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This paper examines how haptic technology, virtual reality, and artificial intelligence help to
reduce the physical contact in medical training during the COVID-19 Pandemic. Notably,
any mistake made by the trainees during the education process might lead to undesired
complications for the patient. Therefore, training of the medical skills to the trainees have
always been a challenging issue for the expert surgeons, and this is even more challenging
in pandemics. The current method of surgery training needs the novice surgeons to attend
some courses, watch some procedure, and conduct their initial operations under the direct
supervision of an expert surgeon. Owing to the requirement of physical contact in this
method of medical training, the involved people including the novice and expert surgeons
confront a potential risk of infection to the virus. This survey paper reviews recent
technological breakthroughs along with new areas in which assistive technologies
might provide a viable solution to reduce the physical contact in the medical institutes
during the COVID-19 pandemic and similar crises.
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1 INTRODUCTION

After the outbreak of COVID-19 virus in Wuhan, China at the end of 2019, this virus and its
mutations has rapidly spread out in the world. In view of the fact that no proven treatment has been
so far introduced for the COVID-19 patients, the prevention policies such as staying home, social
distancing, avoiding physical contact, remote working, and travel restrictions has strongly been
recommended by the governments. As a consequence of this global problem, universities have
initiated policies regarding how to keep up teaching and learning without threatening their faculty
members and students to the virus. Thus, the majority of traditional in-class courses have been
substituted to the online courses. Notwithstanding the fact that the emergency shift of the classes
have reduced the quality of education during the COVID-19 pandemics Hodges et al. (2020), some
investigators have proposed ways for rapid adaption of the university faculty and the students to the
situation and improve the quality of education Zhang et al. (2020).

Nevertheless, the case of remote learning is different in the medical universities as the learning
process in the medical universities is not just rely on the in-class courses. As an illustration, the
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medical training in the traditional way is accomplished by a
medical student through attending some training courses,
watching how the procedure is performed by a trainer,
performing the procedure under supervision of a trainer, and
at the final stage, independently performing the procedure. In
fact, the traditional method of surgery training relies on excessive
presence of students in the hospital environments and the skill
labs to practice the tasks on the real environments such as
physical phantoms, cadavers, and patients and that is why
medical students are called “residents”. Thus, the
aforementioned traditional surgery training methodology
requires a substantial extent of physical contact between
medical students, expert surgeons, nurses, and patients, and as
a result, the risk of infection is high among those people. On the
other hand, the assistive technologies based on virtual reality and
haptic feedback have introduced alternative surgical training
tools to increase the safety and efficiency of the surgical
training procedures. Nowadays, the necessity of reducing the
physical contact in the hospital environments seems to make
another motivation for those assistive technologies. Therefore, it
is beneficial to review those technologies from COVID-19
motivation aspect.

In this paper, the existing assistive technologies for medical
training are reviewed in a COVID-19 situation. While there are
several motivations for those technologies such as increasing the
safety, speed, and efficiency of training, the new motivations
created for those technologies during the COVID-19 pandemic
are the specific focus of this paper. In spite of the existing
literature on COVID-19, our main focus is surgery training
technologies that help to reduce physical contact during this
and other similar pandemics. Notably, a number of those studies
have analyzed systemic and structural challenges applicable to
medical training programs with little emphasis on technological
aspects of the subject Sharma and Bhaskar (2020), Khanna et al.
(2020). On the other hand, the methods of remote diagnostics
and remote treatment have received a great deal of attention after
COVID-19 pandemic and a massive body of literature have
covered those topics Tavakoli et al. (2020), Feizi et al. (2021),
Akbari et al. (2021). In contrast, less studies have given special
attention on remote training and remote skill assessment which is
the subject of this paper. For this reason, this paper addresses
scientific methods, technologies and solutions to reduce the
amount of physical contact in the medical environments that
is due to training reasons.

Relevant literature was chosen from articles published by IEEE,
Frontiers, Elsevier, SAGE, and Wiley with special attention to the
well-known interdisciplinary journals. The search was preformed
using the keywords “remote medical training,” “skill assessment in
surgery,” “virtual and augmented reality for medical training,”
“medical training haptic systems,” and “artificial intelligence and
machine learning for medical training” until June 30, 2021. The
literature was examined to systematically address key novel
concepts in remote training with sufficient attention to the
future direction of the subject. Finally, it is tried to review the
problem in the COVID-19 context in a way that the discussed
materials are distinct from similar literature in a conventional non-
COVID context.

The rest of this paper is organized as follows: The clinical
motivations of the training tools are discussed in Section 2. The
virtual and augmented reality and the related areas of utilization
for medical training are described in Section 3. Section 4 explains
how haptic technology may be used for medical training, while
Section 5 describes some data-based approaches that may be used
for skill assessment. Then, the machine vision and its relevant
methods used for medical training are presented in Section 6.
Finally, concluding remarks are stated in Section 7.

2 THE CLINICAL MOTIVATION

The process of skill development among medical students have
always been a challenging issue for the medical universities, as the
lack of expertise may lead to undesired complications for the
patients Kotsis and Chung (2013). Moreover, owing to the rapid
progress of minimal invasive surgeries during the past decades,
the closed procedures have been becoming a method of choice
over traditional open surgeries. In the minimal invasive surgery,
the instruments enter the body through one or more small
incisions, while this type of surgery is applicable to a variety
of procedures. The foremost advantage of this technique is the
minimal affection to healthy organs, which leads to less pain,
fewer post-operative complications, faster recovery time, and
better long-term results.

However, the closed surgery technique is more challenging
from the surgeon’s point of view since the surgeon does not have a
complete and direct access on the surgical site and the tiny
incisions limit the surgeon’s accessibility. Owing to the limited
access, some degrees of freedom are missing and surgeon’s
manipulation capability is considerably reduced. Furthermore,
there is fulcrum effect at the entry point of the instrument, i.e., the
motion of the tip of the instrument, which is placed inside the
organ, and the external part of the instrument, which is handled
by the surgeon, are reversed. This results in more difficult and
even awkward instrument handling and requires specific and
extensive surgical training of the surgeon. As a result, the minimal
invasive surgeries demands advanced expertise level, the lack of
whichmight cause disastrous complications for the patient. These
conditions are equally important in many medical interventions,
especially in minimally invasive surgeries. Here a number of
specific areas of surgical operation are expressed in order to
address complications that might occur during the training
procedures.

• Eye surgery:

An important category of medical interventions which need a
very high skill level is intraocular eye surgical procedures.
Notably, the human eye is a delicate and highly complex
organ and the required accuracy for the majority of
intraocular surgeries is in the scale of 50–100 microns. The
closed type of surgery is applicable to a number of eye
surgeries such as the Cataract surgery in the anterior segment
as well as the vitro-retinal surgical procedures in the posterior
segment. Notably, some complications such as Posterior Capsule
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Rupture (PCR) for cataract surgery and retina puncture for the
vitro-retinal surgical procedures are among the relatively
frequent complications that might happen, due to the
surgeon’s lack of surgical skills and dexterity. It is shown in a
study on ophthalmic residents that the rate of complications such
as retinal injuries is higher for the residents with less skills Jonas
et al. (2003).

• Laparoscopic Cholecystectomy

Another example is Laparoscopic Cholecystectomy (LC)
which is now the accepted standard procedure across the
world and is one of the most common general and specialist
surgical procedures. However, it can be prone to an important
complication that is bile duct injury (BDI). Although BDI is
uncommon but it is one of the most serious iatrogenic surgical
complications. In extreme BDI cases, a liver resection or even
liver transplantation becomes necessary. BDI is considered as an
expensive medical treatment and its mortality rate is as high as
21% Iwashita et al. (2017).

• Neurosurgery

Neurosurgery is another field that deals with complex cases
and requires high accuracy and ability in the surgeon’s
performance. In a prospective study of 1,108 neurosurgical
cases, 78.5% of errors during neurosurgery were considered
preventable Stone and Bernstein (2007). The most frequent
errors reported were technical in nature. The increased use of
endoscopy in neurosurgery introduces challenges and increases
the potential for errors because of issues such as indirect view,
elaborate surgical tools, and a confined workspace.

• Orthopedic surgery

In the field of orthopedics, knee and shoulder arthroscopic
surgeries are among the most commonly performed procedures
worldwide. There is a steep learning curve associated with
arthroscopic surgery for orthopaedic surgery trainees.
Extensive hands-on training is typically required to develop
surgical competency. The current minimum number of cases
may not be sufficient to develop competency in arthroscopic
surgery. It is estimated that it takes about 170 procedures before a
surgeon develops consultant-level motor skills in knee
arthroscopic surgery Yari et al. (2018). With work-hour
restrictions, patient safety concerns, and fellows often taking
priority over residents in performing cases, it is challenging

for residents to obtain high-level arthroscopic skills by the end
of their residency training.

The above motivation shows the importance of skill
development among the medical students. The standard
process of procedural skill development in medicine and
surgery is shown as a diagram in Figure 1. In the observation
stage, the medical students need to attend a clinical environment
and watch how the procedure is performed by a trainee. Then, the
medical students get involved in the operation as an apprentice,
while the actual procedure is performed by the trainer. Later, the
medical students practice the operation under direct supervision
of the trainer, while the trainer assesses the skill level of the
medical students. The supervised practice and skill assessment
steps are repeated as long as the trainee does not have enough
experience and skill to conduct the procedures without
supervision of the trainer. Finally, after obtaining sufficient
skill level, the trainee is able to independently perform the
operation.

Remarkably, a learning curve is considered for each procedure,
which means that performance tends to improve with experience.
This concept applies for all of the medical procedures and
specialties, but complex procedures, surgery in particular, are
more likely to gradual learning curves, which means that
improvement and expertise is achieved after longer training
time. Some of the important factors in the learning curve are
manual dexterity of the surgeon, the knowledge of surgical
anatomy, structured training and mentoring and the nature of
the procedure. The learning curve is longer forminimally invasive
procedures than that for open surgical procedures. The learning
curve is also influenced by the experience of the supporting
surgical team. Besides, learning curves depend on the
frequency of procedures performed in a specified period.
Many studies suggest that complication rates are inversely
proportional to the volume of surgical workload.

Notably, the above mentioned process of skill development
require a considerable extent of physical contact between the
trainees, the expert surgeons, the nurses, and the patients, while
this shall be reduced in the COVID-19 pandemic. In addition to
the high risk of infection in the medical universities with the
conventional medical training approaches, the majority of the
health-care capacity is focused on fighting the COVID-19 virus
and consequently, the education requirements of medical
universities are failed to be entirely fulfilled. As a result, the
training efficiency of medical universities will be reduced,
provided that they just rely on the conventional training
approaches. This will have possible side-effects on the future
performance of the health-care system mainly due to the

FIGURE 1 | Process of procedural skill development in medical training and surgery.
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insufficient number of recently graduated students with adequate
expertise level.

On the other hand, traditional education takes place in
hospitals and on real patients, which face several problems
during the COVID-19 pandemic: the hospital environment is
contaminated with the virus, hospital staff and physicians are
very busy and tired and have less training capacity, prolonged
hospital stays of patients to train students put them at greater risk
for exposure to the virus, especially if complication occurs by a
resident who does not have gained sufficient skills during the
training procedure. Therefore, training with assistive devices
outside the hospital may play an effective role in this
situations. The highlighted factors can significantly be
improved by assisted learning, especially in minimally invasive
procedures. In more complex surgeries, the complications
becomes more serious, the learning curve will be longer, and
the role of assisted learning becomes more prominent.

To solve the above mentioned problems, assistive training
tools provide a variety of solutions through which the medical
universities are able to continue their education procedures, while
the risks enforced by the COVID-19 outbreak are reduced. In the
following sections, the main assistive training tools including the
haptic systems, virtual reality, machine vision, and data mining
are reviewed and the areas in which those technologies facilitate
the training process during the COVID-19 pandemic are detailed.
The aim of these technologies is to have the training efficiency
higher or at least equal to that of the conventional training
methods without risk of infection of the involved parties to
the virus.

3 VIRTUAL AND AUGMENTED REALITY

Virtual Reality is employed to create an immersive experience for
various applications such as visualization, learning and

education. In virtual reality, a computer generated graphical
presence is visualized using a head mounted display and the
user can interact with 3D objects located in the virtual world. In
addition to VR, the Augmented Reality (AR) is developed to add
3D objects to the real world creating a different experience by
adding digital information to the real objects in the surrounding
environment. Although experiencing the 3D objects in VR scenes
is far from the interaction with real objects, the VR experience is
getting closer to the real world environments by the help of more
realistic computer graphics and full-body haptics suits.

The virtual reality (VR) and augmented reality (AR) are
getting more interest as a training technique in the medical
fields, unlocking significant benefits such as safety,
repeatability and efficiency Desselle et al. (2020). Furthermore,
during the COVID-19 pandemic, remote training and consulting
are considered as vital advantages of VR/AR based training
methods (Singh et al., 2020).

Some advantages of using VR/AR in medical training are
depicted in Figure 2. Safety is the first and the most important
benefit of VR/AR employment in medical education. Complex
medical operations may be performed in a simulated
environment based on VR with complete safety and without
putting the patient’s life into danger. Repeatability is the second
advantage of using VR as any simulation scenario in the field of
medical training can be repeated over and over until the trainee is
completely satisfied. During the COVID-19 pandemic it is vital to
practice social distancing which is delivered by VR/AR
employment in medical education. Medical training and
surgery simulation by computer graphics in VR/AR virtual
environments results in reduced training costs as no material
except than a computer, a VR headset and a haptic device is
required. Since medical training by VR/AR is performed using a
computer, the surgery simulation is always in hand as soon the
computer and VR headset are ready to be used. Therefore, the
efficiency of medical training is increased as no time is required
for either preparation of an operation room or getting a
patient ready.

VR/AR techniques are employed in various applications in
surgical training as it can be seen in Figure 3. The first application
of AR/VR in surgical training is surgical procedure diagnosis and
planning. Using AR/VR, the real surgical operation is simulated
ahead without putting the patient’s life into danger. The AR/VR is
used in surgical education and training which is mentioned as the
second application. Simulation based environments are
developed for training of medical students by virtual human
anatomy 3D models. Another application of AR/VR is robotic
and tele-surgery, by which surgical consulting becomes possible
even from a far distance. The last application of AR/VR in
surgical training is sensor data and image visualization during
the surgical operation which makes the effective usage of patient’s
medical data possible.

It is shown that the learning curve of hip arthroscopy trainees
is significantly improved using a virtual reality simulator (Bartlett
et al., 2020). In this study, a group of twenty five inexperienced
students were chosen to perform seven arthroscopies of a healthy
virtual hip joint weekly. The experimental results indicated that
average total time decreased by nearly 75% while the number of

FIGURE 2 | VR/AR advantages in medical training.
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collisions between arthroscope and soft-tissues decreased almost
by 90%.

VR is also employed in orthopedic surgical training, where 37
residents participated in a study to obtain an understanding of the
LISS1 plating surgical process (Cecil et al., 2018). The developed
virtual surgical environment is equipped with a haptic device to
perform various activities such as assembling LISS plate, placing
the assembled LISS plate correctly inside the patient’s leg, and
attaching the LISS plate to the fractured bone. The test was
divided into pre–test where the students get familiar with the
surgery process and the post–test which is devoted to the actual
evaluation phase. The participants had 1 h to finish both the
pre–and post–tests which resulted in improvement of learning
the LISS plating surgical process.

The applicability and effectiveness of VR based training in
orthopedic education is evaluated in (Lohre et al., 2020), where
nineteen orthopedic surgical residents cooperated in this study. The
surgical residents performed a glenoid exposure module on a VR
based simulator using a haptic device as the input controller. The
result of training of residents using VR simulator has been compared
to the conventional surgery training methods. Considering the
learning time, repeating 3 to 5 VR based surgery experiments by
the residents, resulted in 570% training time reduction. Additionally,
VR based surgical training helped the residents to finish glenoid
exposure significantly faster than the residents trained by
conventional education methods.

Orthognathic surgery is another surgery field considered for
VR based training as it is one of the complex surgical procedures
(Medellin-Castillo et al., 2020). While conventional OSG2

learning techniques are dependent to cadavers or models and
experienced surgeons are trained after several years of
experiments in operating rooms, employment of VR in
surgical training can reduce the learning time and the
education cost at the same time. In this study, three cases are
considered for evaluation of VR in OSG, cephalometry training,

osteotomy training and surgery planning to be precise. The
experimental results indicated that the combination of haptics
and VR is effective in skill improvement of trainees and surgery
time reduction. Furthermore, the surgery errors and mistakes are
reduced by using haptic feedback to recreate the sense of touch as
trainees can detect landmarks more precisely in comparison to
conventional techniques.

In conjunction with VR, the AR technology has also been used in
various medical fields for training such as neurosurgical training (Si
et al., 2019). Anatomical information and other sensory information
can be visualized to the surgeons more properly, and therefore, more
accurate decision can be made during a surgery. Although this study
is only applicable to the simulated environments because of
registration problem, the experiment indicated the effectiveness of
the simulator in skill improvement of surgeons.

While key features of VR/AR have led to improved training
specially in surgical training, there are some limitations that
should be considered (kumar Renganayagalu et al., 2021). The
first limitation of VR simulators is the cost of VR content
production, and therefore, most of simulators are made for
very specific type of simulation in a limited context. The
second limitation is the immaturity of interaction devices for
VR simulations, which has a great affect on the user experience.
Another limitation of VR usage in medical training is the inability
of using VR devices for long period of time as the VR devices are
made for entertainment and not for a long training session.

It can be concluded that in spite of some limitations, VR/AR
based simulators equipped with a haptic device can be used in
medical surgery training in order to achieve skill improvement
and training time reduction. Furthermore, during the isolation
requirements due to COVID-19 pandemic, VR/AR based
techniques can be well employed for medical training.

4 TELEOPERATED HAPTIC SYSTEMS

Haptic systems provide the sense of touch with remote objects
without the need of actual contact. It also provides collaboration
between several operators without the need of any physical

FIGURE 3 | VR/AR applications in surgical training.

1Less invasive stabilization system
2Orthoganthic surgery
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contact. As depicted in Figure 4, based on the number of the
operators, the haptic systems may be classified into single user,
dual-user or multi-user haptic systems. Single user haptic systems
enable a single human operator to interact with a remote or
virtual environment, whereas dual-user or multi-user haptic
systems provide a mechanism for collaboration of two or
multiple human operators. The medical training applications
of those systems is presented here.

4.1 Single User Haptic Systems
Single user haptic systems extend the abilities of human operators
to interact with remote, virtual, and out-of-reach environment. In
the field of surgery training, a number of investigations have
proposed haptic training simulators for training of minimally
invasive surgery (MIS) Basdogan et al. (2004), dental procedures
Wang et al. (2014), sonography Tahmasebi et al. (2008), and
ocular therapies Spera et al. (2020). As shown in Figure 4A, a
typical single-user haptic simulator system consists of a human
operator, a haptic interface, a graphical interface, and a reference
model for the virtual object. Notably both the graphical interface
and the haptic interface utilize the reference model to provide
necessary feedback for the operator. While the graphical interface
provides a visual feedback of the environment, the haptic
interface provides the kinesthetic feedback of the interaction
between the tool and the surgical field. Indeed, the role of
haptic feedback is to recreate the sense of contact with the
virtual environment for the operator. As a result, the
circumstances of actual operation is provided for the medical
students, while the need of physical presence in the clinical
environments is eliminated. Indeed, through haptic
technology, the medical students are able to practice on a
virtual environment without the need of presence at the
clinical environment. Thus, the risk of infection during the
COVID-19 pandemic is effectively reduced.

4.2 Dual User Haptic Systems
The cooperative and joint conduction of an operation either for
the purpose of collaboration or training, as a fundamental clinical

task, cannot be provided by single user haptic systems. In order to
make the cooperation of two surgeons possible, the system should
be upgraded to a dual user haptic system by adding another
haptic console. A dual user haptic system is a more recent
advancement in haptic technology, and it consists of two
haptic consoles, one for the trainer and one for the trainee
Shahbazi et al. (2018a). Remarkably, the traditional
collaboration methods require direct physical contact of the
persons conducting the operation, whereas the haptic-based
collaboration approach eliminates the physical contact of the
collaborators. As a result of removing the need of physical
contact, the involved people are no longer in the risk of the
Corona virus. A commercial dual user haptic system developed
by intuitive Surgical Inc. ® is the da Vinci Si Surgical Systemwhich
supports training and collaboration during minimally invasive
surgery. The da Vinci Si System builds on the existing da Vinci
technology, where it has a number of enabling features such as
leading-edge 3D visualization, advanced motion technology, and
sufficient dexterity and workspace. However, the da Vinci Si does
not provide active supervision and intervention of the trainer on
the trainee’s actions. As an illustration, in the case that the trainee
controls the procedure, the trainer does not have the possibility to
guide the trainee during the procedure.

The issue of supervision and intervention of the trainer during
the operation in dual user haptic systems have been a topic of
active investigation during the past years. A number of studies
have utilized the concept of dominance factor to determine the
task dominance of each operator Nudehi et al. (2005), Khademian
and Hashtrudi-Zaad (2012), Shahbazi et al. (2014b), Motaharifar
et al. (2016). In those approaches, the trainee is given a partial or
full task authority by the trainer based on his/her level of
expertise. Notably, the task authority provided by these
control architectures is supposed to be fixed during the
operation. Thus, changing the authority of the surgeons and
specially blocking the trainee’s commands is not possible in the
middle of the operation. This might lead to undesired operative
complications specially in the case that the trainee makes a
sudden unpredictable mistake.

FIGURE 4 | Single user vs. dual user haptic systems. (A) Single user haptic system. (B) Dual user haptic system.
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Fortunately, a number of investigations have developed
control architectures to address the above shortcoming of the
previously proposed haptic architectures Motaharifar et al.
(2019b), Shahbazi et al. (2014a), Motaharifar and Taghirad
(2020). As a case in point, an S-shaped function is proposed
in Motaharifar et al. (2019b) for the adjustment of the corrective
feedback in order to shape the trainee’s muscle memory. In fact,
the training approach behind the presented architecture is based
on allowing the trainee to freely experience the task and be
corrected as needed. Nevertheless, through the above scheme,
the trainee is just granted the permission to receive the trainer’s
motion profile; that is, the trainee is deprived of any realistic
contribution to the surgical procedure. In contrast, several
investigations have proposed mechanisms for adjusting the
task dominance, through which the trainee is granted partial
or full contribution to the task Shahbazi et al. (2014a),
Motaharifar and Taghirad (2020), Liu et al. (2015), Lu et al.
(2017), Liu et al. (2020). Remarkably, the above approaches
require both the trainer and the trainee to completely perform
the operation on their haptic devices, and the actual task
authority is determined based on the position error between
the trainer and the trainee Shahbazi et al. (2014a), Motaharifar
and Taghirad (2020), Liu et al. (2015), Lu et al. (2017), Liu et al.
(2020). This constitutes an important limitation of the above
architectures, since the trainer is enforced to be involved in every
detail of each operation and even the trivial ones. Notably, the
trainer’s obligation to precisely perform every part of the surgical
procedure has little compatibility with the trainer’s
responsibilities in terms of supervisory assistance and
interference. In fact, by grabbing the idea from the
conventional training programs of the medical universities, the
haptic architecture should be developed in such a manner that the
trainer is able to intervene only in order to prevent a complication
to the patient due to the trainee’s mistake. The issue of trainer’s
supervisory assistance and interference is addressed in
Motaharifar et al. (2019a) by adjusting the task authority
based on the trainer’s hand force Motaharifar et al. (2019a).
That is, the trainer is able to grant the task authority to the trainer
by holding the haptic device loosely or overrule the trainee’s
action by grasping the haptic device tightly. Therefore, the active
supervision and interference of the trainer is possible without the
need of any physical contact between the trainer and the trainee.

Although the above investigations address the essential
theoretical aspects regarding dual user haptic systems, the
commercialization of collaborative haptic system needs more
attention. In the past years, some research groups have
developed pilot setups of dual user haptic system with the
primal clinical evaluation that have the potential of
commercialization. For instance, the ARASH-ASiST system
provides training and collaboration of two surgeons and it is
preliminary designed for Vitreoretinal eye surgical procedures
ARASH-ASiST (2019). It is expected that the commercialization
and widespread utilization of those assistive surgery training tools
is considerably beneficial to the health-care systems in order to
decrease the physical contact during the COVID-19 pandemic,
and to increase the safety and efficiency of training programs
during and after this crisis.

Notwithstanding the fact that teleoperated haptic systems
provide key benefits for remote training during COVID-19
pandemic, they face a number of challenges that inspire
perspectives of future investigations. First, the haptic modality
is not sufficient to recreate the full sense of actual presence at the
surgical room near an expert surgeon. To overcome this challenge
and increase the operators telepresence, the haptic, visual, and
auditory components are augmented to achieve a multi–modal
telepresence and teleaction architecture in Buss et al. (2010). The
choice of control structure and clinical investigation of the above
multi–modal architecture is still an area of active research
Shahbazi et al. (2018b), Caccianiga et al. (2021). On the other
hand, the on-line communication system creates another
challenge for the haptic training systems. Notably, owing to
the high-bandwith requirement for an appropriate on-line
haptic system, the majority of existing haptic architectures in
applications such as collaborative teleopertion, handwriting and
rehabilitation cover off-line communication Babushkin et al.
(2021). However, due to the complexity, uncertainty, and
diversity of the surgical procedures, the online feedback from
the expert surgeon is necessary for a safe and efficient training.
The advent of 5G technology with faster and more robust
communication network may provide enough bandwidth for
an effective real-time remote surgery training.

5 DATA DRIVEN SCORING

A vital element of a training program is how to evaluate the
effectiveness of exercises by introducing a grading system based
on participants’ performance. The conventional qualitative skill
assessment methods require physical contact between the trainer
and the trainee since they are based on direct supervision of the
trainer. On the other hand, the systematic approaches for skill
assessment are based on collecting the required data using
appropriate instruments and analyzing the obtained data,
while they eliminate the requirement of physical contact
between the trainer and the trainee. Thus, reviewing the
systematic data-based methods is of utmost importance, as
they can be utilized to reduce the physical contact during the
COVID-19 Pandemic. In this section, some of the state of the art
methods in surgical skill evaluation are reviewed. Following the
trend of similar research in the context of surgical skill evaluation,
we categorize the reviewed methods by two criteria. The first is
the type of data, and the method uses for grading the participant.
The second criterion is the features extraction techniques that are
used during the evaluation stage.

Generally speaking, two types of data may be available in
Robotic-Assisted surgery; kinematic and video data. Kinematic
data is available when a robot or haptic device is involved. The
most common form of capturing kinematic information is using
IMUs, encoders, force sensors, magnetic field positioning sensors,
etc. The video is generally recorded in all minimally invasive
surgeries using endoscopy procedures.

Kinematic data are more comfortable to analyze because the
dimensionality of kinematic data is lower than video data.
Moreover, Kinematic information is superior to video in
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measuring the actual 3D trajectories, and 3D velocities Zappella
et al. (2013). On the other hand, video data is more convenient to
capture since no additional equipment and sophisticated
sensors are needed to be attached to the surgical tool.
Additionally, video data reflects the contextual semantic
information such as the presence or absence of another
surgical instrument, which can not be derived from the
kinematic data Zappella et al. (2013). To use the video data
effectively, one should overcome some common obstacles like
occlusion and clutter. Using multiple cameras, if possible, can
greatly assist in this procedure Abdelaal et al. (2020). In
conclusion, it can be said that each type of data has its own
merits and limitations, and using kinematic data as well as the
video may result in a richer dataset.

Other than the kinematic and video data, another source of
information is often disregarded in the literature. The expert
surgeon who conducts the training program can evaluate the
trainee’s performance and provide useful feedback regarding his/
her performance. This type of information, which is at another
semantic level compared to the sensory data, is called soft data.
The hard and soft information fusion methods can merge the
expert’s opinion with the kinematic and video data (hard data) to
accomplish a better grading system.

Most surgical skill evaluation methods utilize a feature
extraction technique to classify the participant’s skill level after
acquiring the data, like expert, intermediate, and novice. The
classification problem can be solved by employing some hand-
engineered features or features that are automatically extracted
from the data. Hand-engineered features are interpretable and
easy to obtain. However, hand-engineered features are hard to
define. Specifically, defining a feature that represents the skill level
regardless of the task is not trivial. Therefore, the states of the art
methods are commonly based on automatic feature extraction
techniques. An end-to-end deep neural network is used to unfold
the input data’s spatial and temporal features and classify the
participant in one of the mentioned skill levels in an automated
feature extraction procedure. While, Table 1 summarizes the
topic of different data types and feature extraction techniques, we
are going to cover some of the reviewed methods in the next
sections.

The most convenient hand-engineered features are those
introduced by descriptive statistics Anh et al. (2020). In a skill
rating system proposed by Brown et al. (2016), eight values of
mean, standard deviation, minimum, maximum, range, root-
mean-square (RMS), total sum-of-squares (TSS), and time
integral of force and acceleration signals are calculated.
Together with time features like task completion time, these
values are used as inputs for a random forest classifier to rate
the peg transfer score of 38 different participants. In Javaux et al.
(2018), metrics like mean/maximum velocity and acceleration,
tool path length, depth perception, maximum and integral of
planar/vertical force, and task completion time are considered as
a baseline for skill assessment Lefor et al. (2020). Another
commonly used method in the literature is to use statistical
tests such as Mann-Whitney test Moody et al. (2008),
Kruskal–Wallis test Javaux et al. (2018), Pearson or Spearman
correlation Zendejas et al. (2017), etc. These tests are utilized to
classify the participants directly Moody et al. (2008) or
automatically calculate some of the well-known skill
assessment scores like GOALS and FLS Zendejas et al. (2017).

Since many surgical tasks are periodic by nature, the data
frequency domain analysis proves to be effective Zia et al. (2015).
For periodic functions like knot tying and suturing Zia et al.
(2015) suggests that transforming the data into time series and
performing a Discrete Fourier Transform (DFT) and Discrete
Cosine Transform (DCT) on the data extracts features, will assist
the skill level classification task. The results show that such an
approach outperforms many machine-learning-based methods
like Bag of Words (BoW) and Sequential Motion Texture (SMT).
In another work by the same author, symbolic features, texture
features, and frequency features are employed for the
classification. A Sequential Forward Selection (SFS) algorithm
is then utilized to reduce the number of elements in the feature
vector and remove the irrelevant data Zia et al. (2016). Hojati et al.
(2019) suggests that since Discrete Wavelet Transform (DWT) is
superior to DFT and DCT in a sense that it offers simultaneous
localization in time and frequency domain, DWT is a better
choice for feature extraction in surgical skill assessment tasks.

As it is mentioned before, hand-engineered features are task-
specific. For example, the frequency domain analysis discussed in

TABLE 1 | Summery of different sources of data and different feature extraction techniques.

Data type

Kinematic Video Experts’ opinion

Pros Lower dimensionality Convenient to capture Higher semantic level
Actual 3D trajectories Info. of the surroundings

Cons Needs tools Higher dimensionality Quantitative
No info. of the surrounding Estimated 3D trajectories

Occlusion, Clutter, etc.
Feature extraction technique
Hand-engineered Automatic

Pros Interpretable End to end solution
Easy to calculate Case independent

Cons Hard to define Requires a big dataset
Case dependent Computational cost
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the previous section is only viable when the task is periodic.
Otherwise, the frequency domain features should be
concatenated with other features. Moreover, perceiving the
correct features that reflect participants’ skill levels in different
surgical tasks requires an intensive knowledge of the field. As a
result, developing a method in which the essential features are
identified automatically is advantageous.

With the recent success of Convolutional Neural Networks
(CNN) in classification problems like image classification, action
recognition, and segmentation, it is safe to assume that CNN can
be used in skill assessment problems. However, unlike image
classification, improvement brought by end-to-end deep CNN
remains limited compared to hand-engineered features for action
recognition Wang et al. (2018). Similarly, using conventional
CNN does not contribute too much to the result in surgical skill
evaluation problems. For example, Fawaz et al. (2018) proposed a
CNN-based approach for dry-lab skill evaluation tasks such as
needle passing, suturing, and knot-tying. However, a hand-
engineered-based method with a set of features introduced as
holistic features (SMT, DFT, DCT, and Approximate Entropy
(ApEn)) suggested by Zia and Essa (2018) reaches the same
accuracy as the CNN-based method in the needle passing and
suturing tasks and outperforms the CNN-based method in the
knot-tying task.

Wang et al. (2018) suggests that conventional CNN falls short
compared to traditional hand-crafted feature extraction
techniques because it only considers the appearances (spatial
features) and ignores the data’s temporal dynamics. In Wang and
Fey (2018), a parallel deep learning architecture is proposed to
recognize the surgical training activity and assess trainee
expertise. A Gated recurrent unit (GRU) is used for temporal
feature extraction, and a CNN network is used to extract the
spatial features. The overall accuracy calculated for the needle
passing, suturing, and knot tying tasks is 96% using video data.
The problem of extracting spatiotemporal features is addressed
with 3D ConvNets in Funke et al. (2019). In this method, inflated
convolutional layers are responsible for processing the video
snippets and unfolding the classifier’s input data.

To the best of our knowledge, all of the proposed methods in
the literature have used single classifier techniques in their work.
However, methods like classifier fusion have proved to be useful
in the case of medical-related data. In Kazemian et al. (2005) an
OWA-based fusion technique is used to combine multiple
classifiers and improve the accuracy. For a more advanced
classifier fusion technique, one can refer to the proposed
method in Kazemian et al. (2010) where more advanced
methods such as Dempster’s Rule of Combination (DCR) and
Choquet integral are compared with more basic techniques.
Activity recognition and movement classification is another
efficient way to calculate metrics representing the surgical skill
automatically Khan et al. (2020). Moreover, instrument detection
in a video and drawing centroid based on the orientation and
movement of the instruments can reflect the focus and ability to
plan moves in a surgeon. Utilizing these centroids and calculating
the radius, distance, and relative orientation can aid with the
classification based on skill level Lavanchy et al. (2021).

In conclusion, the general framework illustrated in Figure 5
can summarize the reviewed techniques. The input data, either
kinematic and video, is fed to a feature extraction block. A fusion
block Naeini et al. (2014) can enrich the semantic of the data
using expert surgeon feedback. Finally, a regression technique or
a classifier can be employed to calculate a participant’s score
based on his/her skill level or represent a label following his/her
performance.

6 MACHINE VISION

The introduction of new hardware capable of running deep
learning methods with acceptable performance led artificial
intelligence to play a more significant role in any intelligent
system Han (2017). It is undeniable that there is a huge
potential in employing deep learning methods in a wide range
of various applications Weng et al. (2019), Antoniades et al.
(2016), Lotfi et al. (2018), Lotfi et al. (2020). In particular, utilizing
a camera along with a deep learning algorithm, machines may
precisely identify and classify objects by which either performing
a proper reaction or monitoring a process may be realized
automatically. For instance, considering a person in a coma,
any tiny reaction is crucial to be detected, and since it is not
possible to assign a person for each patient, a camera can solve the
problem satisfactorily. Regarding the COVID-19 pandemic
situation, artificial intelligence may be used to reduce both
physical interactions and the risk of a probable infection
especially when it comes to a medical training process.
Considering eye surgery as an instance, not only should the
novice surgeon closely track how the expert performs but also the
expert should be notified of a probable mistake made by the
novice surgeon during surgery. In this regard, utilizing computer
vision approaches as an interface, the level of close interactions
may be minimized effectively. To clarify, during the training
process, the computer vision algorithmmay act as both the novice
surgeon looking over the expert’s hand and the expert monitoring
and evaluating how the novice performs. This kind of application
in a medical training process may easily extend to other cases. By
this means, the demand for keeping in close contact is met
properly.

Not needing a special preprocessing, deep convolutional
neural networks (CNNs) are commonly used for classifying
images into various distinct categories. For instance, in
medical images, this may include probable lesions Farooq
et al. (2017), Chitra and Seenivasagam (2013). Moreover, they
can detect intended objects in the images which can be adopted
not only to find and localize specific features but also to recognize
them if needed. Since most of the medical training tasks require
on-line and long-term monitoring, by utilizing a camera along
with these powerful approaches, an expert may always keep an
eye on the task assigned to a trainee. Besides, methods based on
CNNs are capable of being implemented on graphics processor
units (GPUs) to process the images with an applicable
performance in terms of both speed and accuracy Chetlur
et al. (2014), Bahrampour et al. (2015). This will reduce the
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probable latency and makes it possible for the trainer to be
notified on time and correct the trainee remotely.

There are numerous researches carried out in the field of
image processing based on CNNs. These methods are mainly
divided into two single-stage and two-stage detectors. The former
is known to be fast while the latter results in higher accuracy. In
Figure 6 the difference between a two-stage and a single-stage
detector is illustrated. Considering single-stage detectors and
starting with the LeCun et al. (1998) as one of the earliest
networks, plenty of different approaches have been presented
in the literature among which single-shot multi-box detector
(SSD) Liu et al. (2016), RetinaNet Lin et al. (2017), and you only
look once (YOLO) Redmon and Farhadi (2018) may be counted
as nominated ones. Some of these approaches have been
proposed with several structures including simpler and more
complex structures to be employed depending on whether the
speed is of high importance or accuracy. Mainly, training and the
test are two phases when utilizing these methods. While it is
crucial to define a proper optimization problem in the first phase,

it is indispensable to implement the trained CNN optimally.
Coming up with various solutions, methods like Krizhevsky et al.
(2012), Simonyan and Zisserman (2015), Szegedy et al. (2015),
and Szegedy et al. (2016) suggest utilizing specific CNNmodels to
obtain better outcomes. On the other hand, to further improve
the accuracy, in two-stage detectors like Girshick et al. (2014), it is
suggested to first determine a region of interest (ROI) then
identify probable objects in the related area. As a
representative, Uijlings et al. (2013), which is known as
selective search, is designed to propose 2k proposal regions,
while a classifier may be employed for the later stage. Dealing
with some challenging problems in these detectors, He et al.
(2015), Girshick (2015), and Ren et al. (2015) are proposed to
enhance the results in terms of both accuracy and speed.

To put all in a nutshell, when dealing with critical situations
such as the current COVID-19 epidemic, it is highly
recommended to employ artificial intelligence techniques in
image processing namely deep CNNs for medical training
tasks. By this means, neither is a close physical interaction

FIGURE 5 | A general framework for surgical skill assessment.

FIGURE 6 | Example of two-stage and single-stage detectors Kathuria (2021). (A) Two-stage detector (RCNN). (B) Single-stage detector (YOLO).
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between the expert and novice necessary, nor the quality of the
training is reduced adversely due to the limitations. In fact, the
computer vision approach acts as an interface making it possible
both to learn from the expert and to evaluate the novice, remotely.

7CONCLUSIONAND FUTUREPROSPECTS

The faculty members and the students of the medical universities
are classified in the high-risk category due to the potential exposure
to coronavirus through direct contact and aerosol-generating
procedures. As a result, many medical schools have suspended
their clinical programs or implemented social distancing in their
laboratory practices. Furthermore, the current fight against the
COVID-19 virus have used nearly all capacity of health-care
systems, and some less urgent and less emergent medical
services including the education issues are limited or even
paused. Therefore, unless some assistive training tools are
utilized to support the educational procedures, the training
efficiency of medical universities will be reduced and it have
future consequences for the world health-care system.

Practicing medical tasks with current lock-down policies can
be solved utilizing state of the art techniques in haptics, virtual
reality, machine vision, and machine learning. Notably,
utilization of the above technologies in medical education has
been researched actively within the past years in order to increase
the safety and efficiency of the surgical training procedures.
Nowadays, another motivation is created for those assistive
technologies owing to the COVID-19 pandemic. In this paper,
the existing assistive technologies for medical training are
reviewed in the COVID-19 context and a summary of them is
presented in Table 2.

It is reviewed that a surgical simulator system including a VR/
AR based graphical interface and a haptic interface is able to
provide the circumstances of actual surgical operation for the
medical students, without the necessity of attending the hospital
environments. Furthermore, through augmenting the system
with another haptic console and having a dual user haptic
system, the opportunity of collaboration with and receiving

guidance cues from an expert surgeon in a systematic manner
is given to the trainees. In contrast to the traditional collaboration
methodologies, the haptic-based collaboration does not require
the physical contact between the involved people and the risk of
infection is reduced. Assessment of the expertise level of the
medical students is another element of each training program.
The necessity of reducing physical contact during the COVID-19
pandemic have also affected the skill assessment methodologies as
the traditional ways of skill assessment are based on direct
observation by a trainer. In contrast, data-based analysis may
be utilized as a systematic approach for skill assessment without
any need of physical contact. In this paper, some of the ongoing
methods in surgical skill evaluation have been reviewed.

Biomedical engineering technology has progressed by leaps
and bounds during the past several decades and advancements in
remote diagnostics and remote treatment have been considered as
a leading edge in this field. For instance, the tele-surgery robotic-
assisted da Vinci system have received a great deal of attention in
the healthcare marketplace with more than 5 million surgeries in
the last 2 decades DaVinci (2021). However, the rate of
advancement in medical training, which usually follows
traditional methods, has been considerably less than the other
aspects of medical field, and modern training technologies have
received fewer attention during the past several decades. While
remote training and remote skill assessment technologies make
relatively lower risk to the patient than remote diagnostics and
remote treatment, the reason behind fewer attention to the
former is the lack of sufficient motivations. It is hoped that
the motivations created for those advanced medical training
methods during the COVID-19 crisis are strong enough to
continuously increase their utilization among the medical
universities. Although wide utilization of those technologies
needs a considerable extent of time, effort, and investment,
immediate and emergent decisions and actions are required to
widely utilize those potential techniques. Notably, all of the
presented approaches and techniques are targeted to be
utilized in the normal situations without any pandemic in
order to provide safer and more efficient medical training.
Therefore, even after the world recovers from this crisis, these

TABLE 2 | The main tools and approaches that help to reduce physical contact in medical training.

Training
tool or
technology

Approach Some investigations

Virtual Reality VR Based surgical training system Bartlett et al. (2020), Cecil et al. (2018), Lohre et al. (2020), Medellin-Castillo et al. (2020)
AR Based surgical training system Si et al. (2019)

Haptic Technology Single haptic simulators Tahmasebi et al. (2008), Wang et al. (2014), Spera et al. (2020)
Dual haptic with fixed authority Nudehi et al. (2005), Khademian and Hashtrudi-Zaad (2012), Shahbazi et al. (2014b), Motaharifar et al. (2016),

Motaharifar et al. (2019b)
Dual haptic with variable authority Shahbazi et al. (2014a), Motaharifar et al. (2019a), Motaharifar and Taghirad (2020), Liu et al. (2020)

Data Driven
Scoring

DDS using hand-engineered features Brown et al. (2016), Javaux et al. (2018), Hojati et al. (2019), Lefor et al. (2020)
DDS using automated feature
extraction

Wang and Fey (2018), Funke et al. (2019), Khan et al. (2020), Lavanchy et al. (2021)

Fusion techniques Naeini et al. (2014), Kazemian et al. (2010)
Machine Vision Single-Stage Detectors Redmon and Farhadi (2018), Liu et al. (2016), Lotfi et al. (2018), Lotfi et al. (2020)

Two-Stage Detectors Girshick (2015), Ren et al. (2015)
Classifiers Simonyan and Zisserman (2015), Szegedy et al. (2016)
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techniques, tools, and approaches deserve more attention,
recognition, investigation, and utilization. There needs to be a
global awareness among the medical universities that haptic
technology and virtual reality integrated with machine
learning and machine vision provides an excellent systematic
medical training apparatus that ensures the requirements of
health-care systems to enhance the safety, efficiency, and
robustness of medical training.
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