins [48]. Rab1b functions in the regulation of vesicular transport 
between ER and Golgi complex, and regulates the formation of autophagosome [49,50]. RabG3b has a role in autophagy [51,52]. 
RABD2c localize to the trans-Golgi and functions in the vesicular transport of ER to Golgi complex [53]. Also RABD2c plays important 
roles in mitochondrial autophagy of Euphorbia kansui laticifers [54]. These results suggested exocytosis, endocytosis, intracellular 
vesicle transport, and autophagy may be affected by calcium stress in D. roosii rhizome cells. In addition, a TIPA was increased by 600 
mmol L− 1 Ca2+, and a PIP1-2 was decreased by 1200 mmol L− 1 Ca2+ (Tables 1 and 4). High levels of aquaporins present in the 
tonoplast of tobacco and maize cells indicate that they play pivotal roles in cell osmoregulation [55,56] and TIPA plays a role in 
stomatal movements [57]. PIP1 and PIP2 aquaporins function in CO2 transport through biological membranes [58,59]. Thus, calcium 
stress may also affect the transport of osmoregulatory substances and carbon dioxide in D. roosii rhizome cells.

4.5. Antioxidant defense may be activated by calcium stress in D.roosii rhizome cells

Stresses often perturb the homeostasis and ion distribution in plant cells and leading to ROS accumulation, SOD, POD, CAT, 
ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase 
(GR) and ascorbate oxidase (AAO) function in scavenging ROS [23,60–62]. Research has shown that the activity of SOD, POD, CAT, 
APX, MDHAR, DHAR, glutathione peroxidase (GPX) and GR in seedlings of Puccinellia tenuiflora was increased by 150 mmol L− 1 

NaHCO3 treatment [23]. And our previous research suggested that the activity of SOD, POD and CAT, the expression abundance of 
SOD2, CAT3, peroxiredoxin (Prx), thioredoxin (Trx), APX and MDHAR were increased by calcium stress in D. roosii leaf cells [17]. In 
this research, the proteomic results showed that CAT2 was increased by 600 mmol L− 1 Ca2+; and Prx2B was increased by 1200 mmol 
L− 1 Ca2+ (Tables 1 and 3). Prx2B also has role in scavenging ROS in plants [63]. CP71B10 was increased by 600 mmol L− 1 Ca2+ and 
VAD1 was increased by 1200 mmol L− 1 Ca2+, respectively; and chitinase A was increased by the both treatments (Tables 1 and 3). 
Apart from defense against pathogen stress, chitinases are also induced by osmotic, salt, drought and heavy metal stresses [64,65], so 
chitinase A may play a role in defense under Ca2+ stress. Cytochrome P450s (CYPs) have a role in detoxification under stresses [66]. 
And VAD1 might participate in the control of vascular bundle cell apoptosis [67]. Thus, various defense mechanisms may be activated 
by calcium stress in D.roosii rhizome cells.

Table 2 
Down-regulated DEPs of R − 600_vs_ R − 0 group.

Accession number Protein Name Gene Name R-600/R-0 (FC) p value

Protein metabolism (1)
Q84Q77 17.9 kDa class I heat shock protein HSP17.9A 0.048 0.030
Carbohydrate and energy metabolism (4)
A0A5P8I1W2 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 0.589 0.037
Q9LF98 Fructose-bisphosphate aldolase 8, cytosolic FBA8 0.307 0.040
P93306 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 NAD7 0.283 0.047
Q43784 Granule-bound starch synthase 1 WAXY 0.459 0.007
Material Transport (2)
Q9LXC0 Guanosine nucleotide diphosphate dissociation inhibitor At5g09550 0.663 0.049
Q9XGM1 V-type proton ATPase subunit D VHA-D 0.634 0.008
Cell wall and cytoskeleton (3)
P53498 Actin ​ 0.640 0.038
P53504 Actin-1 AC1 0.003 0.033
P30165 Actin-2 ​ 0.091 0.003
Antioxidant defense (1)
Q9LUX9 NAD(P)H dehydrogenase (quinone) FQR1-like 3 At5g58800 0.659 0.006
Secondary metabolism (1)
K4BW79 2-methylene-furan-3-one reductase EO 0.344 0.013
Other (4)
Q39444 ATP-dependent zinc metalloprotease FTSH FTSH 0.586 0.004
A0A248RFH5 Conserved hypothetical chloroplast protein ycf2 ycf2 0.529 0.026
P15252 Rubber elongation factor protein ​ 0.448 0.014
O82803 Small rubber particle protein SRPP 0.379 0.015
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Table 3 
Up-regulated DEPs of R-1200_vs_R-0 group.

Accession number Protein Name Gene Name R-1200/R-0 (FC) p value

Signal transduction (3)
Q7XQP4 Serine/threonine-protein kinase SAPK7 SAPK7 2.286 0.002
Q38951 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A gamma isoform PP2AA3 1.754 0.025
Q8LRL0 Calmodulin 1 ​ 1.928 0.032
Protein metabolism (10)
O23755 Elongation factor 2 ​ 1.583 0.000
Q39230 Serine–tRNA ligase, cytoplasmic At5g27470 1.759 0.042
Q9ZSR8 40S ribosomal protein SA LRP 3.087 0.041
Q9SZX9 60S ribosomal protein L9-2 RPL9D 2.960 0.020
Q9FJA6 40S ribosomal protein S3-3 RPS3C 1.889 0.007
Q9XEK8 60S ribosomal protein L23 RPL23 1.869 0.049
Q43468 Hsp70-Hsp90 organizing protein 1 HOP1 1.561 0.024
Q9LY99 Prohibitin-5 PHB5 1.609 0.019
Q9C5U3 26S proteasome regulatory subunit 8 homolog A RPT6A 3.758 0.042
O04019 26S proteasome regulatory subunit 6A homolog B RPT5B 1.515 0.003
Carbohydrate and energy metabolism (2)
O20250 Transketolase ​ 1.593 0.043
P42066 Phosphoenolpyruvate carboxykinase (ATP) PCK 4.467 0.012
Material Transport (7)
P41919 GTP-binding nuclear protein Ran-B1 RAN-B1 1.961 0.030
Q39433 Ras-related protein RAB1BV RAB1BV 1.742 0.025
O04157 Ras-related protein RABG3b RABG3B 2.204 0.042
Q9SEH3 Ras-related protein RABD2c RABD2C 1.513 0.013
Q9SE83 Dynamin-2A DRP2A 2.019 0.002
Q9SSM4 ESCRT-related protein CHMP1B CHMP1B 1.547 0.017
Q9SZN1 V-type proton ATPase subunit B2 VHA-B2 1.948 0.018
Cell wall and cytoskeleton (1)
O04300 UDP-arabinopyranose mutase 1 UPTG 1.992 0.050
Cell division (1)
P54774 Cell division cycle protein 48 homolog CDC48 2.008 0.001
Antioxidant defense (3)
Q9XEX2 Peroxiredoxin-2B PRXIIB 424.869 0.011
Q0WYK2 Chitinase A prchiA 5.722 0.020
F4HVW5 Protein VASCULAR ASSOCIATED DEATH 1 VAD1 1.584 0.001
Secondary metabolism (5)
P23281 3-phosphoshikimate 1-carboxyvinyltransferase 2 (Fragment) EPSPS-2 1.988 0.035
Q5EP59 Phenylalanine ammonia-lyase PAL 3.812 0.028
Q5EP63 Phenylalanine ammonia-lyase PAL 1.894 0.045
Q5EP60 Phenylalanine ammonia-lyase (Fragment) PAL 1.810 0.031
B9VV87 Cinnamate 4-hydroxylase (Fragment) C4H 1.777 0.035
Other (1)
O81305 Type III polyketide synthase C At4g00040 3.557 0.007

Table 4 
Down-regulated DEPs of R-1200_vs_R-0 group.

Accession number Protein Name Gene Name R-1200/R-0 (FC) p value

Protein metabolism (1)
O65082 60S ribosomal protein L15-2 SB62 0.549 0.000
Amino acid metabolism (1)
P93541 Glutamate dehydrogenase GDH1 0.513 0.029
Carbohydrate and energy metabolism (3)
Q9SGC1 Phosphoglucomutase, cytoplasmic 2 At1g70730 0.651 0.034
P93306 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 NAD7 0.235 0.035
P81766 Nucleoside diphosphate kinase 3 ​ 0.346 0.049
Material Transport (1)
Q7XSQ9 Aquaporin PIP1-2 PIP1-2 0.644 0.035
Cell wall and cytoskeleton (1)
Q56WH1 Tubulin alpha-3 chain TUBA3 0.627 0.000
Secondary metabolism (1)
K4BW79 2-methylene-furan-3-one reductase EO 0.389 0.017
Other (3)
A0A2L0HIN0 Ribulose bisphosphate carboxylase large chain (Fragment) rbcL 0.620 0.026
A0A219T2W6 ATP synthase CF0 B subunit (Fragment) atpF 0.536 0.047
A0A248RBK6 Photosystem II CP43 reaction center protein psbC 0.374 0.010
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Table 5 
Up-regulated DEPs of R-1200_vs_R-600 group.

Accession number Protein Name Gene Name R-1200/R-600 (FC) p value

Protein metabolism (2)
Q9LST7 Proteasome subunit beta type-3 PBC1 1.644 0.024
P69310 Ubiquitin ​ 1.661 0.006
Amino acid metabolism (1)
P37142 Bifunctional aspartokinase/homoserine dehydrogenase ​ 3.971 0.037
Carbohydrate and energy metabolism (1)
T2C622 NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (Fragment) gapC 2.031 0.018
Material Transport (6)
O04157 Ras-related protein RABG3b RABG3B 2.464 0.048
O23657 Ras-related protein RABC1 RABC1 2.262 0.037
O49841 Ras-related protein RABC2a RABC2A 2.047 0.043
Q9LXC0 Guanosine nucleotide diphosphate dissociation inhibitor At5g09550 2.118 0.016
Q39258 V-type proton ATPase subunit E1 VHA-E1 1.508 0.007
Q9XGM1 V-type proton ATPase subunit D VHA-D 1.861 0.012
Antioxidant defense (2)
A0A6C0W0P0 Cysteine proteinase inhibitor REF2 1.666 0.021
P93836 4-hydroxyphenylpyruvate dioxygenase HPD 1.687 0.019
Other (4)
O82803 Small rubber particle protein SRPP 2.496 0.044
P15252 Rubber elongation factor protein ​ 2.180 0.024
A0A1C9V3S0 NAD(P)-bd_dom domain-containing protein ​ 1.655 0.008
A0A1C9V3Q9 Uncharacterized protein ​ 1.774 0.014

Table 6 
Down-regulated DEPs of R-1200_vs_R-600 group.

Accession number Protein Name Gene Name R-1200/R-600 
(FC)

p value

Signal transduction (1)
A9TF79 Serine/threonine-protein kinase SRK2A SRK2A 0.643 0.003
Nucleic acid metabolism (1)
Q99285 Histone H2B (Fragments) HIS2B 0.448 0.008
Protein metabolism (10)
O23627 Glycine–tRNA ligase, mitochondrial 1 At1g29880 0.291 0.044
P49627 60S ribosomal protein L13 RPL13 0.413 0.021
Q9FDZ9 60S ribosomal protein L21-2 RPL21E 0.289 0.001
P45633 60S ribosomal protein L10 RPL10 0.656 0.001
P29345 40S ribosomal protein S6 (Fragment) RPS6 0.516 0.025
O81361 40S ribosomal protein S8 RPS8 0.511 0.035
P46293 40S ribosomal protein S16 RPS16 0.467 0.049
Q9T029 40S ribosomal protein S25-4 RPS25E 0.289 0.044
A5X2V2 Ribosomal protein L23a (Fragment) ​ 0.402 0.001
P22954 Heat shock 70 kDa protein 2 HSP70-2 0.030 0.001
Carbohydrate and energy metabolism (2)
Q9C5J7 ATP-dependent 6-phosphofructokinase 7 PFK7 0.322 0.011
Q0V7W6 Alcohol dehydrogenase-like 5 At4g22110 0.057 0.014
Material Transport (2)
Q08436 Plasma membrane ATPase 3 PMA3 0.509 0.032
M9YX97 TIP-like aquaporin AQP1 0.214 0.049
Cell wall and cytoskeleton (1)
Q6VAF9 Tubulin alpha-4 chain ​ 0.638 0.020
Antioxidant defense (1)
Q6Z6S1 Apoptosis inhibitor 5-like protein API5 API5 0.561 0.030
Secondary metabolism (5)
P21357 Phospho-2-dehydro-3-deoxyheptonate aldolase 1 SHKA 0.026 0.001
P50303 S-adenosylmethionine synthase 3 SAM3 0.219 0.006
A9NYY0 S-adenosylmethionine synthase 2 METK2 0.270 0.011
Q9LQ04 Bifunctional dTDP-4-dehydrorhamnose 3,5-epimerase/dTDP-4-dehydrorhamnose 

reductase
NRS/ER 0.233 0.033

A0A6C0VZT6 REF1 REF1 0.644 0.035
Other (1)
A0A0B5EH65 Photosystem I P700 chlorophyll a apoprotein A1 psaA 0.447 0.037
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4.6. Calcium stress may regulate secondary metabolism in D. roosii rhizome cells

Our proteomics results indicated that P2D3DA1, 3PS1CT2, ADD2 were increased by 600 mmol L− 1 Ca2+, and 3PS1CT2 was also 
increased by 1200 mmol L− 1 Ca2+ (Tables 1 and 3). These enzymes catalyze the biosynthesis of chorismate, which promotes 
phenylalanine biosynthesis [68,69]. Phenylalanine is origin of phenylpropanoids biosynthesis [70]. Phenylpropanoids play important 
role in scavenging ROS induced by abiotic stress [71]. PAL, C4H and 4CL catalyze the first three steps reactions of the phenylpropanoid 
pathway, lignin biosynthesis and flavonoid biosynthesis are two major pathways of which [70]. In this study, we found that C4H was 
increased by 600 and 1200 mmol L− 1 Ca2+, and PAL was increased by 1200 mmol L− 1 Ca2+ (Tables 1 and 3). Our proteomics results 
revealed that SAMA3 was increased by 600 mmol L− 1 Ca2+ (Table 1). SAMA3 associates with a methyltransferase involved in lignin 
biosynthesis [72]. Lignin helps plants to cope with various stresses by deposition facilitate cell wall thickening [69]. Thus, calcium 
stress may regulate lignin synthesis in D. roosii rhizome cells. Meanwhile, DHF4R was increased by 600 mmol L− 1 Ca2+ (Table 1). 
DHF4R could promote the synthesis of anthocyanin [73,74]. Flavonoids have been reported function in scavenging ROS [75,76]. So 
anthocyanin synthesis in D. roosii rhizome cells may also be regulated by calcium stress.

5. Conclusion

In conclusion, the current study revealed various characteristics of physiological indexes and proteins in D. roosii rhizome that 
under calcium stress. Physiological results showed that the D. roosii rhizome may subject to osmotic stress after calcium stress 
treatment. And osmotic stress may result in oxidative damage of rhizome cells. Then rhizome cells may scavenge ROS by synthesizing 
antioxidant enzymes. Meanwhile, proteomic results showed that calcium stress may affect signal transduction, protein translation, 
material transport, antioxidant defense and secondary metabolism in D. roosii rhizome cells. In addition, our metabolomics results 
showed that calcium stress affects the amino acid metabolism, flavonoids biosynthesis, lignin biosynthesis, fatty acid metabolism, and 
other metabolic pathway of D. roosii rhizome cells [77]. However, the actual mechanism of adaptation to calcium stress of D. roosii 
rhizome is still unclear. Therefore, further investigation might be necessary to decipher this mechanism by gene analysis. The precise 
role of stress genes should be validated by using modern biotechnological approaches, and these genes can be useful resources for the 
development of stress-tolerant plant varieties in future studies.
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