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Spatial odor discrimination in the hawkmoth, Manduca sexta (L.)
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ABSTRACT
Flying insects track turbulent odor plumes to find mates, food and egg-
laying sites. To maintain contact with the plume, insects are thought to
adapt their flight control according to the distribution of odor in the
plume using the timing of odor onsets and intervals between odor
encounters. Although timing cues are important, few studies have
addressed whether insects are capable of deriving spatial information
about odor distribution from bilateral comparisons between their
antennae in flight. The proboscis extension reflex (PER) associative
learning protocol, originally developed to study odor learning in
honeybees, was used as a tool to ask if hawkmoths, Manduca sexta,
can discriminate between odor stimuli arriving on either antenna. We
show moths discriminated the odor arrival side with an accuracy of
>70%. Information about spatial distribution of odor stimuli may be
available to moths searching for odor sources, opening the possibility
that they use both spatial and temporal odor information.

This article has an associated First Person interview with the first
author of the paper.
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INTRODUCTION
Animals with bilaterally symmetrical sensory structures (i.e. eyes,
ears, nostrils, antennae, etc.) assess information by either combining
and comparing bilateral inputs from sequential time points (temporal
sampling), or comparing bilateral inputs at the same time point (spatial
sampling) (Dusenbery, 1992; Fraenkel and Gunn, 1961; Schöne,
1984). Several studies have shown that a variety of animals use
bilaterally sampled inputs from their olfactory organs to orient towards
odor sources (Ando and Kanzaki, 2015; Borst and Heisenberg, 1982;
Catania, 2013; Duistermars et al., 2009; Gardiner and Atema, 2010;
Khan et al., 2012; Kraus-Epley and Moore, 2002; Louis et al., 2008;
Martin, 1965; Page et al., 2011; Parthasarathy and Bhalla, 2013; Porter
et al., 2007; Rajan et al., 2006; Takasaki et al., 2012; Vonbekesy,
1964; Wasserman et al., 2012; Weissburg and Dusenbery, 2002).
These studies employ a variety of techniques including genetic
manipulations in controlled laboratory environments (Gomez-Marin
et al., 2011; Louis et al., 2008), unilateral odor stimulation in tethered
walking and flying preparations (Borst and Heisenberg, 1982;
Duistermars et al., 2009; Takasaki et al., 2012), telemetric unilateral
stimulation of freely swimming sharks (Gardiner and Atema, 2010),

and experimentally manipulated individuals in naturalistic
environments (Catania, 2013; Gardiner and Atema, 2010; Khan
et al., 2012; Kraus-Epley and Moore, 2002; Parthasarathy and Bhalla,
2013; Rajan et al., 2006; Takasaki et al., 2012). Despite a separation
between sensory organs ranging from less than a millimeter (Louis
et al., 2008) to multiple centimeters (Gardiner and Atema, 2010),
asymmetric stimulation usually caused asymmetric steering or the
inability to maintain orientation to stimulus (Gardiner and Atema,
2010; Louis et al., 2008). Odor asymmetry was detected when
presented as a bilateral difference in odor concentration or onset timing
(Gardiner and Atema, 2010; Parthasarathy and Bhalla, 2013; Rajan
et al., 2006; Vonbekesy, 1964).

Previous studies assumed that bilaterally located sensors enhance
spatial sampling. However, studies on plume tracking during flight
typically assume that insects do not spatially sample odors, because
turbulent odor plumes may not provide predictable directional cues
leading to the source. Also, freely flying plume trackers may move
too fast for their nervous systems to process bilateral asymmetries and
maneuver accordingly. Directional cues are thought to be provided by
the wind or water flow detected visually (Emanuel and Dodson,
1979; Fry et al., 2009; Kennedy, 1940; Kennedy and Marsh, 1974),
or viamechanosensation (Baker andMontgomery, 1999; Kulpa et al.,
2015). Turning maneuvers underlying zigzagging trajectories are
thought to be pre-programmed in the central nervous system and
expressed in response to an attractive odor (Kennedy, 1983; Arbas
et al., 1993; Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994).
Bilateral sampling has been deemed unnecessary (Arbas et al., 1993).

Few studies have directly addressed if bilateral olfactory
comparisons contribute to plume tracking in moths (Ando and
Kanzaki, 2015; Takasaki et al., 2012; Vickers and Baker, 1991).
Experiments in which male Heliothis virescens (Fabricius) moths
tracked a pheromone plumewith one antenna removed showedminor
changes in their flight trajectories and interestingly, removal of an
antenna diminished successful plume tracking by roughly ∼50%
relative to the intact controls (Vickers and Baker, 1991). This result
was attributed to the overall loss of odor inputs and timing of odor
onset resulting from moths with asymmetric antennae encountering
the edges versus the centerline of a laboratory-generated odor plume.
The moth’s inability to make bilateral comparisons across two
antennae was discounted (Vickers and Baker, 1991). In contrast,
Takasaki et al. showed that walking silk moths, Bombyx mori (L.)
alter their steering in response to asymmetric odor stimulation (Ando
and Kanzaki, 2015; Takasaki et al., 2012). However, they cautioned
that walking and flying are very different modes of locomotion.
Because flying insects move much faster than walking insects, they
may use bilateral odor information differently (Takasaki et al., 2012).
Indeed, the use of spatial sampling during plume tracking in flight
remains an open question, even though odor plume tracking is a well-
studied topic in flying moths and flies tracking attractive odors (Willis
and Arbas, 1991; Cardé and Willis, 2008; Duistermars et al., 2009;
Saxena et al., 2018; van Breugel and Dickinson, 2014).

Before we try to understand the role of spatial sampling in plume
tracking during flight, we must first establish that moths are capable ofReceived 12 February 2021; Accepted 15 February 2021
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discriminating between olfactory stimuli detected at one antenna versus
the other. We studied this question in the hawkmoth M. sexta using an
associative learning paradigm based on the proboscis extension reflex
(PER) conditioning developed for honeybees (Kuwabara, 1957).
Building on previous studies that used PER to demonstrate associative
learning in hawkmoths (Daly and Smith, 2000; Daly et al., 2001, 2008),
we developed a behavior paradigm to probe the spatial odor
representation in moths. In our study, trained moths discriminated the
odor arrival sidewith an accuracy of >70%. Thus, moths can distinguish
the odor arrival side andmay be capable of extracting spatial information
about the odor distribution while tracking plumes in flight.
Studies on sensory control of behavior routinely deliver

experimentally controlled stimuli and measure the organism’s
response (i.e. cell, circuit, or behavior) relative to stimulus onset,
offset and/or duration. Most animals studied are bilaterally symmetric,
with paired symmetrical sensory structures, but the impact of their
asymmetrical activation is often ignored. In this study, we tested the
ability of M. sexta to sense odor-arrival direction by stimulating
asymmetrically. We show that moths can discriminate odor arrival on
one antenna relative to the other using an associative learning test.

RESULTS AND DISCUSSION
Using an associative learning protocol, we asked female M. sexta
moths if they could treat odor input to each antenna independently.
Their behavioral response showed that most individuals learned to
associate odorant-arrival side with sucrose reward. In our
experimental population, the number of moths that learned the
linalool and benzaldehyde arrival side with reward were 68% (19/28)
and 85% (17/20), respectively (Fig. 2A and D). We observed that
more experimental moths learned to associate benzaldehyde with a
sugar reward compared to the odorant linalool. Linalool is a common
plant odor that is known to induce oviposition behavior in mated
female moths and is also a component of floral scent (Bisch-Knaden
et al., 2018; Raguso, 2016; Reisenman et al., 2010; Saveer et al.,
2012). On the other hand, benzaldehyde could be categorized as a
floral scent, as it is emitted by many species of night blooming
flowers and is known to act as a pollinator attractant (Raguso et al.,
2003a,b). It may be thatM. sexta females are more likely to associate
the ecologically relevant conditioning stimulus of a sucrosemeal with
a known floral scent like benzaldehyde, than the known oviposition
stimulus linalool. Further studies are required to resolve that question.
When tested, moths activated their feeding response in >70% of

the trials (left: 74±5.6%; right: 78±9.65%) when linalool arrived on
the antenna associated with the reward. The same moths performed
poorly (left: 21±8%; right: 24±8.9%) when linalool was delivered to
the unassociated side (Fig. 2B; Left n=9; Fig. 2C; Right n=10).
Generalized linear mixed-effects model (GLMM) analysis (see

Materials and Methods) showed a strong effect of odor arrival side
on moth’s response, with negligible variability between individuals
(Table 1). The estimated electromyogram (EMG) response
probabilities were higher (0.75 and 0.74) when linalool was
presented on the same side as the associated side, and lower (0.27
and 0.28) when presented on the unassociated side (see Table S2).

We observed a similar pattern, when we tested moths that
associated benzaldehyde arrival on a specific antenna with reward.
When moths experienced benzaldehyde on the associated side, they
showed an EMG response for more than 70% of stimulus
presentations (left: 75±5.4%; right: 78±7.2%). While the same
odor was given to unassociated side, the moths responsewas poor as
they responded only to 16±6.6% of left and 15±6.8% right side
stimulus presentations (Fig. 2E, left n=8; Fig. 2F, Right n=9). Using
GLMM analysis, we again determined the effects of benzaldehyde
arrival side on moth’s response. The odorant arrival side strongly
contributed to moth’s response (Table 1) and the estimated
probabilities (see Table S3) were high (0.70 and 0.76) for
associated side and low for unassociated side (0.16 and 0.15).
GLMM showed that performance variability between individuals in
odor-arrival side discrimination task was negligible (Table 1).

Animals with only one of their normally bilaterally symmetric
odor sensors (i.e. antennae in insects and nostrils in mammals) have
been shown to take more time to locate an odor source and their
probability of locating the source is reduced (Vickers and Baker,
1991; Sanders and Lucuik, 1992; Lockey and Willis, 2015; Rajan
et al., 2006; Porter et al., 2007; Khan et al., 2012; Catania, 2013;
Kraus-Epley and Moore, 2002). The loss of one of the sensors may
not only reduce the received odor input it is also likely to remove the
spatial representation of odor information.

The ability to extract odor direction information during plume
tracking could prove to be useful especially when the cross-section
of the odor plume becomes narrow near the source. In addition,
moths typically slow down and transition to hovering flight as they
approach the odor source (Willis and Baker, 1994;Willis and Arbas,
1998). Near the source, even small lateral movements of the moths’
flight trajectory may introduce a bias in the amount of odor
experienced by each antenna. SinceM. sexta’s antennal tips are held
around 2 cm apart in flight, near the source one of the antennae is
likely to be either fully or partially outside the plume. This
asymmetrical odor experience would not only inform the moth
about loss of odor in one the antennae but also about its position
relative to the plume boundary. When foraging in a floral patch, the
moth’s choice of flower to feed frommay depend on the spatial odor
information i.e., right or left, along with visual cues. This directional
information could be extracted by comparing the odor inputs
received across the antennae.

Table 1. Summary of generalized linear mixed effect model for odor arrival side discrimination data set

Model: Response∼Linalool arrival side+(1|Individual)

Fixed effects Log-odds of response (95% CI) z value Random effects Variance±(s.d.)

Number of individuals=9
Number of trials=301

Associated side (Left) 1.026 (0.655 to 1.396) 5.426*** Individual 0
Unassociated side (Right) −1.969 (−2.477 to −1.460) −7.589***

Number of individuals=10
Number of trials=369

Associated side (Right) 1.119 (0.796 to 1.441) 6.799*** Individual 0
Unassociated side (Left) −2.111 (−2.578 to −1.643) −8.849***

Model: Response∼Benzaldehyde arrival side+(1|Individual)
Number of individuals=8

Number of trials=185
Associated side (Left) 1.099 (0.626 to 1.570) 4.563*** Individual 1.775e-16 (1.332e-08)
Unassociated side (Right) −2.747 (−3.474 to −2.021) −7.410***

Number of individuals=9
Number of trials=236

Associated side (Right) 1.176 (0.759 to 1.592) 5.536*** Individual 0
Unassociated side (Left) −2.907 (−3.569 to −2.244) −8.597***

***P<0.0001.
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Such a bilateral comparison would require the laterality of the odor
information to be preserved until it reaches higher brain regionswhere
bilateral information is processed. Neural recordings from the lateral
accessary lobe (LAL) region of the hawkmoth brain showed neurons
responding to ipsilateral odor stimulation, suggesting that laterality of
the odor information is maintained in higher brain regions (Kanzaki
et al., 1991). Additionally, both left and right LALs are connected via
a commissure of lateral accessory lobe and bilateral odor information
is thought to be integrated in the LALs (Homberg et al., 1988;
Kanzaki et al., 1991).
Taken together, these findings suggest thatM. sexta moths likely

increase their use of bilaterally sampled odor distribution in the
near-source plume to locate the odor source. We demonstrate here
that M. sexta can discriminate between asymmetric odorant onsets
between its antennae, thereby opening several questions about odor
modulation of plume tracking that may have previously escaped our
notice.

MATERIALS AND METHODS
Animals
We used 4-day-old virgin female M. sexta (L.) moths reared in our
laboratory and maintained on a 14:10 light:dark cycle. Experiments were
conducted during the dark phase of the L:D cycle when plume tracking

typically occurs in nature (Sasaki and Riddiford, 1984). Moths had access to
sucrose solution only during the experiments.

Experimental setup
Odor delivery system
Each antenna (left or right) received odor from a custom-built odor delivery
system consisting of blank, empty glass vials and a glass vial containing a
Whatman number 1 filter paper strip (0.5×10 mm) soaked with neat odorant.
The stimulus was produced by allowing clean air (1.5 L/min) to flow
through the glass vial containing saturated odor vapor, and odorized air was
injected into the tube delivering odor to an antenna (Fig. 1A). Air was
filtered using a charcoal filter and bubbled through water to humidify it
before reaching the odor vials. Odor vials were changed every day and fresh
odor loaded into the vial before every training session. During inter-trial
intervals, air flowed through the blank vial to ensure constant flow of air
onto the moth. Each antenna was inserted into separate independent odor
delivery tube (1.6 mm id, 3.2 mm od; ThermoFisher Scientific, USA) to
eliminate cross-contamination between antennae (Fig. 1A). An exhaust fan
placed directly above the preparation, removed stimuli away from the room.
Airflow in the olfactometer was gated by solenoid valves (Clippard
Instrument Laboratory, Fairfield, OH, USA; ET-2M-12H) interfaced with a
computer using a two-channel relay controller (National Control Devices,
Osceola, MI, USA; R210RS), driven by a customMATLAB code. During a
trial, odorized air was delivered to one antenna while the other received
flow-speed-matched clean air from an empty blank vial.

Fig. 1. Behavioral setup and training protocol. (A) Schematic diagram of behavioral setup showing a restrained moth with its straightened proboscis
and odor delivery onto its antennae. Reward delivery port was placed at the distal tip of the proboscis. The feeding response was monitored using EMG
activity of the suction pump muscles in the head. (B) Schematic diagram shows events during training and test protocols. Odor was presented for 5 s and 3 s
after odor onset the reward valve was activated for 0.1 s. Moths were not rewarded during test session.
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We used the odorants linalool and benzaldehyde (purity ≥99%, Sigma-
Aldrich, USA) to serve as conditioned stimuli. Based on available literature
on odor coding in antennal lobes, these two chemicals activate different
elements of odor detection and processing circuitry (Bisch-Knaden et al.,
2018; Martin et al., 2011; Saveer et al., 2012). We assumed that any
observed associations would be general responses. These two compounds
have been identified in scents released by night-blooming flowers on which
M. sexta feed (Raguso et al., 2003a,b). They also attract and stimulate
feeding in M. sexta (Reisenman et al., 2010; Riffell et al., 2009).

Training protocol
An intact moth was held immobile in a 6.4 cm long piece of 10 cm diameter
copper tubing, with the head attached to the tube surface using soft dental
wax (Fig. 1A). Reward (10% sucrose in water) was delivered to the tip of the
moths’ experimentally extended 7.5 cm long proboscis (i.e. proboscis was
threaded through a 4 cm long, 0.4 cm diameter plastic tube). The tube was
cut lengthwise to allow rapid placement of the proboscis. The distal tip of the
proboscis was free to coil around the reward delivery tube. A pinch valve

(161P010;West Caldwell, NJ, USA) was used to control the reward delivery
duration. We monitored feeding attempts by recording electromyograms
(EMGs) through a pair of Teflon-coated silver wires (bare diameter
0.127 mm; A-M systems, Sequim, WA, USA) (Daly and Smith, 2000)
implanted in the cibarial pump muscle, which when activated draws nectar
along the proboscis. Use of cibarial muscle EMGs to study associations in
this preparation was developed previously (Daly and Smith, 2000) because
tetheredM. sextamoths do not extend their proboscis like honeybees. EMG
signal was filtered 0.1 Hz to 1 KHz and amplified 100 times using a
differential amplifier (Warner Instruments, Hamden, CT, USA). We scored
each trial using amplified EMG signal played through a loud speaker. Pilot
data suggested that our moths required roughly ten trials to associate odor
arrival side with a sucrose reward. Initially, moths were given ten to twelve
trials of conditioning stimuli i.e., odor was presented for 5 s to one of the
antennae, and 3 s after odor stimulus onset, they were rewarded with 3 µl of
10% sucrose solution. After training, moths were tested with trials in which
odor arrived either on the associated or the unassociated side according to a
pseudo-random list. Moths were expected to generate feeding muscle EMGs

Fig. 2. Odor-arrival side discrimination response. Pie charts show the number of moths that learned the odor- arrival side task for both linalool (A) and
benzaldehyde (D). Bar graphs showing EMG % response for both left (blue bar) and right (red bar) side odor delivery. Panels B and E show the moths’
response when their left antenna was conditioned, and panels C and F when their right antenna was conditioned. (B,C) Moths discriminated linalool arrival
side. Response to the associated side was higher, >70% compared to the unassociated side, <30%. (C) Moths discriminated benzaldehyde arrival side.
Response to the associated side was higher, >70% compared to the unassociated side, <25%. (B,C,E and F) Error bars indicate standard error of mean.
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when odor was presented to the antenna on the associated side, and no
muscle activity during odor presentation to the opposite antenna (Fig. 1B).
Each trial was followed by an inter-trial interval ranging 30–60 s randomly
decided by the control software. In order to increase the number of test trials
performed by moths a few ‘associated side’ trials were randomly rewarded
with varying probability (0.18–0.40). Test trials were continued until the
moths stopped responding to the stimuli. This was variable, ranging from 23
to 60 trials. Trial details of each individual moth are provided in the
supplementary document (Table S1).

Data analysis
Response quantification
Response of the moth was scored based on presence (attempted feeding) or
absence (no response) of EMG activity. We sorted the test trials based on
odor arrival side and for each odor arrival side, we computed the moth’s
performance using the following formula:

Percentage of performance ¼ Number of trials with response

Total number of test trials
� 100

GLMM
We analyzed the effect of odor arrival side on the observed behavioral
response, i.e., the presence or absence of EMG response by individual moths
during the trials and estimated the response variability across individuals
using GLMM with binomial distribution. We used lme4 package in the
statistical software R to analyze the data (Bates et al., 2015; R Core Team,
2019). The GLMM used is as follows:

Response � Odorarrivalsideþ ð1jIndividualÞ
In the model, odor arrival side specified the fixed effect and random effects
was specified by (1|Individual).
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