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SUMMARY

Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental 

risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal 
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exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse 

placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish 

placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In 

both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to 

neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The 

placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched 

for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. 

The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and 

placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that 

overlap fetal brain DMRs relevant to an NDD.

In brief

Exposure to polychlorinated biphenyls is a risk factor for a neurodevelopmental disorder. In a 

mouse model of exposure to a human-relevant mixture, Laufer et al. utilize WGBS to profile 

DNA methylation within placenta and fetal brain. Both tissues display shared alterations at regions 

related to neurodevelopment and autism spectrum disorders.

Graphical Abstract
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INTRODUCTION

Polychlorinated biphenyls (PCBs) are a class of 209 structurally related congeners that 

were manufactured in the United States beginning in 1929 (Grimm et al., 2015). PCBs 

were manufactured as a mixture of congeners (e.g., Aroclor) and widely used in electrical 

equipment, primarily as coolants and insulating fluids for transformers and capacitators 

and as stabilizers in a number of commercial products, including paints and caulking. 

PCB production was banned in 1979 due to concerns about their environmental persistence 

and human cancer risk (Grimm et al., 2015). Despite the ban, legacy PCBs persist in the 

environment, and contemporary PCBs not present in the Aroclor mixtures are produced as 

a byproduct of current pigment and dye production used in paints and plastics (Grossman, 

2013; Hu and Hornbuckle, 2010; Kostyniak et al., 2005; Martinez et al., 2012; Sjödin et al., 

2014). Contemporary PCBs are detected in both indoor and outdoor air and in human food 

products (Chen et al., 2017; Hu et al., 2008; Thomas et al., 2012). Due to their persistent 

and lipophilic nature, legacy PCBs have accumulated in the marine food chains of the Great 

Lakes and the Artic, where they place the Indigenous Peoples at elevated risk for exposure 

(Brown et al., 2018; Hoover et al., 2012; Rawn et al., 2017). Finally, there is documented 

widespread exposure of humans to PCBs in a number of cities (Hens and Hens, 2017).

Prenatal exposure to PCBs can cause developmental neurotoxicity and is considered an 

environmental risk factor for various neurodevelopmental disorders (NDDs), including 

autism spectrum disorders (ASDs) (Klocke and Lein, 2020; Klocke et al., 2020; Panesar 

et al., 2020). Epigenetic mechanisms are involved in NDDs and have been associated with 

prenatal PCB exposure (Keil and Lein, 2016). Epigenetics refers to molecular mechanisms 

that regulate gene expression profiles related to development and tissue specificity. They 

do not require an alteration to DNA sequence, although they are heritable in dividing 

cells and have specialized regulatory roles in post-mitotic neurons. Examples of epigenetic 

mechanisms include DNA methylation, histone post-translational modifications, and non-

coding RNA species. Specifically, altered DNA CpG methylation has been associated 

with PCB exposure and NDDs (Keil and Lein, 2016). Furthermore, PCB 95 levels are 

associated with a gene by environment interaction in a syndromic form of ASD caused by 

a chromosomal duplication (Dup15q), which is characterized by a global reduction in DNA 

methylation levels and enrichment for differential methylation at neurodevelopmental genes 

(Dunaway et al., 2016; Mitchell et al., 2012).

Differential placental DNA methylation has been separately associated with both PCB 

exposure and NDDs. As the maternal-fetal interface, the placenta is the organ responsible 

for removing toxicants; however, PCBs are capable of crossing the placental barrier and can 

also directly impact the placenta (Correia Carreira et al., 2011; Gingrich et al., 2020). In 

humans, term placenta is accessible at birth and characterized by a distinct DNA methylome 

with global hypomethylation and large partially methylated domains (PMDs), similar to 

the cancer methylome (Schroeder et al., 2011, 2013). Human term placenta is therefore 

a potentially rich source of epigenetic biomarkers for prenatal exposures, such as PCBs. 

PCB exposure was previously shown to be associated with differential methylation at select 

CpG sites in human placenta in an array-based approach (Ouidir et al., 2020). A low-pass, 

whole-genome bisulfite sequencing (WGBS) approach analyzing human placenta samples 
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from the prospective high-risk MARBLES ASD cohort demonstrated that DNA methylation 

profiles distinguished ASD from control placenta and the top differentially methylated 

region (DMR) mapped to CYP2E1 (Zhu et al., 2019). Notably, CYP2E1 plays a key role in 

the metabolism of PCBs (Chen et al., 2018; Hu et al., 2020; Liu et al., 2017; Uwimana et 

al., 2019). Furthermore, in the MARBLES cohort, PCBs were detected in the serum of the 

pregnant mothers at levels that were experimentally shown to impact neurodevelopmental 

processes in model systems (Sethi et al., 2017a, 2019). When C57BL/6J mice were 

prenatally exposed to the MARBLES PCB mixture at 0.1 or 1.0 mg/kg/day through maternal 

diet, postnatal brain (~1 month old) showed PCB levels comparable to those reported in 

human samples (Lanting et al., 1998; Mitchell et al., 2012), coincident with changes in 

the dendritic morphology of hippocampal and cortical pyramidal neurons and changes in 

ASD-relevant behaviors (Keil Stietz et al., 2021; Sethi et al., 2021).

The objective of the research presented in this manuscript was to examine the effect of 

prenatal PCB exposure on placental and fetal brain DNA methylation profiles from the same 

mice in a human-relevant exposure model and to determine whether any regions in the 

placental methylome can serve as predictors of brain DNA methylation.

RESULTS

Global CpG methylation profiles are consistent with DMR profiles of PCB exposure

To test the hypothesis that prenatal PCB exposure alters DNA methylation profiles in 

matched placenta and fetal brain, we generated a total of 44 placenta and 44 fetal brain 

methylomes (Data S1) from PCB-exposed (1.0 mg/kg/day) GD18 males (n = 11) and 

females (n = 12) and matched vehicle control males (n = 10) and females (n = 11). The 

methylomes were profiled by a low-pass WGBS approach that assayed ~20 million CpGs, 

which is ~90% of all CpG sites in the mouse genome. The global methylomes recapitulated 

known tissue-specific profiles (Schroeder et al., 2015). Specifically, both the female and 

male placental methylomes (Figures 1A and 1B) were hypomethylated when compared with 

their respective brain methylomes (Figures 1C and 1D). In placenta, there was significant 

global CpG hypomethylation (−1%; p ≤ 0.01) in both PCB-exposed females and males 

when compared with sex-matched controls. Placentas from PCB-exposed females had a 

global CpG methylation level of 51.9% and control females had a level of 52.8%, while 

PCB-exposed males had a level of 50.5% and control males had a level of 51.5%. In brain, 

the effects on global methylation were sex specific, as PCB-exposed males uniquely showed 

significant global hypermethylation when compared with vehicle male controls (0.1%; p = 

0.006). Brains from PCB-exposed and control females both had a global CpG methylation 

level of 76.0%, while brains from PCB-exposed males had a level of 76.2% and control 

males had a level of 76.1%. In summary, placenta displayed PCB-associated global CpG 

hypomethylation in both sexes, while only males displayed global CpG hypermethylation in 

the brain, which had an effect size that was one order of magnitude less than the placental 

differences (Figure S1).

These differences in global CpG methylation levels were also consistent with finer 

resolution DMR analyses, which detected significant (empirical p < 0.05) locus-specific 

differences in DNA methylation that distinguished PCB-exposed from matched control 
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(Table 1; Data S2). In addition, each pairwise DMR comparison provided background 

regions with a similar genomic context to the DMRs (gene length and CpG content) that 

were utilized in most of the downstream enrichment testing to control for genomic context. 

In placenta, PCB-exposed females displayed a profile of 11,616 DMRs (Figure 1E), which 

were identified from 210,247 background regions, and on average, the DMRs were 1,048 

bp long and contained 12 CpGs. The placenta of PCB-exposed males displayed a profile 

of 13,641 DMRs (Figure 1F), which were identified from 243,350 background regions, and 

on average, the DMRs were 1,139 bp long and contained 12 CpGs. In brain, PCB-exposed 

females displayed a profile of 1,503 PCB DMRs (Figure 1G), which were identified from 

28,562 background regions, and on average, the DMRs were 568 bp long and contained 

11 CpGs. Brain from PCB-exposed males displayed a profile of 1,868 DMRs (Figure 1H), 

which were identified from 37,417 background regions, and on average, the DMRs were 

608 bp long and contained 10 CpGs. In addition to placenta containing approximately an 

order of magnitude more PCB DMRs than brain, there was a hypomethylation skew in 

the placental DMRs from both sexes, where 81% of female and 85% of male placental 

DMRs were hypomethylated. There was a skew toward hypermethylation in only the male 

brain, where 43% of female and 61% of male brain DMRs were hypermethylated. The 

brain DMRs were approximately half the length of the placenta DMRs, on average, despite 

containing almost the same number of CpGs. In contrast to treatment group, litter did 

not overinfluence hierarchical clustering of individual methylation levels within the DMRs, 

while tissue and sex had a stronger effect on the global methylome than either litter or PCB 

exposure (Figure S2).

Next, to investigate the impact of prenatal PCB exposure on gene expression, we also 

generated matched RNA sequencing (RNA-seq) data for all samples. Similar to the 

methylomes, the placental transcriptomes displayed a larger PCB effect than the brain 

transcriptomes (Figures S3A–S3D). The nominally significant (p < 0.05) sex-stratified 

differentially expressed genes (DEGs) distinguished PCB-exposed placenta and brain 

(Figures S3E–S3H). However, the DEG profile was not as robust as the DMR profile (Data 

S3).

Prenatal PCB exposure DMRs are functionally enriched for cell signaling and 
neurodevelopmental processes

To test the hypothesis that the prenatal PCB exposure DMRs occur in functional regions 

of developmentally relevant genes, we performed a series of enrichment testing analyses. 

We examined the biological relevance of the genes mapping to DMRs, relative to genes 

mapping to their background regions, through gene ontology (GO) analyses. The top 

significant (p < 0.05) slimmed GO enrichments were biological process terms related 

to neurodevelopment and development, cellular component terms related to the synapse 

and cell membrane, and molecular function terms related to ion and protein binding as 

well as cellular signaling (Figures 2A–2D; Data S2). Furthermore, a number of terms 

passed a more stringent significance (family-wise error rate [FWER] < 0.05) threshold, 

which was based on 1,000 random sets from samplings of the background regions, and 

the placenta showed a stronger enrichment. In female placenta, these terms were protein 

binding, anatomical structure morphogenesis, nervous system development, binding, cell 
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development, ion binding, synapse, cell projection organization, and cell projection. In 

male placenta, the terms were protein binding, nervous system development, system 

development, cell adhesion, cell periphery, cell morphogenesis, cell projection organization, 

localization, and ion binding. In female brain, the only term was postsynapse, and there 

were none that passed this stringency threshold in male brain. The GO terms shared 

between sexes and tissues were consistent with the top significant (q < 0.1) protein 

analysis through evolutionary relationships (PANTHER) pathway enrichments, which were 

related to glutamate signaling, axon guidance mediated by Slit/Robo, integrin signaling, and 

endothelin signaling (Figures S4A–S4D; Data S2). Finally, the significant (p < 0.05) GO 

terms for the DEGs were enriched for ubiquitination and the proteasome, developmental 

signaling pathways, epigenetic mechanisms and gene regulation, apoptosis and cellular 

stress, the cytoskeleton and cell adhesion, and immunity (Figures S3I–S3L; Data S3).

Prenatal PCB exposure DMRs are enriched for the motifs of developmental transcription 
factors

To examine the functional gene regulatory relevance of the PCB DMRs relative to 

their background regions, they were tested for known transcription factor binding motif 

enrichments using two different approaches. Notably, the GO term enrichments for 

developmental functions were consistent with the top significant transcription factor motifs 

(Data S2). The most significantly (q < 0.01) enriched HOMER motifs were HEB (TCF12) 

for female placenta (Figure 2E), SMAD4 for male placenta (Figure 2F), SCL (TAL1) for 

female brain (Figure 2G), and PTF1A for male brain (Figure 2H). Among the top 10 motifs 

for the different pairwise comparisons, HIF1B (ARNT) and PTF1A were present in three, 

while AMYB, HEB (TCF12), HIC1, MYB, NANOG, SCL (TAL1), TBX5, and THRB 

were present in two comparisons. In a separate analysis of human-methylation-sensitive 

transcription factor motif enrichments within the PCB DMRs (Yin et al., 2017), the top 

motifs were related to transcription factors involved in early development, and members 

of the hairy and enhancer of split (HES), HES-related with YRPW motif (HEY), and 

achaete-scute complex-like (ASCL) transcription factors families were shared between sexes 

and tissues (Figures S4E–S4H; Data S2). PCB DMRs from the placenta of both sexes 

and female brain were also enriched for multiple motifs from the cyclic AMP (cAMP) 

responsive element binding protein (CREB) family. Finally, PCB DMRs from the placenta 

of both sexes were also enriched for motifs involved in circadian rhythm (ARNTL and 

CLOCK).

Prenatal PCB exposure DMRs are enriched for within CpG islands and bivalent chromatin

To further test the hypothesis that PCB exposure resulted in methylation differences relevant 

to gene regulation, the PCB DMRs were tested for enrichment within annotated regions 

of the genome relative to their background regions. The first set of annotation enrichment 

testing was a tissue agnostic approach to examine CpG and gene region annotations (Data 

S2). Although only 1% (288 out of 28,628) of all PCB DMRs overlapped CpG islands 

(Data S2), PCB DMRs were significantly (q < 0.05) enriched within CpG islands for 

both sexes and both tissue sources (Figure 3A). However, only the placental PCB DMRs 

were significantly (q < 0.05) enriched within CpG shores but depleted within the open 

sea (Figure 3A). PCB DMRs were significantly (q < 0.05) enriched within gene bodies 
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but depleted within intergenic regions (Figure 3B). Placental PCB DMRs differed from 

those in brain in that they were also enriched within promoters. Finally, PCB DMRs were 

tested for enrichment within an 18-chromatin-state model of mouse embryonic development, 

specifically forebrain tissue (Data S2; van der Velde et al., 2021). PCB DMRs from all 

pairwise comparisons were significantly (q < 0.05) enriched within transcription start site 

(TSS) regions marked by active and bivalent chromatin during at least one developmental 

time point, and bivalent TSS was the top enrichment (odds ratio >2.4; q < 0.003) overall 

(Figure 3C).

The placenta and brain PCB exposure DMRs intersect at NDD genes and loci

In order to directly test the significance of overlap between placenta and fetal brain DMRs 

resulting from prenatal PCB exposure, the placenta and brain PCB DMRs were examined 

from both the genomic coordinate and gene-mapping perspectives. When overlapped by 

genomic coordinate, the placenta-brain overlapping PCB DMRs mapped to 20 genes in 

females and 23 in males (Table 2). Since a number of the placenta-brain DMRs correlated 

with each other, the overall correspondence between the placenta-brain PCB DMRs was 

summarized at the individual level by examining the correlation of their eigengenes (Figure 

S5). There was a trend for a positive correlation in females (R = 0.32; p = 0.14) and a 

significant correlation in males (R = 0.69; p = 0.0006), where this effect appeared to be 

primarily from the PCB-exposed mice from both sexes.

The impact of the placenta-brain overlapping PCB DMRs on gene expression differed 

by sex and tissue, and the gene regulatory profile was complex: some DMRs correlated 

with the expression of their gene mapping, many did not, and some correlated with the 

expression of many genes (Figure S6). To test for statistical significance of the overlaps, 

a permutation (n = 10,000) analysis of the genomic coordinate overlap based on region 

overlap, which randomly placed the DMRs across the entire genome while maintaining their 

size, uncovered a significant enrichment for the brain DMRs within the placenta DMRs for 

females (Z score = 2.9; empirical p = 0.006), males (Z score = 1.8; empirical p = 0.05), 

and the merging of regions by tissue to produce consensus DMRs (Z score = 4.5; empirical 

p = 0.0001; Figure 4A). A similar result (1.4-fold enrichment; empirical p = 0.0001) 

was observed in an independent approach that analyzed the nucleotide overlap of the 

consensus DMRs through random sampling (n = 10,000) of background regions, which had 

similar genomic context (CpG content and length), and this placenta-brain enrichment was 

also significant when the DMRs were stratified by hypermethylation (2.4-fold enrichment; 

empirical p = 0.004) and hypomethylation (1.5-fold enrichment; empirical p = 0.03). When 

the DMRs from all pairwise comparisons were mapped to their nearest gene, 210 overlapped 

by gene symbol (Figure 4B; Data S4). In contrast, this level of overlap was not observed for 

the DEGs (Figure S7A), but the overlap between DMRs and DEGs was more pronounced in 

the placenta (Figure S7B; Data S4).

In order to leverage the statistical power of the sex-stratified analyses, a meta p value 

analysis was performed on the sex-stratified functional enrichment testing results of the 

DMR gene symbol overlaps between placenta and brain (Data S4). The top significant (q < 

0.05) slimmed GO enrichments were primarily related to cell adhesion, neurodevelopment, 
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metabolism, and cellular signaling (Figure 4C). Among the top significant (q < 0.05) 

PANTHER pathways were axon guidance mediated by Slit/Robo, Wnt signaling, and the 

ionotropic glutamate receptor pathway. In addition to gene functions, this meta-analysis 

tested the DMR gene symbol overlaps for enrichments with 651 RNA-seq disease and drug 

signature datasets deposited in GEO, which were stratified by direction. The top significant 

(q < 0.05) enrichments were from studies of brain or neuronal responses to stimuli and 

primarily related to genes repressed by MeCP2 in mouse models of Rett syndrome. There 

were 86 unique genes shared between both the male and female placenta-brain overlaps and 

the top GEO datasets (Figure S8), and 46 of these are from a study of two mouse models of 

Rett syndrome, specifically the genes repressed by MeCP2 in the hypothalamus (Figure 4D).

Next, we examined the relevance of the findings to humans by testing the PCB DMRs 

for enrichment within regions identified by human epigenome-wide association studies 

(EWAS). First, we tested the hypothesis that PCB exposure DMRs are enriched within 

differentially methylated CpG sites identified by the Infinium Methylation EPIC BeadChip 

in humans with PCB exposure (Curtis et al., 2020; Pittman et al., 2020). Since the human 

studies analyzed both sexes together, the sex-combined tissue-specific consensus DMRs 

were tested after being lifted over to the human genome. Only the consensus brain DMRs 

were significantly (Z score = 6.7; q = 0.001) enriched within sites associated with PCB 

levels in human peripheral blood samples (Curtis et al., 2020). Second, we tested the 

hypothesis that the PCB exposure DMRs were enriched within DMRs associated with NDDs 

identified from brain. We utilized three of our previously published NDD DMR datasets 

after updating them to be processed similarly, including placenta from male patients with 

idiopathic ASD in the MARBLES cohort, brain from male patients with chromosome 

15q11.2–13.3 duplication syndrome (Dup15q syndrome) and high PCB levels, and brain 

from female patients with Rett syndrome (Dunaway et al., 2016; Vogel Ciernia et al., 2020; 

Zhu et al., 2019). The consensus brain PCB-associated DMRs were significantly enriched 

within idiopathic ASD placenta (Z score = 2.1; q = 0.04), Dup15q syndrome brain (Z score 

= 5.2; q = 0.0006), and Rett syndrome brain DMRs (Z score = 2.4; q = 0.03). The consensus 

placenta PCB-associated DMRs were also significantly enriched within the idiopathic ASD 

placenta (Z score = 2.6; q = 0.02), Dup15q syndrome brain (Z score = 5.8; q = 0.0006), and 

Rett syndrome brain (Z score = 4.7; q = 0.0008) DMRs.

DISCUSSION

This epigenomic study builds on previous foundational studies by providing novel insight 

into the role of DNA methylation in PCB-associated developmental neurotoxicity and 

NDDs. First, by characterizing the overlapping DNA methylation profiles in fetal brain 

and placenta from the same mice, we have uncovered shared DMRs in both tissues that 

are associated with a cellular signaling pathway that we have previously shown to result 

in developmental neurotoxicity from PCB exposure (Wayman et al., 2012a). Second, we 

also demonstrated that the PCB DMRs are associated with a genome-wide profile related 

to the NDD/ASD Rett syndrome, which is caused by mutations in the gene encoding 

DNA methylation binding protein 2 (MECP2). Notably, altered methylation of MECP2 in 

the cord blood of human infants has been correlated with prenatal PCB exposure (Eguchi 

et al., 2019). We observed a significant overlap between the mouse placenta and brain 
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consensus PCB DMRs with DMRs identified in human Rett syndrome brain. Furthermore, 

genes repressed by MeCP2 in mouse models were the top enrichments for the gene 

overlaps between placenta and brain (Chen et al., 2015). Together, these results demonstrate 

that placenta contains a subset of DMRs that overlap fetal brain DMRs associated with 

developmental neurotoxicity and NDDs.

To expand on the above summary, PCBs can be divided into two categories based on their 

mechanisms of toxicity: non-dioxin-like (NDL), which were represented by 11 of the 12 

congeners in the MARBLES mixture, and dioxin like (DL), which were represented by 

the third most abundant congener in the mixture: PCB-118. While NDL and DL PCBs act 

through distinct mechanisms, there are similarities in that developmental exposure to NDL 

and DL PCBs has been shown to decrease levels of thyroid hormone in maternal serum 

(Bansal et al., 2005; Gauger et al., 2004; Giera et al., 2011; Zoeller, 2007). Thyroid hormone 

receptor beta (THRB) was among the top 10 transcription factor motifs enriched within 

placenta and brain PCB DMRs in females, with lower ranked enrichments in males. DL 

PCBs differ from NDL PCBs in that their primary mechanism involves binding to the aryl 

hydrocarbon receptor (AHR), which is then bound by the aryl hydrocarbon receptor nuclear 

translocator (ARNT), also known as hypoxia-inducible factor 1β (HIF1B), and translocated 

to the nucleus to activate genes involved in xenobiotic metabolism, such as cytochrome 

P450s (Calò et al., 2014; Kim et al., 2015; Klinefelter et al., 2018; Matsushita et al., 1993; 

Seok et al., 2017). HIF1B was one of the top 10 transcription factor motifs enriched in 

PCB DMRs from female placenta, male placenta, and female brain and had a lower ranked 

enrichment in male brain. Furthermore, a cytochrome P450 (CYP2E1) was one of the top 

ASD-associated DMRs in placental samples from the MARBLES study (Zhu et al., 2019), 

which was the reference for the PCB congener mixture used in this study (Sethi et al., 2019). 

Genes encoding multiple additional members of the cytochrome P450 family were also 

present in the placental PCB DMRs from our current study. Together, these results implicate 

known targets of DL PCBs and those shared with NDL PCBs; however, most of the DNA 

methylation differences observed with PCB exposure were related to the known mechanisms 

of the NDL PCBs.

Legacy and contemporary NDL PCBs predominately act through calcium-dependent 

mechanisms to alter synaptic connectivity (Klocke and Lein, 2020; Klocke et al., 2020). 

Neurodevelopmental terms related to synaptic connectivity and terms related to calcium ion 

binding were present in the top terms for the pairwise GO analyses as well as the GO 

terms for the gene overlaps between placenta and brain. The effects on calcium signaling 

are driven by legacy NDL PCBs activating signaling proteins on the cell membrane and 

endoplasmic reticulum, which were also enriched within both the pairwise and placenta-

brain gene overlap GO analyses. At the cell membrane, PCBs activate NMDA receptors, a 

type of ionotropic glutamate receptor, and L-type voltage-gated calcium channels (Inglefield 

and Shafer, 2000; Llansola et al., 2009, 2010). Glutamate receptor functions were enriched 

within both GO molecular function and PANTHER pathway terms for the placenta-brain 

gene overlaps. PCBs also act on ryanodine and inositol 1,4,5-tris-phosphate receptors within 

the endoplasmic reticulum membrane (Inglefield et al., 2001; Pessah et al., 2010). Among 

all the membrane proteins targeted by legacy NDL PCBs, the most responsive are ryanodine 

receptors, which become sensitized (Klocke and Lein, 2020; Klocke et al., 2020; Panesar 
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et al., 2020; Pessah et al., 2010). PCB 136 has been shown to sensitize ryanodine receptors 

and increase the frequency of spontaneous calcium oscillations in primary cultures of rat 

hippocampal neurons (Yang et al., 2014a). In our study, ryanodine receptor 1 (Ryr1) was 

the fifth-highest-ranked PCB DMR in female placenta and each pairwise PCB comparison 

contained more than one DMR mapping to a ryanodine receptor gene. The endoplasmic 

reticulum was also one of the top cellular component GO terms in male brain and was also 

consistent with the placenta-brain gene overlap cellular component GO terms.

The disruption to calcium signaling via the ryanodine receptor results in the deregulation 

of downstream developmental pathways. In primary rat hippocampal cultures, PCB 95 

exposure has been shown to sensitize ryanodine receptor calcium channels, leading to 

increased calcium oscillations that activate the calcium/calmodulin-dependent protein kinase 

type 1 (CaMKI) and result in the CREB promoting transcription of Wnt2 to ultimately 

stimulate dendritic growth and synaptogenesis (Lesiak et al., 2014; Wayman et al., 2012a, 

2012b). The effects of the CaMKI signaling cascade on Wnt signaling appear to be the 

primary pathway for the genes that overlap between placenta and brain. The GO terms and 

pathways for the genes shared between placenta and brain primarily represent a cascade 

related to the cadherin pathway, which mediates calcium-ion-dependent cell adhesion. 

b-catenin is a subunit of the cadherin complex that functions as an intracellular signal 

transducer for the Wnt signaling pathway (Steinhart and Angers, 2018). The enrichment 

of the Wnt pathway is consistent with the placenta-brain genomic coordinate overlapped 

DMRs, specifically through Daam2 in females, and through Wnk2 in the top male brain 

DMRs (Lee and Deneen, 2012; Serysheva et al., 2013). Although some contemporary 

NDL PCBs are not as well studied, given their recent emergence, PCB 11 has been 

shown to effect dendritic arborization through a CREB-dependent mechanism in primary 

rat cortical neuron-glia co-cultures (Sethi et al., 2018). Therefore, while there are differences 

in the mechanisms of some legacy and contemporary NDL PCBs, they converge at CREB 

signaling. In our study, disruptions to CREB signaling are consistent with the mappings to 

adenylate cyclase 1 (Adcy1) in the female placenta-brain genomic coordinate overlapped 

DMRs and calcium/calmodulin-dependent protein kinase II, beta (Camk2b) in the top 

male brain DMRs and the enrichment of CREB motifs within DMRs from female brain 

and placenta from both sexes. Overall, the results demonstrate that disruptions to known 

PCB-mediated signaling cascades are associated with differences in the brain and placental 

methylome.

The DNA methylation profile of prenatal PCB exposure also refines the effects on neurite 

outgrowth to the Slit/Robo signaling pathway. This pathway consists of the secreted 

Slit proteins and their receptors, the Roundabout (Robo) proteins. Although initially 

characterized for their role in axon guidance, members of Slit/Robo signaling are involved 

in dendritic growth and branching (Whitford et al., 2002). Slit/Robo signaling was the top 

ranked PANTHER pathway in the analysis of placenta and brain overlaps and among the 

top PANTHER pathways for all pairwise DMR comparisons, and roundabout binding was 

one of the top GO terms for female brain. Alterations to this signaling pathway are also 

consistent with the genomic coordinate overlaps between placenta and brain, specifically 

through Slit1 in females and Mid1 (Midline 1) in males (Liu et al., 2009; Whitford et al., 

2002). Interestingly, many of the pathways that are downstream or cross-talk with Slit/Robo 
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signaling in diverse cell types are associated with the prenatal PCB exposure DMRs, which 

include Wnt, phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR, and transforming growth 

factor β (TGF-β) signaling (Blockus and Cheédotal, 2016). PCB 95 promotion of dendritic 

growth involves mTOR signaling in primary rat hippocampal neuron-glia co-cultures (Keil 

et al., 2018). The PI3K/AKT/mTOR pathway was associated with the female brain DMRs 

through the 1-phosphatidylinositol-3-kinase activity molecular function GO term and in 

male brain through the top DMR, which mapped to cytosolic arginine sensor for mTORC1 
subunit 2 (Castor2). Disruptions to TGF-β signaling are consistent with the results through 

its signal transducers: the Smad proteins. Smad7 was one of the female placenta-brain 

genomic coordinate overlapping PCB DMRs, and Smad proteins were among the top 

transcription factor motif enrichments for male placenta and female brain. Thus, it appears 

that many intracellular signaling cascades that are downstream or cross-talk with Slit/Robo 

signaling are associated with the prenatal PCB exposure DMRs. In addition to a critical role 

in neurodevelopment, the above signaling cascade is also consistent with the anti-angiogenic 

effects of PCBs on placenta (Kalkunte et al., 2017). Daam2, a member of the Wnt signaling 

pathway, is involved in placental vascularization (Nakaya et al., 2020). The Slit/Robo 

pathway has also been implicated in placental angiogenesis (Bedell et al., 2005; Chen et 

al., 2016; Liao et al., 2012). The association with angiogenesis and vascularization is also 

apparent in the placenta-brain overlapping genes through the angiogenesis and endothelin 

signaling PANTHER pathway enrichments. Taken together, these findings show that the 

disrupted signaling pathways have distinct functions in both neurodevelopment and placental 

development.

Aside from being enriched within known signaling pathways, the genes mapping to PCB 

DMRs were strongly enriched for transcriptional dysregulation in neurodevelopmental 

disorders and neuronal drug responses from previously published datasets. The most 

prominent of the enrichments was for genes repressed by methyl-CpG binding protein 2 

(MeCP2) in brain from mouse models of Rett syndrome (Chen et al., 2015; Gabel et al., 

2015). One of these studies demonstrated that MeCP2 represses the expression of long genes 

enriched for ASD risk (Gabel et al., 2015). The NDD signature related to long genes and 

ASD risk is also apparent through an enrichment for genes down-regulated by topotecan, a 

topoisomerase inhibitor that reduces expression of many long genes associated with ASD 

in neurons (King et al., 2013). The disease and drug signature analysis also identified two 

other treatments that have been previously implicated in PCB exposure. Bicuculline is a 

GABA receptor agonist (Yu et al., 2015b), which has been shown to phenocopy the effects 

of PCB 95 on dendritic growth (Wayman et al., 2012a). There was also an immune signature 

associated with lipopolysaccharide (LPS) challenge in neurons (Srinivasan et al., 2016). This 

enrichment is consistent with the top female brain DMR mapping to 2900052N01Rik, which 

shows high expression in B cells that have been stimulated by LPS (Wang et al., 2021), and 

through LPS-responsive beige-like anchor (Lrba), which was one of the top DMRs male 

brain. In addition, there were a number of immune genes in the top DMRs as well as the 

placenta-brain overlapped DMRs. Finally, there was a signature related to neurodegenerative 

diseases characterized by neuritic plaques and neurofibrillary tangles, specifically through 

a study of the role of TAF15 in amyotrophic lateral sclerosis (ALS) and the Alzheimer 

disease-presenilin pathway from PANTHER (Kapeli et al., 2016). Ultimately, along with the 
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genomic-coordinate-based enrichment of the consensus brain PCB-associated DMRs within 

differentially methylated sites from human lymphocytes with measured PCB exposures and 

the enrichment of the PCB-associated DMRs from both placenta and brain within DMRs 

identified from NDD placenta and brain, the prenatal PCB exposure DMRs identified in 

mouse showed a profile that is relevant to human NDDs.

The relevance of the PCB-associated DNA methylation profiles described in our study to 

human disorders appears consistent with the evolutionary conservation of developmental 

events. This is evidenced by the top chromatin state enrichment: bivalent TSS. Although 

all chromatin states are highly conserved between human and mouse, the bivalent TSS 

chromatin state, which represents 1.2% of the entire genome across all tissues and ~0.3% 

in a specific tissue, is substantially more evolutionarily conserved than the other 17 

chromatin states (van der Velde et al., 2021). There are ~3,000 bivalent genes in each 

fetal tissue, which are poised for either activation and repression, and many of them are 

lineage-specific transcription factors that are repressed in the tissue assayed but expressed in 

others (Ngan et al., 2020; van der Velde et al., 2021). Given the tissue-specific nature of the 

identified bivalent chromatin state, future research into the effects of PCB exposure on DNA 

methylation profiles in placenta and brain would benefit from examining specific regions 

and cell populations through sorting or single-cell sequencing.

Finally, the overlaps between the DMRs and DEGs as well as the correlations between 

the placenta-brain overlapping PCB DMRs and gene expression highlight a complex gene-

regulatory mechanism. DNA methylation not only has the potential to regulate transient 

gene expression profiles but also functions as a mark of past transcriptional alterations that 

can prime future responses (LaSalle et al., 2013; Treviño et al., 2020). In addition, DNA 

methylation is not always a repressive mark, as it is also associated with active transcription 

when in the gene body (Schroeder et al., 2015; Yang et al., 2014b). The larger number and 

size of the PCB DMRs detected in placenta, when compared with brain, may be due to the 

combination of its unique methylome that is characterized by global hypomethylation and 

PMDs as well as its role in functioning as the maternal-fetal interface, which is involved 

in detoxification. Ultimately, since placenta is a short-lived tissue that has characteristics 

of cancer, it may be more epigenetically responsive to environmental factors than other 

embryonic tissues.

Taken together, these findings demonstrate that a human-relevant PCB mixture results in 

placental DMRs that are also present in the developing brain, which is consistent with 

disruptions to cellular signaling pathways of relevance to both tissues. This suggests that the 

placenta, a typically discarded birth byproduct, contains a subset of PCB DMRs that overlap 

brain PCB DMRs and NDD DMRs. Although these PCB DMR profiles were obtained prior 

to birth (GD 18), future research would benefit from examining these regions at later time 

points, which include neonatal mouse brain and placenta, as well as later postnatal time 

points in brain and in response to later-life challenges. Finally, future research focused on 

DNA methylation profiling of human term placenta with measured PCB exposures, and 

maternal blood-derived, cell-free fetal DNA released from placental trophoblast (Alberry et 

al., 2007), could potentially lead to the development of informative biomarkers and enable 

early identification of prenatal exposures and early intervention of associated NDDs.
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Limitations of the study

A limitation of our study is that we did not examine the impact of genetic variation on 

the DMRs. It would be relevant for future studies to utilize a larger sample size of outbred 

mice. In addition, the impact of the DMRs on gene expression could be further investigated 

through a stimulus, such as an LPS challenge.

STAR*METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Janine M. LaSalle 

(jmlasalle@ucdavis.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw and processed sequencing data has been deposited at GEO and is publicly 

available as of the date of publication. The Accession number is listed in the key 

resources table.

• All original code has been deposited at GitHub and Zenodo and is publicly 

available as of the date of publication. The URL and DOI are listed in the key 

resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The PCB mixture formulated to mimic the 12 most abundant congeners identified from 

the serum of pregnant women in the ASD-enriched MARBLES cohort was prepared as 

previously described (Sethi et al., 2019). The PCB mixture consisted of the following 

congeners in differing proportions: PCB 28 (48.2%), PCB 11 (24.3%), PCB 118 (4.9%), 

PCB 101 (4.5%), PCB 52 (4.5%), PCB 153 (3.1%), PCB 180 (2.8%), PCB 149 (2.1%), 

PCB 138 (1.7%), PCB 84 (1.5%), PCB 135 (1.3%) and PCB 95 (1.2%). C57BL/6J dams 

(The Jackson Laboratory) aged 6 to 8 weeks were orally exposed to 1.0 mg/kg/d of the PCB 

mixture through diet (peanut butter) or vehicle (peanut oil in peanut butter) for at least 2 

weeks before conception and during pregnancy, as previously described (Keil Stietz et al., 

2021). Pregnant dams (nexposed = 4, ncontrol = 5) were euthanized on gestational day 18 and 

whole brain and placenta were dissected from 44 fetuses, cut in half, and flash frozen. All 

protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of 

the University of California, Davis.

METHODS DETAILS

Nucleic acid extraction and high-throughput sequencing library preparation—
Nucleic acids were extracted by homogenizing the same half of placenta and brain tissue 

using a TissueLyser II (Qiagen) followed by the AllPrep DNA/RNA/miRNA Universal Kit 
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(Qiagen) according to the manufacturer’s instructions. For the low-pass WGBS libraries, 

DNA was sonicated to ~350 bp using a E220 focused-ultrasonicator (Covaris) and bisulfite 

converted using the EZ DNA Methylation-Lightning Kit (Zymo Research) according to 

the manufacturer’s instructions. Libraries were prepared via the Accel-NGS Methyl-Seq 

DNA Library Kit (Swift Biosciences) with the Methyl-Seq Combinatorial Dual Indexing Kit 

(Swift Biosciences) according to the manufacturer’s instructions. The pool of 88 libraries 

was sequenced on all 4 lanes of an NovaSeq 6000 S4 flow cell (Illumina) for 150 bp paired 

end reads, which yielded ~65 million unique aligned reads (~6X genome cytosine coverage) 

for each sample. For the RNA-seq libraires, RNA integrity (RIN > 7) was confirmed using 

a Bioanalyzer Eukaryotic Total RNA Nano Assay (Agilent). Libraries were prepared with 

the KAPA mRNA HyperPrep kit (Roche) and NEXTFLEX Unique Dual Index Barcodes 

(PerkinElmer). The pool of 88 libraries was sequenced on 1 lane of a NovaSeq 6000 S4 

flow cell (Illumina) for 150 bp paired end reads, which yielded approximately 25 million 

uniquely mapped reads for each sample.

QUANTIFICATION AND STATISTICAL ANALYSES

Bioinformatic analyses—The CpG_Me alignment pipeline (v1.4), which is based on 

Trim Galore (v0.6.5), FastQ Screen (v0.14.0), Bismark (v0.22.3), Picard (v2.18.4), and 

MultiQC (v1.9), was used to trim adapters and methylation bias, screen for contaminating 

genomes, align to the reference genome (mm10), remove duplicates, calculate coverage and 

insert size metrics, extract CpG methylation values, generate genome-wide cytosine reports 

(CpG count matrices), and examine quality control metrics (Ewels et al., 2016; Krueger and 

Andrews, 2011; Langmead and Salzberg, 2012; Laufer et al., 2020; Li et al., 2009; Martin, 

2011; Wingett and Andrews, 2018). CpH and mitochondrial methylation levels were utilized 

to examine bisulfite conversion efficiency.

Since PCB exposure and NDDs are known to have substantial sex-specific effects (Keil et 

al., 2019; Sethi et al., 2017b), the primary analyses were stratified by sex. DMR calling and 

most downstream analyses and visualizations were performed via DMRichR (v1.6.1), which 

utilizes the dmrseq (v1.6.0) and bsseq (v1.22.0) algorithms (Hansen et al., 2012; Korthauer 

et al., 2018; Laufer et al., 2020). Background regions with similar genomic context to the 

DMRs (gene length and CpG content) were obtained from the first step of dmrseq for each 

pairwise comparison and utilized in most downstream enrichment testing. While it was not 

possible to model litter as a fixed or random effect in the DMR analyses for this data, 

litter was included as a fixed effect in the global methylation analyses. ComplexHeatmap 

(v2.2.0) was used to create the heatmaps (Gu et al., 2016). GOfuncR (v1.6.1) was used 

for genomic coordinate based gene ontology (GO) analyses, where DMRs were mapped 

to genes if they were between 5 Kb upstream to 1 Kb downstream of the gene body, and 

1,000 random sets from samplings of the background regions were utilized for the FWER 

calculation (Grote, 2020; Prufer et al., 2007). Redundant GO terms were then removed 

based on semantic similarity using rrvgo (Sayols, 2020). HOMER (v4.10) was used to test 

for the enrichment of transcription factor motifs within the DMRs relative to the background 

regions using CpG% normalization and the exact sizes of the regions (Heinz et al., 2010). 

Memes (v1.0.0) was utilized to perform an Analysis of Motif Enrichment (AME), relative to 

background regions, through the MEME Suite with the Human Methylcytosine database and 
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mm10 sequences (Bailey et al., 2009; McLeay and Bailey, 2010; Nystrom, 2021; Yin et al., 

2017). ChIPseeker (v1.22.1) was used to obtain gene region annotations and gene symbol 

mappings (Yu et al., 2015a), promoters were defined as regions within 3 kb of the TSS, 

and DMRs were annotated to genes using the following prioritization order: Promoter > 5’ 

UTR > 3’ UTR > Exon > Intron > Downstream > Intergenic. Annotation based enrichment 

was performed using two sided Fisher exact tests and background regions, which was done 

through LOLA (v1.20.0) for the chromatin state enrichments (Sheffield and Bock, 2015), 

and the odds ratios were converted to fold enrichments for data visualization. Eigengenes 

were calculated from the first principal component of the individual smoothed methylation 

values for the placenta-brain DMRs. regioneR (v1.22.0) was utilized to perform permutation 

based genomic coordinate enrichment testing through a randomized region strategy with 

10,000 permutations (Gel et al., 2016). GAT (v1.3.4) was used to perform nucleotide overlap 

enrichment testing through 10,000 random samplings of background regions (Heger et al., 

2013). The RNA-seq alignment pipeline involved trimming adapters using Trim Galore 

(v0.6.5) followed by alignment to mm10 and gene count extraction using STAR (v2.7.3a) 

(Dobin et al., 2013), and an examination of QC metrics with MultiQC (v1.9). The DGE 

analysis utilized edgeR (v3.34.0) to filter the counts and dream (variancePartition v1.22.0) 

and limma-voom (v.3.48.1) to normalize the counts and fit a linear mixed model that 

included litter as a random effect, since it was not possible to model litter as a fixed effect 

for this dataset due to limma warning that some of the coefficients were not estimable 

(Hoffman and Roussos, 2021; Law et al., 2014; Robinson et al., 2010). ComplexUpset 

(v.1.3.1) was used to create UpSet plots of gene overlaps (Conwayet al., 2017; Krassowski, 

2020; Lex et al., 2014). enrichR (v3.0) was used for gene symbol based GO, PANTHER 

pathway, and GEO RNA-seq disease and drug signature enrichment testing (Chen et al., 

2013; Jawaid, 2021; Kuleshov et al., 2016; Xie et al., 2021). The overlap testing between 

WGBS and RNA-seq was based on gene symbol annotations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Prenatal PCB exposure alters the DNA methylome of placenta and fetal brain 

in mice

• PCB DMRs are enriched for neurodevelopmental functions and bivalent 

chromatin

• A subset of DMRs overlap and are involved in Wnt and Slit/Robo signaling

• PCB DMRs are enriched for DMRs from human neurodevelopmental 

disorders
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Figure 1. Sex-stratified global and regional DNA methylation profiles of placenta and fetal brain 
from mice with prenatal PCB exposure
(A–D) Density plots of smoothed single CpG methylation values from (A) female placenta, 

(B) male placenta, (C) female brain, and (D) male brain.

(E–H) Heatmaps of hierarchal clustering of the Z scores of regional smoothed methylation 

values for DMRs identified from pairwise comparisons of (E) female placenta, (F) male 

placenta, (G) female brain, and (H) male brain.

A total of 44 placenta and 44 fetal brain methylomes were generated from PCB-exposed 

GD18 males (n = 11) and females (n = 12) and matched vehicle control males (n = 10) and 

females (n = 11).
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Figure 2. Functional enrichment testing results for sex-stratified prenatal PCB exposure DMRs 
from placenta and fetal brain
(A–D) Top slimmed significant (p < 0.05) GO enrichment results for DMRs from pairwise 

comparisons of (A) female placenta, (B) male placenta, (C) female brain, and (D) male 

brain.

(E–H) The most significant (q < 0.01) transcription factor motif enrichments for pairwise 

comparisons of (E) female placenta, (F) male placenta, (G) female brain, and (H) male 

brain. The motif family is indicated in parentheses.
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Figure 3. Annotation enrichment testing results for prenatal PCB exposure DMRs from sex-
stratified pairwise comparisons of placenta and fetal brain
(A) CpG annotation enrichments.

(B) Gene region annotation enrichments.

(C) Top developmental time point enrichments for mouse forebrain chromatin states.

*q < 0.05.
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Figure 4. Overlaps between PCB exposure DMRs from placenta and fetal brain
(A) Permutation analysis of the genomic coordinate enrichment of the sex-combined 

consensus fetal brain DMRs within the sex-combined consensus placenta DMRs.

(B) UpSet plot of the gene symbol mapping overlaps for all pairwise DMR comparisons.

(C) Top significant (q < 0.05) slimmed GO terms, PANTHER pathways, and GEO RNA-seq 

dataset enrichments from a meta p value analysis of gene symbol mappings from the 

sex-stratified overlaps of placenta and fetal brain. The GEO RNA-seq dataset enrichments 

are stratified by whether the genes were up- or down-regulated.

(D) Heatmap of unique DMR gene symbol mappings that are shared between the female 

and male placenta-brain overlaps and repressed by MeCP2 in the hypothalamus of mouse 

models of Rett syndrome.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

PEBBLES PCB Mixture Superfund Research Center at The 
University of Iowa

P42 ES013661

Critical commercial assays

AllPrep DNA/RNA/miRNA 
Universal Kit

Qiagen 80224

EZ DNA Methylation-Lightning 
Kit

Zymo Research D5031

Accel-NGS Methyl-Seq DNA 
Library Kit

Swift Biosciences 30096

Methyl-Seq Combinatorial Dual 
Indexing Kit

Swift Biosciences 38096

Bioanalyzer Eukaryotic Total 
RNA Nano Assay

Agilent 5067–1511

KAPA mRNA HyperPrep Kit Roche 08098123702

NEXTFLEX Unique Dual Index 
Barcodes

PerkinElmer NOVA-514150
NOVA-514152

Deposited data

Raw sequencing data and 
processed count matrices

This paper GEO: GSE180979

Custom code This paper
https://github.com/ben-laufer/PCB-Placenta-and-Brain
http://10.5281/zenodo.5037818

Experimental models: Organisms/strains

Mice: C57BL/6J The Jackson Laboratory 000664

Software and algorithms

CpG_Me Laufer et al. (2020) https://github.com/ben-laufer/CpG_Me10.5281/zenodo.5030083

Trim Galore Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/

Cutadapt Martin (2011) https://cutadapt.readthedocs.io/en/stable/

FastQ Screen Wingett and Andrews (2018) https://www.bioinformatics.babraham.ac.uk/projects/
fastq_screen/

Bismark Krueger and Andrews (2011) https://www.bioinformatics.babraham.ac.uk/projects/
fastq_screen/

Bowtie 2 Langmead and Salzberg (2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Samtools Li et al. (2009) http://www.htslib.org

Picard Broad Institute https://broadinstitute.github.io/picard/

MultiQC Ewels et al. (2016) https://multiqc.info

R https://www.r-project.org/

DMRichR Laufer et al. (2020) https://github.com/ben-laufer/DMRichR10.5281/
zenodo.5030057
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dmrseq Korthauer et al. (2018) https://bioconductor.org/packages/release/bioc/html/
dmrseq.html

Bsseq Hansen et al. (2012) https://bioconductor.org/packages/release/bioc/html/bsseq.html

ComplexHeatmap Gu etal. (2016) https://jokergoo.github.io/ComplexHeatmap-reference/book/

GOfuncR Grote (2020); Prüfer et al. (2007) https://www.bioconductor.org/packages/release/bioc/html/
GOfuncR.html

Rrvgo Sayols (2020) http://bioconductor.org/packages/release/bioc/html/rrvgo.html

HOMER Heinz et al. (2010) http://homer.ucsd.edu/homer/

Memes Bailey et al. (2009); McLeay and 
Bailey (2010); Nystrom (2021); Yin et 
al. (2017)

http://www.bioconductor.org/packages/release/bioc/html/
memes.html

ChIPseeker Yu et al. (2015a) https://bioconductor.org/packages/release/bioc/html/
ChIPseeker.html

LOLA Sheffield and Bock (2015) https://bioconductor.org/packages/release/bioc/html/LOLA.html

STAR Dobin et al. (2013) https://github.com/alexdobin/STAR

edgeR Robinson et al. (2010) https://bioconductor.org/packages/release/bioc/html/edgeR.html

Limma-voom Law et al. (2014) https://bioconductor.org/packages/release/bioc/html/limma.html

variancePartition Hoffman and Roussos (2021) https://bioconductor.org/packages/release/bioc/html/
variancePartition.html

regioneR Gel et al. (2016) https://bioconductor.org/packages/release/bioc/html/
regioneR.html

GAT Heger et al. (2013) https://github.com/AndreasHeger/gat

ComplexUpset Conway et al. (2017); Krassowski 
(2020); Lex et al. (2014)

https://cran.r-project.org/web/packages/ComplexUpset/
index.html

enrichR Chen et al. (2013); Jawaid (2021); 
Kuleshov et al. (2016); Xie et al. 
(2021)

https://cran.r-project.org/web/packages/enrichR/index.html

Other

TissueLyser II Qiagen 85300

E220 Focused-ultrasonicator Covaris 500239
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