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Background: Brain invasion in meningioma has independent associations with increased
risks of tumor progression, lesion recurrence, and poor prognosis. Therefore, this study
aimed to construct a model for predicting brain invasion in WHO grade II meningioma by
using preoperative MRI.

Methods: One hundred seventy-three patients with brain invasion and 111 patients
without brain invasion were included. Three mainstream features, namely, traditional
semantic features and radiomics features from tumor and tumor-to-brain interface
regions, were acquired. Predictive models correspondingly constructed on each feature
set or joint feature set were constructed.

Results: Traditional semantic findings, e.g., peritumoral edema and other four features, had
comparable performance in predicting brain invasion with each radiomics feature set. By
taking advantage of semantic features and radiomics features from tumoral and tumor-to-
brain interface regions, an integrated nomogram that quantifies the risk factor of each
selected feature was constructed and had the best performance in predicting brain invasion
(area under the curve values were 0.905 in the training set and 0.895 in the test set).

Conclusions: This study provided a clinically available and promising approach to predict
brain invasion in WHO grade II meningiomas by using preoperative MRI.

Keywords: atypical meningioma, brain invasion, magnetic resonance imaging, radiomics, semantic
1 INTRODUCTION

Brain invasion becomes a stand-alone criterion for atypical grade II meningioma in the updated
2016 World Health Organization (WHO) Classification of Tumors of the CNS (1), because of its
independent associations with increased risks of tumor progression, lesion recurrence, and poor
prognosis (2–5). Therefore, the existence of brain invasion can significantly impact preoperative
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evaluation and decision-making. Regarding this rising clinical
significance, the recognition of brain invasion for brain
meningioma especially before clinical intervention is very
important, but few biomarkers are routinely used in
clinical practice.

As the only golden standard for the diagnosis of brain invasion
in meningioma, histopathological examination is greatly dependent
on the acquisition of peritumoral brain tissue, leading to a
heterogeneous assessments of brain invasion (6). Alternatively, in
the preoperative diagnosis/assessment, magnetic resonance imaging
(MRI) is the most important technique for brain meningioma by
taking advantage of its ultra-high tissue resolution and spatial
resolution. Previous existing documents suggested that traditional
MRI findings, like peri-tumoral edema, heterogeneous contrast
enhancement, and irregular tumor shape, have values in
predicting brain invasion (6, 7). However, the outcomes of these
imaging signs are not widely supportive (8), which may be resulting
from the limited and insufficient information they provided.

Radiomics can convert medical images into mineable high-
dimensional quantitative data that may reflect underlying
pathophysiology of the tumor (9). By employing radiomics, a
number of studies reported the relevant values in grading and
classifying brain meningiomas (10–13), while only several
documents related it to predict brain invasion in meningioma.
Zhang et al. demonstrated that some radiomics features within
tumor and sex jointly reached the best performance in predicting
brain invasion (14). Joo et al. constructively suggested that the
radiomics features from the tumor-to-brain interface region could
help predict brain invasion in meningioma (15). Therefore, this
couple of studies leads an important role in introducing radiomics
to assess the risk of brain invasion in meningioma. However, it is
worth noting that 1) both studies merely arbitrarily extracted
radiomics features from the tumor region or tumor-to-brain
interface region and (2) WHO grade I meningiomas occupied the
majority of the training dataset, which might bring pathological bias
in model construction (14, 15). Therefore, since grade I
meningioma with brain invasion has been assigned to WHO
grade II (1), it deserves to predict brain invasion in high grade
meningioma (WHO grade II) by integrating the value of radiomics
features in tumor and tumor-to-brain interface regions, as well as
the traditional radiological findings (semantic features).

In the present study, three mainstream features, namely,
radiomics features from the tumor region, radiomics features
from the tumor-to-brain interface region, and semantic features,
were subsequently extracted from each meningioma. Feature
selection and model construction were conducted step by step,
and the value of each selected feature was estimated. Finally, an
integrated nomogram constructed on the selected features was
built to comprehensively estimate the risk points as a composite
predictor for brain invasion in meningioma.
2 MATERIALS AND METHODS

This retrospective study was approved by the Medical Ethics
Committee of the Second Affiliated Hospital of Zhejiang
University School of Medicine. The written informed consent
Frontiers in Oncology | www.frontiersin.org 2
from the patients was waived. All the methods were carried out
in accordance with relevant guidelines and regulations.

2.1 Subjects
Initially, 2,878 meningioma patients with pathological confirmation
from January 2011 to August 2020 were screened. In the 2016
WHOClassification of Tumors of the CNS, a significant revision for
meningioma was that the presence of brain invasion in a WHO
grade I meningioma is assigned to WHO grade II (1). Thus, in
consideration of this update, a total of 339 patients were included
according to the following inclusion criteria: 1) since 2016, WHO
grade II meningioma with (N = 117) and without (N = 135) brain
invasion should have histopathological evidence; and 2) before
2016, because histopathological assessment of brain invasion was
not a regular guideline for grading meningioma, only meningioma
with brain invasion (N = 87) was histopathologically confirmed and
included. Then, 55 patients were further excluded according to the
exclusion criteria shown in Figure 1. Finally, 173meningiomas with
brain invasion and 111 meningiomas without brain invasion
were recruited.

2.2 Image Acquisition
All the MRI examinations were completed 1 week before the
operation in the Second Affiliated Hospital of Zhejiang University
School of Medicine. All the images (T1-weighted, T2-weighted, and
enhanced T1-weighted imaging) were acquired using clinical
scanning protocols in eight MRI scanners (3.0 T scanners, e.g.,
GE Discovery MR 750, GE Discovery MR 750W, GE Signal HDxt,
and United Imaging MRI 790; 1.5 T scanners, e.g., Siemens
FIGURE 1 | The flowchart of data inclusion and exclusion.
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Magnetom Aera, Siemens Magnetom Avento, Siemens Magnetom
Sonata, and GE Signal HDxt).

2.3 Clinical Semantic Assessment
Two neuroradiologists with 5 years of experience who were blinded
to the clinical and pathological information of the patients evaluated
the clinical semantic features for each meningioma. When an
inconsistency occurred, the result will be rechecked by a senior
neuroradiologist with 30 years of experience. Semantic features
including radiological findings and demographic information were
recorded (10, 11): 1) tumor location: anterior/middle/posterior
cranial fossa, sphenoid crest, saddle tubercle, lateral/midline
convexity, tentorium cerebelli, ventricle, other; 2) number of
tumors: single or multiple; 3) the largest diameter of the tumor;
4) short diameter perpendicular to the maximum length diameter;
5) T1 signal intensity; 6) T2 signal intensity; 7) degree of contrast
enhancement on gadolinium-enhanced T1 imaging; 8) intratumoral
heterogeneity after enhancement; 9) tumor margin; 10) peritumoral
edema; 11) cystic or necrosis; 12) bone invasion; 13) hyperostosis;
14) dural tail; 15) venous sinus invasion; 16) CSF cleft sign;
17) arterial narrowing; 18) sunburst; 19) age; and 20) sex.
Frontiers in Oncology | www.frontiersin.org 3
2.4 Radiomics Modeling
2.4.1 Semi-Automatic Region of Interest
Segmentation
For every meningioma lesion, manual segmentation was conducted
to extract the tumor region, while a semi-automatic segmentation
was used to acquire the tumor-to-brain interface region (Figure 2).
The details were shown below:

1) Manual segmentation of the tumor region [region of interest
(ROI)]. Two radiologists with about 5 years of clinical experience
manually segmented the tumor ROI along the sharp tumor margin
in the axial enhanced T1-weighted images in a slice-by-slice way.
Before manual segmentation, these two radiologists were trained by
a neuroradiologist with 30 years of experience, and then both of
them blinded to the patient information manually segmented 40
randomly selected tumors. DICE similarity coefficient was
calculated to test the interoperator agreement (16, 17). As a result,
the DICE similarity coefficient was 0.914 ± 0.035, indicating an
excellent agreement.

2) Automatic segmentation of tumor-to-brain interface ROI.
Based on the outer edge of the tumor region segmented in the
first step, the 5 mm in the spatial scale was firstly converted to the
A

B

C

D

FIGURE 2 | Different ROI segmentation conditions are displayed in 2D and 3D in ITK-SNAP software, including the original image, the manually segmented tumoral
ROI, and the semi-automatically segmented tumor-to-brain interface ROI. (A) Tumor located in anterior cranial fossa with overlap of non-brain tissues (i.e., bone) after
5 mm expansion, which is manually revised to only keep tumor-to-brain interface. (B) The same tumor with overlap of non-brain tissues (i.e., postorbital tissues) after
5 mm expansion, which is manually revised to only keep tumor-to-brain interface. (C) The same tumor without any overlap of non-brain tissues after 5 mm
expansion. (D) 3D visualization. ROI, region of interest.
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pixel scale in the image, and then the morphology operations of
image expansion and corrosion (Python, Skimage.Morphology)
(18) were carried out to automatically segment the tumor-to-
brain interface ROI. The initial region was formed by the annular
region with the outer boundary of the tumor and the
amplification boundary as the inner and outer boundary.

3) Final review and revision for the tumor-to-brain interface
region. The initial tumor-to-brain interface region was reviewed
layer by layer by the neuroradiologist. If the expansion boundary
included non-interested brain/non-brain regions, manual
correction was carried out; if no correction was needed,
automatic segmentation was retained.
2.4.2 Image Preprocessing and Radiomics
Feature Extraction
The original MRI images and the corresponding annotation files
were upload to the Deepwise multimodal research platform (https://
keyan.deepwise.com, V1.6.2) for radiomics feature quantification,
feature engineering on the volume map of the semi-automatically
labeled two-dimensional ROI. The complete process of this study is
shown in Figure 3, which is mainly composed of six steps: ROI
segmentation, image preprocessing, feature extraction, feature
selection, model building, and model evaluation.

Firstly, in the image preprocessing, Z-score normalization was
used to process the images with a normalize scale of 100 (19), and
the B-spline interpolation sampling method was used to resample
MRI images with different resolutions to the same resolution [1,1,1]
(20). Then, eight different image transforms (https://pyradiomics.
readthedocs.io/en/latest/radiomics.html#module-radiomics.
imageoperations), such as high-pass wavelet filter, low-pass wavelet
filter, Laplace, gradient, and Gaussian transform, were used to
obtain more pixel-level high-throughput image features. Secondly,
based on the original and transformed images, we extracted and
quantified the radiomics features of tumor and peritumor ROIs,
respectively, which included three categories: first-order, shapes,
and texture features (21). The three described global information
such as gray mean value and variance, local information such as
shape and edge of ROI, and mutual information between pixels
inside ROI and neighborhood, respectively. Texture features mainly
include the GLCM (gray level co-occurrence matrix), GLRLM (gray
level run length matrix), GLSZM (gray level size zone matrix),
GLDM (gray level dependence matrix), and NGLD (neighboring
gray level dependence matrix) (https://pyradiomics.readthedocs.io/
en/latest/features.html). See Supplement Material 1 for
specific features.

Finally, a total of 1,763 radiomics features were extracted and
normalized for each ROI in our study. Z-score normalization was
used to eliminate the influence of feature dimensions and speed up
the solution of the gradient descent algorithm, Z = (X −mean)/SD.

2.4.3 Features Selection of Radiomics and
Semantic Features
2.4.3.1 Selection of Radiomics Features
It consisted of two stages: first, interobserver interclass coefficient
(ICC) analysis and correlation analysis were used (22, 23). ICC
analysis was used to exclude features with interobserver instability
Frontiers in Oncology | www.frontiersin.org 4
(ICC coefficient < 0.9), and correlation analysis between features
was used to exclude features with high correlation (Pearson
correlation coefficient > 0.7) and retain low correlation (Pearson
correlation coefficient < 0.7). Secondly, the F-hypothesis test
(ANOVA, F-test of homogeneity of variance) (https://
statisticsbyjim.com/anova/f-tests-anova/) was used for further
feature selection. The F-test looked for the linear relationship
between the two data groups and returned two statistics of F-value
and P-value. We retain the features that were significantly
correlated with the true label (P-value < 0.01) and delete those
without significantly linear correlation (P-value > 0.01) (https://
scikit-learn.org/stable/modules/feature_selection.html).

2.4.3.2 Selection of Semantic Features
Statistical tests, univariate andmultivariate analyses, and stepping-
regression methods were used to select semantic features which
were associated with brain invasion of meningioma.

2.4.4 CSRN Construction
The significant semantic and radiomics features were selected as
the independent variables, while the meningioma invasion was
taken as the dependent variable. The logistic regression (LR) was
used to establish a multivariate regression model for predicting
brain invasion for meningioma.

We developed five models, namely, 1) tumoral radiomics
model (TRM), 2) tumor-to-brain interface radiomics model
(TbRM), 3) clinical semantic model (CSM), 4) tumor
combined tumor-to-brain interface radiomics model
FIGURE 3 | Workflow of this study, which mainly composed of six steps:
ROI segmentation, image preprocessing, feature extraction, feature selection,
model building, and model comparative evaluation. ROI, region of interest.
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(TCTbRM), and 5) clinical semantic and radiomics
nomogram (CSRN).

LR is a traditional machine learning binary classifier, which is
often used to analyze the risk factors of a certain disease and is
suitable for predicting categorical variable (such as meningioma
invasion and non-invasion events in this study) (24). This
method could output a quantized non-linear model and
probabilistic values (continuous variable).

The CSRN was established and evaluated as follows:
1) Model training. All patients were divided into training set

and test set in a ratio of 7:3, and it was iterated for 2,000 times to
get a stable result. Considering the AUC performance of the
training set and test set comprehensively, and following the fact
that the number of modeling features accounted for 10%–20% of
the total sample size to simplify the prediction model (25), we
selected radiomics features, respectively, and examined their
statistical differences between meningioma with and without
brain invasion.

2) Calculation of radiomics scores. TRM and TbRM based on
LR were constructed by selecting 20 significant tumor and 20
tumor-to-brain interface radiomics features, respectively, and the
output probability scores of the combination of modeling
features and weights were converted into radiomics score,
Rad_score (Rscore_1ROI, Rscore_2ROI) (26).

Rad _ score =
1

1 + exp (S bi ∗ f i)

fi represents radiomics feature i, while ßi represents the
coefficient corresponding to this feature.

3) Quantitative representation of CSRN. With the inclusion
of significant semantic features, Rscore_1ROI and Rscore_2ROI,
a CSRN for predicting the meningioma invasion probability was
established using multivariate LR (24). Thus, each factor and the
predicted probability of brain invasion were described and
calculated numerically.

4) Establishment of different models. Similarly, we extracted
the features of single category and multiple categories,
respectively, and established the remaining four models,
namely, TRM, TbRM, CSM, and TCTbRM. See Supplement
Material 2 for details.

5) Comparison andevaluation among themodels. The semantic
features, tumoral radiomics features, and tumor-to-brain interface
radiomics features involved in themodelingwere discussed indetail
for their application value in clinical scenarios, and the contribution
and clinical significance of this study to predict the invasion of
WHO grade II meningiomas were also discussed.

The ROC curve, the area under the ROC curve (AUC),
accuracy, sensitivity, specificity, negative predictive value
(NPV), and positive predictive value (PPV) indexes
comprehensively described the performance of the five
classifiers. Calibration curves were used to describe the
predictive accuracy of CSRN, and decision curve analysis
(DCA) was used to describe the clinical efficacy between the
models. Feature heat maps were used to describe the correlations
between radiomics features, and Python’s image processing
package was used to visualize these features.
Frontiers in Oncology | www.frontiersin.org 5
2.5 Statistical Analysis
SPSS 22.0 (released 2013; IBM SPSS Statistics forWindows, Version
22.0), R (https://www.rstudio.com), Python 4.0 (https://www.
python.org/), and Deepwise DXAI Platform (https://dxonline.
deepwise.com/) were used for statistical validation, analysis, and
visualization. Mean and standard deviation (SD) were used to
describe numerical variables. Two-independent sample t-test was
used for the variables with normal distribution, while Wilcoxon test
was used for skewed distribution. Frequency was used to describe
categorical variables, chi-square test or corrected chi-square test was
used for disordered variables, and Kruskal–Wallis H test was used
for ordered variables. DeLong test was used to compare the ROC
curves among the five models, and Z-test was used to compare
the differences between AUC, accuracy, sensitivity, specificity,
NPV, PPV, and other indicators. This study was a bilateral
significance test, and a two-tailed P <0.05 was considered
statistically significant.
3 RESULTS

3.1 Demographic Information
A total of 284 patients with WHO grade II meningioma were
enrolled, consisting of 173 patients with brain invasion and
111 patients without brain invasion. Table 1 specifies
the overall distribution of demographic information and
semantic features.

No significant difference in age, the largest diameter of the
tumor, and the short diameter perpendicular to the maximum
length diameter was observed between meningiomas with and
without brain invasion (P > 0.05), while significant differences in
tumor location, hyperostosis, CSF cleft sign, T2-weighted signal,
and peritumoral edema were observed between two groups
(P < 0.05), suggesting that meningiomas with brain invasion
had higher frequency in the location of anterior cranial fossa but
lower frequency in midline convexity; higher frequencies of
hyperostosis, hypointense T2-weighted signal, and peritumoral
edema; and lower frequency of CSF cleft sign in comparison with
meningioma without brain invasion (Table 2).

3.2 Radiomics Features Selection and
Significance Analysis
A total of 1,740 tumoral and 1,740 tumor-to-brain interface
radiomics features were extracted. After ICC analysis and
correlation analysis, 20 tumoral and 20 tumor-to-brain
interface features were selected using F-test and LR methods.
The Pearson correlation heat maps of the original features and
the selected features were respectively shown in Figure 4, and it
could be clearly seen that the selected 20 features had low
correlation in pairs, which reduced the feature redundancy.
The radiomics feature distribution of randomly selected
meningioma cases with and without brain invasion for each is
shown in Figure 5. All the selected radiomics features are
summarized in Table 3 and ranked according to their
classification contributions (absolute value of weights). Among
40 radiomics features, texture features vs. first-order features vs.
October 2021 | Volume 11 | Article 752158
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shape features = 1.8162 vs 0.2743 vs. 0.0643 (about 28:4:1, the
ratio of absolute value to the sum).

Based on the above features, the LR algorithm was applied to
construct the TRM and TbRM by training on each tumoral and
Frontiers in Oncology | www.frontiersin.org 6
tumor-to-brain interface radiomics feature set, respectively,
which subsequently converted the output probability scores
into radiomics scores (Rscore_1ROI, Rscore_2ROI) by the
formula in Supplement Material 3.
TABLE 1 | Demographic information of the 284 patients.

Index Patients (n = 284)

Non-invasion group (n = 111) Invasion group (n = 173) p-value

Age 57.1 ± 12.3 56.6 ± 11.5 0.745a

The largest diameter of the tumor 42.8 ± 16.8 44.6 ± 14.5 0.358a

Short diameter perpendicular to the maximum length diameter 31 (24–39.5) 34 (25–41) 0.226b

Sex 0.843c

Female 68 (61.3%) 108 (62.4%)
Male 43 (38.7%) 65 (37.6%)

Tumor location 0.000**c

Anterior cranial fossa 7 (6.3%) 38 (22.0%)
Middle cranial fossa 5 (4.5%) 3 (1.7%)
Posterior cranial fossa 11 (9.9%) 3 (1.7%)
Sphenoid crest 10 (9.0%) 14 (8.1%)
Saddle tubercle 0 (0.0%) 4 (2.3%)
Lateral convexity 44 (39.6%) 78 (45.1%)
Midline convexity 24 (21.6%) 20 (11.6%)
Tentorium cerebelli 7 (6.3%) 9 (5.2%)
Ventricle 1 (0.9%) 4 (2.3%)
Other 2 (1.8%) 0 (0.0%)

Number of tumors 0.073c

Single 109 (98.2%) 162 (93.6%)
Multiple 2 (1.8%) 11 (6.4%)

Cystic or necrosis 59 (53.2%) 105 (60.7%) 0.209c

Bone invasion 47 (42.3%) 67 (38.7%) 0.544c

Hyperostosis 43 (38.7%) 96 (55.5%) 0.006**c

Venous sinus invasion 18 (16.2%) 30 (17.3%) 0.805c

Dural tail 100 (90.1%) 148 (85.5%) 0.262c

CSF cleft sign 97 (87.4%) 126 (72.8%) 0.004**c

Arterial narrowing 4 (3.6%) 6 (3.5%) 1.000c

Sunburst 1 (0.9%) 3 (1.7%) 0.948c

T1 0.200d

Hyperintense 6 (5.4%) 2 (1.2%)
Isointense 73 (65.8%) 113 (65.3%)
Hypointense 32 (28.8%) 58 (33.5%)

T2 0.029d*
Hyperintense 49 (44.1%) 68 (39.3%)
Isointense 61 (55.0%) 91 (52.6%)
Isointense 1 (0.9%) 14 (8.1%)

T1+C (degree of CE) 0.325d

Mild 15 (13.5%) 31 (17.9%)
Marked 96 (86.5%) 142 (82.1%)

Intratumoral heterogeneity 0.689d

Uniformly 41 (36.9%) 68 (39.3%)
Uneven 70 (63.1%) 105 (60.7%)

Tumor margins 0.572d

Clear 24 (21.6%) 32 (18.5%)
Unclear 55 (49.5%) 88 (50.9%)
Indistinct 32 (28.8%) 53 (30.6%)

Peritumoral edema 0.000**d

None 38 (34.2%) 10 (5.8%)
Mild 55 (49.5%) 101 (58.4%)
Marked 18 (16.2%) 62 (35.8%)
October 2021 | Volume 11 | Article
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bWilcoxon test.
cChi-square test.
dKruskal–Wallis H test.
*p < 0.05, **p < 0.01.
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3.3 Multivariate Analysis of LR: Semantic
Features and Rscore
Then, all the semantic features and Rscore, including peritumoral
edema, tumor location, hyperostosis, T2W signal, and CSF cleft
Frontiers in Oncology | www.frontiersin.org 7
sign, and Rscore_1ROI and Rscore_2ROI, were combined to
construct an integrated model, CSRN, by using multivariate
analysis of LR. The variance inflation factor (VIF) test was
performed. Table 4 lists all these included features and their
TABLE 2 | Demographic information of meningioma patients in the training set and test set.

Index Training set (n = 198) Test set (n = 86) p-
value

Non-invasion group
(n = 77)

Invasion group
(n = 121)

p-
value

Non-invasion group
(n = 34)

Invasion group
(n = 52)

p-value

Age 57.1 ± 11.7 56.2 ± 12.2 0.564a

The largest diameter of the tumor 42.2 ± 16.4 45.6 ± 14.3 0.132a 44.3 ± 17.7 42.3 ± 14.8 0.571a 0.542a

Short diameter perpendicular to the
maximum length diameter

31 (24–39) 34.8 (26–41) 0.092b 34.5 (24.3–41.3) 34 (23.5–40.1) 0.477b 0.899b

Sex 0.934 0.803c 0.324c

Female 46 (59.7%) 73 (60.3%) 22 (64.7%) 35 (67.3%)
Male 31 (40.3%) 48 (39.7%) 12 (35.3%) 17 (32.7%)

Tumor location 0.010** 0.053c 0.769c

Anterior cranial fossa 5 (6.5%) 27 (22.3%) 2 (5.9%) 11 (21.2%)
Middle cranial fossa 4 (5.2%) 3 (2.5%) 1 (2.9%) 0 (0.0%)
Posterior cranial fossa 7 (9.1%) 2 (1.7%) 4 (11.8%) 1 (1.9%)
Sphenoid crest 8 (10.4%) 11 (9.1%) 2 (5.9%) 3 (5.8%)
Saddle tubercle 0 (0.0%) 2 (1.7%) 0 (0.0%) 2 (3.8%)
Lateral convexity 32 (41.6%) 52 (43.0%) 12 (35.3%) 26 (50.0%)
Midline convexity 15 (19.5%) 16 (13.2%) 9 (26.5%) 4 (7.7%)
Tentorium cerebelli 4 (5.2%) 5 (4.1%) 3 (8.8%) 4 (7.7%)
Ventricle 0 (0.0%) 3 (2.5%) 1 (2.9%) 1 (1.9%)
Other 2 (2.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Number of tumors 0.162 0.932c 1.000c

Single 76 (98.7%) 113 (93.4%) 33 (97.1%) 49 (94.2%)
Multiple 1 (1.3%) 8 (6.6%) 1 (2.9%) 3 (5.8%)

Cystic or necrosis 42 (54.5%) 74 (61.2%) 0.357 17 (50.0%) 31 (59.6%) 0.380c 0.664c

Bone invasion 31 (40.3%) 47 (38.8%) 0.842 16 (47.1%) 20 (38.5%) 0.429c 0.697c

Hyperostosis 30 (39.0%) 68 (56.2%) 0.018* 13 (38.2%) 28 (53.8%) 0.156c 0.778c

Venous sinus invasion 10 (13.0%) 22 (18.2%) 0.333 8 (23.5%) 8 (15.4%) 0.343c 0.614c

Dural tail 68 (88.3%) 106 (87.6%) 0.882 32 (94.1%) 42 (80.8%) 0.153c 0.670c

CSF cleft sign 66 (85.7%) 93 (76.9%) 0.127 31 (91.2%) 33 (63.5%) 0.004**c 0.267c

Arterial narrowing 2 (2.6%) 6 (5.0%) 0.651 2 (5.9%) 0 (0.0%) 0.299c 0.711c

Sunburst 0 (0.0%) 1 (0.8%) 1.000 1 (2.9%) 2 (3.8%) 1.000c 0.158c

T1 0.671 0.089d 0.223d

Hyperintense 4 (5.2%) 1 (0.8%) 2 (5.9%) 1 (1.9%)
Isointense 47 (61.0%) 79 (65.3%) 26 (76.5%) 34 (65.4%)
Hypointense 26 (33.8%) 41 (33.9%) 6 (17.6%) 17 (32.7%)

T2 0.069 0.897d 0.749d

Hyperintense 37 (48.1%) 45 (37.2%) 12 (35.3%) 23 (44.2%)
Isointense 39 (50.6%) 68 (56.2%) 22 (64.7%) 23 (44.2%)
Hypointense 1 (1.3%) 8 (6.6%) 0 (0.0%) 6 (11.5%)

T1+C (degree of CE) 0.257 1.000d 0.168d

Mild 11 (14.3%) 25 (20.7%) 4 (11.8%) 6 (11.5%)
Marked 66 (85.7%) 96 (79.3%) 30 (88.2%) 46 (88.5%)

Intratumoral heterogeneity 0.987 0.451d 0.789d

Uniform 30 (39.0%) 47 (38.8%) 11 (32.4%) 21 (40.4%)
Uneven 47 (61.0%) 74 (61.2%) 23 (67.6%) 31 (59.6%)

Tumor margins 0.514 0.961d 0.830d

Clear 19 (24.7%) 21 (17.4%) 5 (14.7%) 11 (21.2%)
Unclear 35 (45.5%) 64 (52.9%) 20 (58.8%) 24 (46.2%)
Indistinct 23 (29.9%) 36 (29.8%) 9 (26.5%) 17 (32.7%)

Peritumoral edema 0.000** 0.000**d 0.587d

None 27 (35.1%) 6 (5.0%) 11 (32.4%) 4 (7.7%)
Mild 35 (45.5%) 72 (59.5%) 20 (58.8%) 29 (55.8%)
Marked 15 (19.5%) 43 (35.5%) 3 (8.8%) 19 (36.5%)
October 2021 | Volume 11 | Article 7
aTwo-sample t-test.
bWilcoxon test.
cChi-square analysis.
dKruskal–Wallis H test.
*p < 0.05, **p < 0.01.
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statistical data and ranked them according to P-values. As a result,
the importance order of brain invasion predictors was as follows:
peritumoral edema > Rscore_2ROI (tumor-to-brain interface
radiomics features) > Rscore_1ROI (tumoral radiomics features) >
tumor location > CSF cleft sign > T2-weighted signal > osteogenesis.

3.4 The Performance of CSRN, TRM,
TbRM, CSM, and TCTbRM
CSRN combined seven factors and the LR algorithm to calculate
the risk probability of brain invasion for meningioma patients. In
Figure 6A, the input and output of CSRN had be quantified in
the nomogram. According to the value of each patient in each
factor, each quantized point (“Point”) would be obtained and the
total points were summed (“Total points”), and then the risk of
brain invasion was calculated (“Risk of invasion”). The detailed
explanation of each factor is shown in Supplement Material 4.
The higher the total score, the greater the risk of brain invasion
Frontiers in Oncology | www.frontiersin.org 8
of the patient is. We drew nomogram correction curves
(Figures 6B, C) on the training set and the test set,
respectively. It can be seen that the prediction curve is close to
the reference line (slope = 1), indicating its prediction ability
is excellent.

Furthermore, the performances of CSRN and the other four
models (TRM, TbRM, CSM, TCTbRM) are shown in Figure 7,
respectively, by confusion matrix, and it can be seen that the
number of false-positive and false-negative samples of CSRN was
lower than that of the other models in both training and test sets.
The ROC curves and AUCs of the five models in the training set
and the test set are, respectively, shown in Figures 8A, B,
indicating that the AUC of CSRN was the largest.

Youden coefficient was used to find the cutoff point of the
ROC curve and to calculate the accuracy, sensitivity, specificity,
NPV, and PPV for each model, and all indexes are shown in
Table 5. In Supplement Material 5, we demonstrated the
A B

DC

FIGURE 4 | The Pearson correlation heat maps of radiomics features. (A) Sixty of the original 1,740 radiomics features of tumoral ROI; (B) 20 selected radiomics
features of tumoral ROI; (C) 60 of the original 1,740 radiomics features of tumor-to-brain interface ROI; (D) 20 selected radiomics features of tumor-to-brain interface
ROI. ROI, region of interest.
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process of using Youden to find the cutoff point on the training
set of the CSRN.

The results in Table 5 show the following: in the training set,
CSRN had the highest AUC of 0.905 (95% CI 0.863–0.9472),
which was significantly higher than those of the TRM (0.762,
95% CI 0.695–0.829), TbRM (0.829, 95% CI 0.771–0.888), CSM
(0.828, 95% CI 0.769–0.887), and TCTbRM (0.860, 95% CI
0.807–0.913), and the AUC of the TCTbRM was better than
that of the CSM, while the AUC of the TbRM was close to that of
Frontiers in Oncology | www.frontiersin.org 9
the CSM. Specifically, in the test set, the AUC of CSRN was 0.895
(95% CI 0.828–0.962), which was significantly higher than that of
the TRM (0.701, 95% CI 0.588–0.814) and significantly higher
than those of the TbRM (0.769, 95% CI 0.67–0.867), CSM (0.761,
95% CI 0.658–0.863), and TCTbRM (0.817, 95% CI 0.723–0.91)
(DeLong test, P < 0.05).

The accuracy, sensitivity, specificity, NPV, and PPV of CSRN
on the test set were 0.826, 0.788, 0.882, 0.732, and 0.911,
respectively, among which accuracy, specificity, and NPV were
A

B

D

E

F

C

FIGURE 5 | Visualization of tumoral and tumor-to-brain interface significant radiomics features of brain invasion and non-invasion in patients with meningioma. The
results show the differences between two ROIs in the high-throughput radiomics features. In meningioma with brain invasion, the signal in the tumor is more dense,
and the texture signal intensity around the 5-mm tumor is higher, that is, the information complexity is higher. (A) Original_firstorder (pseudo-color image);
(B) wavelet-LLH_gldm; (C) log-sigma-1-0-mm-_glcm; (D) lbp-m2_ngtdm; (E) log-sigma-3-0-mm-_glrlm; (F) wavelet-HHL_glszm. ROI, region of interest.
October 2021 | Volume 11 | Article 752158
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TABLE 3 | Statistics of all the selected radiomics features.

Features Weights Mean Standard
deviation

p-
value

Test Feature source Sort Image

LoG-sigma-3-0-mm-
3D_glrlm_ShortRunLowGrayLevelEmphasis2ROI

0.1468 0.0069 0.0058 0.001* W Tumor-to-brain
interface ROI

Texture LoG

LBP-3D-m2_ngtdm_Complexity2ROI −0.1455 3.8204 1.2285 0.004* W Tumor-to-brain
interface ROI

Texture LBP

exponential_gldm_SmallDependenceLowGrayLevelEmphasis2ROI −0.1226 0.0199 0.0024 0.000* t Tumor-to-brain
interface ROI

Texture Exponential

square_gldm_SmallDependenceLowGrayLevelEmphasis2ROI −0.1015 0.0228 0.0057 0.000* W Tumor-to-brain
interface ROI

Texture Square

logarithm_ngtdm_Busyness1ROI 0.0942 0.0975 0.1218 0.000* W Tumor ROI Texture LoG
LoG-sigma-4-0-mm-3D_firstorder_Kurtosis2ROI −0.0935 2.9566 0.8304 0.000* W Tumor-to-brain

interface ROI
First-
order

LoG

LoG-sigma-3-0-mm-3D_glcm_Correlation2ROI 0.0923 0.9341 0.0101 0.000* W Tumor-to-brain
interface ROI

Texture LoG

LoG-sigma-3-0-mm-3D_glcm_Idmn2ROI −0.0921 0.996 0.0016 0.007* t Tumor-to-brain
interface ROI

Texture LoG

logarithm_ngtdm_Strength1ROI −0.0882 26.2279 32.0014 0.000* W Tumor ROI Texture LoG
LoG-sigma-1-0-mm-3D_glcm_InverseVariance1ROI 0.0828 0.4085 0.0516 0.000* W Tumor ROI Texture LoG
LoG-sigma-3-0-mm-
3D_glrlm_LongRunHighGrayLevelEmphasis1ROI

−0.0695 971.5188 765.1715 0.000* W Tumor ROI Texture LoG

LoG-sigma-1-0-mm-3D_glcm_Correlation1ROI 0.0694 0.5867 0.0538 0.002 t Tumor ROI Texture LoG
LBP-3D-k_glrlm_RunVariance2ROI 0.0655 18.9969 6.2895 0.007* W Tumor-to-brain

interface ROI
Texture LBP

original_shape_SurfaceVolumeRatio2ROI −0.0643 0.3724 0.0438 0.006* t Tumor-to-brain
interface ROI

Shape Original
image

logarithm_glcm_Correlation2ROI 0.0636 0.7629 0.0834 0.000* t Tumor-to-brain
interface ROI

Texture LoG

LBP-3D-m2_glszm_LargeAreaLowGrayLevelEmphasis2ROI 0.0614 86.305 63.3261 0.001* W Tumor-to-brain
interface ROI

Texture LBP

exponential_glcm_Correlation2ROI 0.0581 0.7174 0.1598 0.000* W Tumor-to-brain
interface ROI

Texture Exponential

LoG-sigma-2-0-mm-3D_ngtdm_Strength2ROI −0.0533 5.7185 6.7859 0.009* W Tumor-to-brain
interface ROI

Texture LoG

original_firstorder_Minimum1ROI 0.0501 −5.0574 41.7556 0.000* t Tumor ROI First-
order

Original
image

wavelet-HH_glszm_SmallAreaEmphasis1ROI −0.0495 0.7119 0.0341 0.000* t Tumor ROI Texture Wavelet
exponential_gldm_SmallDependenceLowGrayLevelEmphasis1ROI −0.0473 0.0231 0.0067 0.000* W Tumor ROI Texture Exponential
exponential_gldm_LowGrayLevelEmphasis1ROI −0.0462 0.4158 0.2573 0.000* W Tumor ROI Texture Exponential
LBP-3D-m2_firstorder_Skewness1ROI −0.046 −0.595 0.2577 0.000* W Tumor ROI First-

order
LBP

wavelet-LL_firstorder_Skewness1ROI 0.0374 −0.3226 0.5985 0.006* t Tumor ROI First-
order

Wavelet

LBP-3D-k_gldm_LargeDependenceHighGrayLevelEmphasis2ROI 0.0365 61.6663 2.7931 0.000* t Tumor-to-brain
interface ROI

Texture LBP

original_firstorder_Minimum2ROI 0.0357 −46.631 32.7178 0.000* t Tumor-to-brain
interface ROI

First-
order

Original
image

LBP-3D-m1_glszm_SmallAreaLowGrayLevelEmphasis1ROI 0.0353 0.1478 0.026 0.008* t Tumor ROI Texture LBP
LBP-3D-k_glcm_Correlation1ROI 0.03 0.2733 0.092 0.004* t Tumor ROI Texture LBP
LBP-3D-m1_glszm_LargeAreaEmphasis2ROI 0.0298 497.883 349.1798 0.000* W Tumor-to-brain

interface ROI
Texture LBP

LBP-3D-k_glrlm_RunEntropy1ROI −0.0266 4.1129 0.2879 0.031* t Tumor ROI Texture LBP
wavelet-
LH_gldm_LargeDependenceLowGrayLevelEmphasis1ROI

0.0245 0.016 0.0189 0.000* W Tumor ROI Texture Wavelet

wavelet-LH_glszm_SizeZoneNonUniformityNormalized2ROI −0.0196 0.5121 0.0603 0.000* t Tumor-to-brain
interface ROI

Texture Wavelet

exponential_glrlm_ShortRunLowGrayLevelEmphasis2ROI −0.0176 0.1056 0.0286 0.005* W Tumor-to-brain
interface ROI

Texture Exponential

LBP-3D-k_glszm_LargeAreaHighGrayLevelEmphasis1ROI −0.016 36,713.5462 24,915.5914 0.021* t Tumor ROI Texture LBP
LoG-sigma-4-0-mm-3D_firstorder_Skewness1ROI −0.0116 0.0814 0.4851 0.033* t Tumor ROI First-

order
LoG

logarithm_glrlm_RunLengthNonUniformityNormalized2ROI −0.0098 0.8039 0.0714 0.000* t Tumor-to-brain
interface ROI

Texture LoG

logarithm_glcm_Correlation1ROI 0.0094 0.7269 0.1057 0.000* W Tumor ROI Texture LoG

(Continued)
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significantly higher than those of all the other models (Z-test,
P < 0.05); the specificity and NPV of TCTbRM were higher than
those of CSRN (0.885 vs. 0.788, 0.786 vs. 0.732) (Z-test, P < 0.05),
Frontiers in Oncology | www.frontiersin.org 11
while accuracy, specificity, and PPV were lower than those of
the CSRN.

In order to explore the auxiliary value of different types of
features in making clinical decision, we performed clinical
decision analysis (DCA) on different models, and these are
shown in Figures 8C, D of the training set and test set. The
results showed that the clinical net benefit (NB) of CSRN was
higher than that of all the other models in the training set. If the
prediction probability of 35%–90% was selected as the
diagnostic model, the clinical NB of CSRN in the test set is
higher than that of all the other models, while when the
prediction probability was 20%–35%, the NB of all the
models were close.
TABLE 3 | Continued

Features Weights Mean Standard
deviation

p-
value

Test Feature source Sort Image

LBP-3D-k_glszm_ZonePercentage1ROI 0.0064 0.0224 0.0075 0.001* t Tumor ROI Texture LBP
exponential_glcm_Idn2ROI −0.0031 0.9767 0.011 0.007* t Tumor-to-brain

interface ROI
Texture Exponential

square_gldm_SmallDependenceLowGrayLevelEmphasis1ROI −0.0018 0.0124 0.0084 0.000* W Tumor ROI Texture Square
O
ctober 2021 | Volum
e 11 | Art
ROI, region of interest; W, Wilcoxon test; t, t-test.
*p < 0.05.
TABLE 4 | The result of multiple logistic regression.

Features Coef t/c2 p-value

Peritumoral edema 1.3079 42.592 <0.0001
Tumor location −0.0633 33.021 0.0046**
Hyperostosis 0.8289 7.594 0.0309*
T2-weighted signal −0.0210 7.075 0.0095**
CSF cleft sign −1.3991 8.493 0.0063**
Rscore_1ROI 1.5849 −10.338 0.0013**
Rscore_2ROI 4.1189 −7.516 <0.0001
*p < 0.05, **p < 0.01.
A

B C

FIGURE 6 | Clinical semantic and radiomics nomogram (CSRN) and its
calibration curves. (A) Nomogram; (B) correction curve of the training set;
(C) calibration curves of the test set.
FIGURE 7 | Confusion matrixes of the five models. Test set: CSRN (A1), TRM
(B1), TbRM (C1), CSM (D1), and TCTbRM (E1); training set: CSRN (A2), TRM
(B2), TbRM (C2), CSM (D2), and TCTbRM (E2). CSRN, clinical semantic and
radiomics model/nomogram; TRM, tumoral radiomics model; TbRM, tumor-to-
brain interface radiomics model; CSM, clinical semantic model; TCTbRM, tumor
combined tumor-to-brain interface radiomics model.
icle 752158

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Brain Invasion Nomogram for Meningioma
4 DISCUSSION

This study comprehensively extracted high-throughput
radiomics features from tumoral and tumor-to-brain interface
Frontiers in Oncology | www.frontiersin.org 12
regions as well as traditional semantic features and also explored
the performance in predicting brain invasion in meningioma
among different predictive models that were constructed on
corresponding radiomics and semantic features. We had two
TABLE 5 | Comparison of the performance of the models.

Model Training set (n = 198) Test set (n = 86)

AUC
(95% CI)

p-value
(vs.

CSRN)

ACC SEN SPE NPV PPV AUC
(95% CI)

p-value
vs.

CSRN

ACC SEN SPE NPV PPV

CSRN 0.905
(0.863–
0.9472)

– 0.854 0.884
(0.813–
0.935)

0.81
(0.699–
0.887)

0.816
(0.717–
0.893)

0.877
(0.800–
0.931)

0.895
(0.828–
0.962)

– 0.826 0.788
(0.653–
0.889)

0.882
(0.725–
0.967)

0.732
(0.579–
0.914)

0.911
(0.783–
0.957)

TRM 0.762
(0.695–
0.829)

0.0004** 0.689 0.636
(0.544–
0.722)

0.77
(0.656–
0.855)

0.573
(0.478–
0.707)

0.811
(0.713–
0.864)

0.701
(0.588–
0.814)

0.004** 0.686 0.635
(0.490–
0.764)

0.765
(0.588–
0.893)

0.578
(0.430–
0.778)

0.805
(0.645–
0.885)

TbRM 0.829
(0.771–
0.888)

0.039* 0.773 0.818
(0.738–
0.882)

0.701
(0.586–
0.800)

0.711
(0.605–
0.807)

0.812
(0.722–
0.878)

0.769
(0.671–
0.867)

0.039* 0.709 0.635
(0.490–
0.764)

0.84
(0.655–
0.932)

0.596
(0.449–
0.813)

0.846
(0.691–
0.911)

CSM 0.828
(0.769–
0.887)

0.037* 0.808 0.909
(0.843–
0.954)

0.649
(0.53–
0.755)

0.820
(0.710–
0.883)

0.803
(0.714–
0.894)

0.761
(0.658–
0.863)

0.033* 0.767 0.769
(0.632–
0.875)

0.765
(0.588–
0.893)

0.684
(0.527–
0.847)

0.833
(0.687–
0.913)

TCTbRM 0.860
(0.807–
0.913)

0.072 0.808 0.785
(0.701–
0.855)

0.844
(0.744–
0.917)

0.714
(0.616–
0.836)

0.888
(0.809–
0.927)

0.817
(0.723–
0.910)

0.046* 0.791 0.885
(0.766–
0.956)

0.647
(0.46–
0.803)

0.786
(0.610–
0.890)

0.793
(0.645–
0.917)
October 20
21 | Volum
e 11 | Artic
ACC, accuracy; SEN, sensitivity; SPE, specificity; NPV, negative predictive value; PPV, positive predictive value.
*Indicates significant difference after the DeLong test.
*p< 0.05, **p < 0.01.
A B

DC

FIGURE 8 | Performance of the five models. (A) ROC curve of the training set; (B) ROC curve of the test set; (C) DCA curve of the training set; (D) DCA curve of
the test set. ROI, region of interest; DCA, decision curve analysis.
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main findings: 1) all the CSM, TRM, and TbRM had significant
but similar contributions to predicting brain invasion in
meningioma; and 2) an individually available nomogram that
was composed of semantic feature set, radiomics feature set of
tumor, and tumor-to-brain interface regions was constructed,
which had the best prediction of brain invasion in both training
and test sets.

In the building of CSM, traditional radiological findings, like
peritumoral edema, CSF cleft sign, hyperostosis, T2-weigthed
signal, and tumor location, were finally included, suggesting that
meningiomas with severe peritumoral edema, loss of CSF cleft
sign, obvious hyperostosis, low T2-weighted signal, and anterior
fossa base location would have a higher risk of brain invasion.
Peritumoral edema is the most important semantic feature in
predicting brain invasion of meningioma, which was consistently
reported by previous studies (6, 15, 27). As demonstrated in the
present study, meningioma with one or several of these findings
may be indirectly indicating aggressive biological behavior, e.g.,
regional infiltration to the brain and bone tissues (the occurrence
of peritumoral edema, loss of CSF cleft sign, and hyperostosis)
(28), high tumor cell density (low T2-weighted signal), and
various tumor microenvironments and histopathological
origins in different anatomical locations (29). When estimating
this CSM, we observed a moderate performance (AUC = 0.761)
in predicting brain invasion in the test dataset. Therefore, it
remains active to further improve the performance and facilitate
the clinical translation of preoperative MRI.

Radiomics measurements from tumor and related regions
have been well established as a promising approach to quantify
tumor shapes, intensity distributions, spatial relationships, and
texture heterogeneity that are difficult to find on routine imaging
and imperceptible to the human eyes (9). Therefore, the current
study extracted radiomics features to assist in predicting brain
invasion for meningioma by two steps. First, we extracted
radiomics features within the tumor region, built TRM, and
calculated Rscore to represent its performance in predicting
brain invasion individually. The AUCs in training set and test
set were 0.762 and 0.701, respectively, which were relatively
consistent with a recent study (AUC = 0.682 in the training set and
0.735 in the validation set) by employing enhanced T1-weighted
imaging (14). Moreover, several studies hypothesized that the
tumor-to-brain interface radiomics features may reflect tumor-
associated alterations, e.g., direct tumor involvement and indirect
immunoreaction (15, 30). By singly learning tumor-to-brain
interface radiomics features, the AUCs of TbRM reached 0.829
and 0.769 in the training set and test set, respectively. However, the
prediction performances of TRM, TbRM, and CSM remained
moderate, and no intermodel difference was observed among
them, which suggested that current protocols were still hard to be
potentially translated in clinical practice. Alternatively, it should be
worth noting that those three kinds of imaging features were
enriched with very different but complementary biological
information, i.e., TRM indicated intrinsic tumor property [e.g.,
spatial heterogeneity of tumor tissue (9)], TbRM specified tumor-
related infiltration (15, 30), and CSM provided both tumor and
tumor-to-brain interface information in a macroscopic way.
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Therefore, to advance the study, we improved our protocol by
training model from different sets of features that may increase
understanding of tumor biology.

Herein, a TCTbRM was constructed and its performance was
estimated with AUCs of 0.860 and 0.817 in the training set and
test set. This radiomics model comprehensively explained tumor
behavior in a voxel-to-voxel way. Although the model
performance was not significantly better than that mentioned
above, a trend of increased prediction efficacy was indicated with
TCTbRM > TbRM ≈ CSM > TRM in the test set. However, to the
best of our knowledge, such radiomics model was not included
following information, but CSM provided the following: 1) the
relationship with neighboring tissues (e.g., bone) cannot be
considered, 2) the distal and severe edema related to tumor
was ignored since only 5 mm from the tumor margin was
estimated, and 3) the tumor tissue origin may be different
from intracranial sites. Therefore, a prediction model (CSRN)
that combined all three kinds of tumor features was constructed,
and a significant improvement in performance was observed
(AUCs were 0.905 in the training set and 0.895 in the test
dataset). A nomogram was then built that quantified the risk
point of each semantic feature and Rscore from tumoral and
tumor-to-brain interface radiomics. Furthermore, DCA
demonstrated that, with the assistance of CSRN, radiologists
would obtain higher clinical benefits in clinical decision-making.

This study had several limitations. First, the pathological
diagnosis of brain invasion may be subject to sampling error,
especially when diagnosing meningioma without brain invasion.
In our study, all patients with brain invasion were confirmed by
pathological evidence; however, the diagnosis of negative cases
may be to some extent associated with insufficient tissue blocks
during operation. Therefore, future radiologic–pathologic
association analysis would be helpful to confirm the present
findings. Second, even though this study included all
meningioma patients with brain invasion from 2011 to 2020
with pathological confirmation, the sample size was relatively
small and only single-center data were available. Therefore, it is
promising to make CSRN go through multicenter dataset with a
larger sample size in the future. Third, the enlargement of
features in the model construction may cause overfitting; here, we
reduce the overfitting risk by randomly splitting the dataset into
training set and independent test set. In the future, more external
validations are warranted. Fourth, although we performed image
preprocessing to minimize the variability, including Z-score
normalization and B-spline interpolation sampling method, the
MRI data used in the present study were acquired using different
scanners, which may bring some biases. In reverse, as there was no
correctionby scanner type, this illustrates the translationalpotential
of our results and it is a strong argument in favor of a multicentric
application of radiomics.

In conclusion, this study firstly disclosed that traditional
semantic findings had comparable performance in predicting
brain invasion of meningioma with radiomics information. By
taking advantage of semantic features and radiomics features
from tumoral and tumor-to-brain interface regions, an
integrated nomogram model was constructed that had
October 2021 | Volume 11 | Article 752158
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excellent efficacy in predicting brain invasion, which currently
was available for further clinical validation.
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