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Abstract

Aims

Pattern-related visual stress (PRVS) refers to the perceptual difficulties experienced by

some individuals when exposed to high contrast striped patterns. People with PRVS were

reported to have reduced sensitivity to global motion at baseline testing and the difference

disappears at a second estimate. The present study was to investigate the effect of practice

on global motion threshold in adults with and without PRVS.

Methods

A total of 101 subjects were recruited and the Wilkins & Evans Pattern Glare Test was used

to determine if a subject had PRVS. The threshold to detect global motion was measured

with a random dot kinematogram. Each subject was measured 5 times at the first visit and

again a month later. Receiver operating characteristic (ROC) curve analysis was applied to

show the agreement between the two tests.

Results

Twenty-nine subjects were classified as having PRVS and 72 were classified as normal. At

baseline, the threshold to detect global motion was significantly higher in subjects with

PRVS (0.832 ± 0.098 vs. 0.618 ± 0.228, p < 0.001). After 5 sessions, the difference between

the normal and subjects with PRVS increased (0.767 ± 0.170 vs. 0.291 ± 0.149, p < 0.001).

In ROC analysis, the area under the curve (AUC) improved from 0.792 at baseline to 0.964

at the fifth session. After a one-month break, the difference between normal and subjects

with PRVS was still significant (0.843 ± 0.169 vs. 0.407 ± 0.216, p < 0.001) and the AUC

was 0.875.

Conclusion

The ability to detect global motion is impaired in persons with PRVS and the difference

increased after additional sessions of practice.
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Introduction

Pattern-related visual stress (PRVS) refers to the discomfort experienced by some people while

viewing high contrast and repetitive patterns. This includes bodily symptoms, such as malaise

and nausea, and perceptual symptoms ranging from illusions of color to seeing patterns vibrat-

ing [1]. Patterns with large deviations from natural image statistics, such as a high contrast

striped grating in the range of three to four cycles per degree, often result in peak PRVS and

anomalous experiences [2–5]. Studies suggest the effects of PRVS may be significant in daily

life in healthy non-clinical individuals [6]. Those affected show less accuracy in identifying

words versus non-words and are slower in visual searches, potentially affecting reading perfor-

mance [7]. Because the population’s use of computers during daily activity is increasing, the

consequences of high contrast images, motion, and repetitive tasks among people with PRVS

need additional studies.

PRVS is a unique set of symptoms that should not be confused with blur or fatigue. Ocular

factors, such as instability in fixation and increased microfluctuation in accommodation, are

unlikely to be explanations for the phenomenon [8–11]. The neural mechanism underlying

PRVS is generally thought to be of cortical origin. The fact that PRVS is more likely to be

evoked under binocular than monocular conditions also supports this view [12]. Unlike the

natural images that cause a sparse response in the visual system, visually averse stimuli may

cause an anomalous response as found in PRVS, as a result of either cortical hyperexcitability

or poor cortical inhibition [5, 13–16]. Previous studies suggested an overload in extrastriate

dorsal visual pathway in PRVS [17].

Migraine has a strong correlation to pattern glare with 82% of migraineurs exhibiting

PRVS [18–20]. The visual stimuli that trigger migraine and PRVS share common features [21].

Those with statistical properties away from the natural scenes tend to evoke both migraine and

PRVS [22–24]. Before the onset of the headache, up to 24 hours before, migraineurs’ suscepti-

bility to pattern glare is increased [25]. The distortions perceived by migraineurs tend to be on

the same side of aura [26, 27]. While the headaches are usually unilateral, the distortions tend

to be predominant in one visual hemifield [5, 25]. Moreover, cortical hyperexcitability has also

been reported in the visual cortex of the people with migraines [28, 29]. Therefore, PRVS and

migraine should be viewed as the two ends of a continuum, with PRVS in the non-clinical pop-

ulation who experience abnormal illusions and migraine in the clinical population who suffer

migraine attacks [16].

People with migraine do not perform well in motion coherence task [28, 30, 31], in which

one needs to detect the elements moving coherently (the same direction) from the elements

moving at random directions over a large space. Such a function could not be achieved in the

primary visual cortex (V1) since the neurons there have small receptive fields and are only

capable of analyzing location motion (movements in a small spatial region) [32]. The direction

of the coherent motion could not be determined from tracking the trajectory of a single ele-

ment. The outputs from many V1 neurons need to be pooled and integrated to extract the

global motion information [33]. This step is done by the neurons in the medial temporal (MT)

and medial superior temporal (MST) areas, where the neurons have much larger receptive

fields and suitable for global motion analysis. The impaired performance in migraine is con-

sidered associated with the cortical hyperexcitability [28, 30, 31].

The global motion in people with PRVS has been less studied, possibly due the fact many of

them are healthy nonclinical persons. The findings from the few existing studies are sketchy

and even contradicting to each other. In one study, Simmers reported that the thresholds to

detect global motion in people with PRVS are not significantly different from that in the nor-

mal population [34]. In another study, impaired thresholds for global motion detection are
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found in people with PRVS when tested for the first time. However, an improvement after a

second attempt usually makes the difference insignificant [35]. Considering the close correla-

tion between PRVS and migraine, such as common triggering stimuli and cortical hyperexcit-

ability [5, 13–16], the global motion in PRVS deserves a closer examination.

In these previous studies, whether a subject has PRVS was assessed with different approaches.

One is based on the subjects’ memory of symptoms that have occurred during daily activity, par-

ticularly those related to readings [35]. The other approach is based on observation whether a

subject showed certain signs, such as voluntarily wearing colored filters over a sustained period

of time [34]. In this study, we used the Wilkins & Evans Pattern Glare Test (PGT), in which a

pattern likely to induce PRVS is presented to the subjects who report the occurrence of the visual

disturbance just experienced [26]. Comparing to previous methods, PGT has several advantages.

First, it is independent of the process of choosing a colour overlay. Second, it collects the sub-

jects’ immediate symptoms after viewing the patterns, instead of recalling the symptoms

encountered in the past. Third, the normative values for the normal population and specific

diagnostic criteria have been clearly established by the researchers who invented this test.

Therefore, in this study, we used the PGT to identify the subjects with PRVS first. Then we

investigated if the subject PRVS have significantly worse performance in detecting global

motion compared to the people without PRVS. Moreover, we tested whether practice can alle-

viate such impairment.

Materials and methods

Subjects

A total of 101 unselected university students (27 male vs. 74 female, aged 19–35) participated

in the study. The average spherical equivalent (SE) for all the eyes were -2.59 ± 2.43 D. The

average SE was -2.67 ± 2.47 D for the right eyes and -2.50 ± 2.45 D for left eyes. There was no

significant difference between the SE of the two eyes (p = 0.61, ranksum test). No information

about the prevalence of specific learning difficulties, migraine, epilepsy, and medications was

collected. All subjects were informed about the details of the study and written consent was

obtained. This study protocol was approved by the Institutional Review Board of the Nova

Southeastern University.

Pattern glare test

Whether a subject has PRVS was determined with the Wilkins & Evans Pattern Glare Test [36].

In short, a field of horizontal stripes of low (0.5 cycles per degree), middle (3 cpd), and high (12

cpd) spatial frequencies (SF) was displayed. A grating with a middle range SF (3 cpd) served as

the main test, which is expected to elicit the most visual discomfort. In addition, the pattern glare

test had two more control gratings. The one with the lowest frequency (0.5 cpd) was designed to

filter out the subjects who would be highly suggestible and report many visual distortions even

when they perceived none. The one with a high frequency (12 cpd) was designed to filter out the

distortions caused by optical reasons. The subjects were asked to keep their fixation on a dot at

the center of the grating for about 5 seconds, and then record any distortions seen on the record

sheet. A subject with a score of> 3 on the middle SF pattern or a score of> 1 on the difference

between mid and high SF patterns (mid—high) was defined as having PRVS [26].

Global motion test

The threshold to detect global motion was measured with a random dot kinematogram. A

total of 200 white dots, each with high luminance (80 cd/m2), were presented on a low
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luminance (0.3 cd/m2) background. The display was calibrated with a luminance meter (LS-

100; Konica Minolta, Osaka, Japan). The stimulus was viewed binocularly from a head and

chin rest. All stimuli was generated in Matlab (version 2012a, The MathWorks Inc., Natick,

MA) using Psychophysics Toolbox and displayed on a BenQ LCD 27-in monitor (BenQ Cor-

poration, Taipei, Taiwan) with a resolution of 2560 × 1440 pixels and a 60 Hz refresh rate [37,

38]. The tests were performed at a distance of 60 cm with a display size of 53 × 31 degree. The

moving dots were presented within a 12 degree circular window and consisted of two kinds.

The signal dots moved coherently towards the same direction, while the noise ones moved in

random directions with an angular velocity of 5.0 deg/s collectively. A single dot size sub-

tended 0.16 degree, with each dot having a lifetime of 200 ms (12 movie frames), after which

the dot disappeared and was then regenerated at a random location within the circular win-

dow. The duration of each trial was 500 ms (Fig 1).

Observers were asked to identify the direction of the perceived global motion, i.e. up vs.

down, in a single-interval identification paradigm. An experimental trial consisted of the fol-

lowing sequence: (1) A white fixation cross appeared on the screen, (2) the fixation cross disap-

peared and the stimulus was presented for 500 ms; (3) a text prompt appeared until the subject

responded by pressing one of two keys on a keypad, up or down; and (4) the text disappeared

and audio feedback was provided to indicate the completion of a trial. The coherence of the

moving dots, that is the percentage of signal dots, was adjusted according to a 3-down-1-up

staircase with a beginning coherence of 100%. The threshold was estimated from the arithme-

tic mean of the last 6 reversals with 8 reversals in total per test. The test was repeated 5 times

continuously, and was repeated once again after a 1-month interval.

One person collected all the data of pattern glare test and another person collected global

motion test results. Those two persons were masked from each other. The participants were

also masked.

The agreement between pattern glare test and global motion

All statistical analyses were performed using SPSS statistical package 19 (SPSS, IBM, Chicago,

IL, USA). To compare the threshold to global motions, which did not follow a normal distribu-

tion as confirmed with the Kolmogorov-Smirnov test, a Mann-Whitney U test was used. A

receiver operating characteristic (ROC) curve was employed to evaluate the agreement

between the two tests at baseline, after 5 sessions of training, and after the 1-month break. The

area-under-the-curve (AUC) was used as the index to reflect the goodness of the agreement.

Statistical significance was defined as p< 0.05.

Results

Pattern glare data

Based on the criteria, 72 subjects were classified as normal without PRVS and other 29 were

classified as subjects who experienced PRVS. Their scores are summarized in Table 1. G1 to

G3 presents the average number of visual illusion experienced while viewing the gratings with

low, middle, and high SF respectively. G2-G3 indicates the difference in numbers of illusion

experienced viewing gratings of middle SF versus grating of high SF.

Global motion

All subjects were tested for the threshold to detect global motion 5 times. The baseline thresh-

old, the threshold measured during the first session, in the subjects with PRVS was signifi-

cantly higher than that of the normal subjects (Fig 2 and Table 2). However, the difference was

only about 0.22. Over the sessions, a decrease in the threshold was apparent in the normal
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subjects. The improvement ratio (IR) was calculated as the (Threshold 1st session—Threshold

5th session)/(Threshold 1st session). The mean IR in the normal was 0.483 ± 0.279, with 87.5%

(63/72) subjects having IR> 0.2, and 80.6% (58/72) subjects having IR > 0.3. In contrast, the

decrease of threshold was much smaller in the subjects with PRVS. The mean IR was

0.075 ± 0.207 (p< 0.001), with only 24.14% (7/29) subjects having IR> 0.2, and 10.34% (3/29)

subjects having IR > 0.3. After 5 sessions of tests, the threshold in the subjects with PRVS was

significantly higher than that in the normal subjects (Table 2). The difference became much

larger (0.47), instead of disappearing.

To test if the increased difference between normal and PRVS subjects persists after a period

without training, the threshold to detect global motion was evaluated again after giving each

subject a break for a month (Fig 3). For the normal subjects, the threshold rebounded to a level

similar to the third training session (p = 0.542), which was significantly lower than the baseline

(p< 0.001). In other word, the effect of practice was partially retained in non-PVRS subjects.

In the subjects with PRVS, the threshold rebounded to a level similar to the baseline

Fig 1. Stimulus and experimental procedure. (A) Kinematogram with different levels of coherence with dots moving

in the same direction presented as filled one. (B) Experimental procedure. (C) An example of results obtained from a

staircase with a 3-down-1-up paradigm.

https://doi.org/10.1371/journal.pone.0193215.g001

Table 1. Scores on the pattern glare test.

Score Normal PRVS P value

G1 0.514 ± 0.769 0.828 ± 0.889 0.079

G2 1.723 ± 1.077 3.862 ± 1.093 < 0.001

G3 2.111 ± 1.295 2.828 ± 1.891 0.031

G2-G3 -0.389 ± 1.082 1.035 ± 1.179 < 0.001

Values are presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0193215.t001
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Fig 2. The thresholds to detect global motion reduced after practice. Top panels: Line plot illustrating the changes

in threshold to detect global motion with training sessions in normal subjects (A) and those with PRVS (B). Gray lines

represent individual subjects’ data and colored symbols represent mean values after each session. Bottom panel:

probability density plot for the threshold to detect global motion after the 1st session (C) and the 5th session (D). Blue:

normal subjects; red: subjects with PRVS.

https://doi.org/10.1371/journal.pone.0193215.g002

Table 2. The thresholds to detect global motion after each session.

Sessions Normal PRVS U value P value (2 tailed)

1st 0.617 ± 0.228 0.832 ± 0.098 411 < 0.001

2nd 0.511 ± 0.229 � 0.806 ± 0.127 297 < 0.001

3rd 0.429 ± 0.219 � 0.814 ± 0.113 146 < 0.001

4th 0.333 ±0.163 � 0.789 ± 0.132 53 < 0.001

5th 0.291 ± 0.149 � 0.767 ± 0.170 71.5 < 0.001

A month later 0.407 ± 0.216 � 0.843 ± 0.169 156.5 < 0.001

Values are presented as mean ± standard deviation.

� Indicates a significant difference from the threshold obtained from the 1st session.

https://doi.org/10.1371/journal.pone.0193215.t002
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(p = 0.485). The difference (0.44) between the normal subjects and subjects with PRVS, after a

break for a month, was still larger than the difference found at the baseline (0.22).

Agreement between pattern glare and global motion

ROC analysis was performed after each session to investigate the agreement between the pat-

tern glare test and the global motion test in distinguishing subjects with PRVS from the normal

subjects (Fig 4). With a chosen criterion for global motion threshold, a subject with a higher

threshold was classified as having PRVS and a subject with a lower threshold was classified as

normal. This result was compared to the results from the pattern glare test to calculate the sen-

sitivity and specificity. As the criterion was systemically varied, a ROC curve was constructed

and the AUC was calculated as 0.792 at baseline and it improved over the sessions. After 4 ses-

sions of training, it reached a value of 0.973 and then further practice did not improve it. The

ROC analysis after the 5th session suggested an optimal cut-off criterion and a threshold of 0.6

of coherence to detect the global motion, with 94.4% specificity and 86.1% sensitivity. Due to

the rebound of threshold in both normal and subjects with PRVS, the AUC dropped to 0.875,

which as comparable to the AUC value after the 2nd session (0.852) in the first visit.

Discussion

Our results demonstrated that, at baseline, the subjects with PRVS had a higher threshold than

normal subjects in detecting global motion. For most of the normal subjects, but for only some

of the subjects with PRVS, the thresholds decreased over sessions of practice. The difference

between normal and PRVS subjects became much larger after 5 sessions of practice. The

results distinguish PRVS subjects from the normal ones and match well with results from pat-

tern glare test, particularly after practice, with an AUC of 0.964 after 5 sessions.

Comparison to previous studies

The results from previous studies [34, 35] and current study form a continuum on the perfor-

mance of detecting in global motion with PRVS. At one extreme, Simmers et al reported no

Fig 3. Threshold to detect global motion measured after a break for a month.

https://doi.org/10.1371/journal.pone.0193215.g003
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difference between subjects with RPVS and normal subjects. At the opposite extreme, our

revealed showed persistence impairment in performance even after five sessions of practice. In

the middle, Conlon’s results showed significantly worsen performance that disappeared after

second test. The difference among those three studies could be partially be explained by the

following factors.

First, the criteria used to establish subjects with PRVS are different. In Simmer’s study, sub-

jects who voluntarily used the color overlay over 6 months were recruited. In Conlon’s study,

visual discomfort was assessed with the combination of two methods. One is the Visual Dis-

comfort Scale [39], which measures the retrospective reports on visual discomfort. The other

one is a 3-points rating scale to rate the immediate somatic and perceptual unpleasantness of a

horizontal square-wave grating with spatial frequency at 4-cycles/degree, without the control

stimuli at low and high spatial frequencies. Subjects score 50% or greater on both measures are

classified as visual discomfort. In our study, the responses to three spatial frequencies were col-

lected [26].

Fig 4. ROC analysis showing agreement between global motion test and pattern glare test. ROC curves after the

first session (A), the 5th session (B), and after a break for a month (C). The AUC was plotted as a function of numbers

of sessions (D). Orange, sessions in the first visit; purple, after a 1-month break.

https://doi.org/10.1371/journal.pone.0193215.g004
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Second, in our study and Simmer’s study, only one field of dots were used and subjects

were required to detect the direction of the coherent motion. In Conlon’s study, two panels

each with 300 white dots were presented simultaneously, with one containing variable percent-

age of dots moving coherently and the other one containing randomly moving dots only. The

subject’s task was to select the panel that containing the coherent motion. With the simulta-

neous presence of the target panel and the reference panel, it becomes a discrimination task,

instead of detection task that is harder. This might explain the observed large improvement of

threshold in subjects with visual discomfort.

Third, in Conlon’s study, the subjects were only tested twice on two sessions. As shown in

our study, even after the second session of tests, there was still some overlap between the nor-

mal subjects and the PRVS subjects since the AUC was 0.852. Considering with the relative

smaller sample size in Conlon’s study (n = 17 for normal subjects with visual discomfort), it is

highly possible to get a result showing no statistical difference.

Fourth, the parameter values used for global motion tests were different in those studies. It

is known that parameters including dots numbers, dots density, dots luminance, moving

speed, etc., could influence the measured threshold [40, 41]. In Simmer’s test, both black and

white dots were used. There are fewer dots (100 vs. 200 in ours) moving at lower speed (2.5

deg/sec vs. 5 deg/sec in ours). The dots subtended over smaller circular space (4-degree vs.

12-degree in ours). Each dot in Simmers’ study is smaller (0.03 deg vs. 0.16 deg in ours) and

has shorter lifetime (26 ms vs. 200 ms in ours). It is possible that visual stimulus in our study

could have triggered PRVS in the sensitive subjects, while the stimuli used in Simmers’ study

did not. With or without color overlay, the subjects’ performance in Simmers’ study did not

show any significant difference, perhaps supporting the notion that Simmers et al.’s motion

test did not elicit symptoms of visual stress but our did.

Close association between the subjective test and objective test

It is important to note the close agreement between the pattern glare test and global motion

test in distinguishing subjects with PRVS from the normal subjects. Pattern glare is based on

an individuals’ subjective report of perceived symptoms [26]. Our global motion test is a

2-alternative forced choice test that minimizes the influence of subjective bias of individual

subjects. Significantly in our study, objective results matched results from the subjective assess-

ment. This close association could be due to underlying neural mechanism. The prevailing

explanation for PRVS is the cortical hyperexcitability [14, 42]. In normal subjects, it has been

proved that, for noise-free tasks, increased cortical excitability by external stimulation

improves the performance and decreased cortical excitability deteriorates the performance

[28]. More importantly, for tasks with noise, reduction of the cortical excitability actually

enhances the performance. In PRVS, a stimulus-driven cortical hyperexcitability could impair

one’s capability to separate the noise from signal. According to these, the altered motion per-

ception in subjects with PRVS would be more reasonably interpreted as the effect of cortical

hyperexcitability, rather than the cause.

Global motion is processed in the dorsal pathway, especially the V5 area where the neurons

are shown to have larger receptive fields [43, 44]. By using the global motion, our study and

others suggested that PRVS affects visual processing outside the primary visual cortex [35]. It

also suggested repetition affects visual tasks in the extrastriate areas differently in the people

with PRVS than the normal populations. Further study is desirable to better understand the

effects of repetitive visual processing tasks in the subjects who are deficient in inhibitory sup-

pression such as migraine and PRVS. This type of visual stimulus is of greater significance as

daily tasks increasing consist of high contrast computer generated images.

Pattern-related visual stress and global motion
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One precaution that we should keep in mind is that, even after 5 sessions of training, the

sensitivity to distinguish subjects, with a cut off threshold of 60% coherence to detect global

motion, was still only 86.1%, not quite as high as the specificity. In other words, there is a par-

tial overlap between the normal population and the population with PRVS. Or it could simply

be that global motion processing and PRVS share certain portions of the neural mechanism,

not the entire neural underpinnings.

Some other noticeable points in this study

Several previous studies on perceptual learning reported that the subjects with worse perfor-

mance at the start of training tend to improve much more than those with better performance

[45, 46]. That was the case for the normal subjects in our study, but was not true for the sub-

jects with PRVS. The improvement ratio in subjects with PRVS was significantly smaller than

that in normal subjects. It is possible that, in subjects with PRVS, repetitive exposure to the

visual stimuli would further increase the cortical excitability, which in turn would counter act

the learning effects from practice and lead to small or no improvement at all.

Some previous studies on perceptual learning have tried to equate the performance levels

before training by scaling the stimuli to see if that could lead to an equivalent amount of

improvement throughout the training [47]. In this study, we purposely used subjects who are

naïve to psychophysical experiment to remove the potential interference of previous learning

experience. This allowed us to better reveal the differences of the initial condition between the

normal subjects and subjects who are sensitive to pattern glare. Every subject started the test

with a 100% coherence level and followed the same 3-down-1-up procedure. We did not adjust

the initial values in the following session.

It would be interesting to determine how long the positive effect of perceptual learning

could last. In our study, we did not intentionally test the lasting duration. We simply noticed

that in the evaluation 1 month after the first 5 sessions of training, the subjects’ performance

showed a significant regression. However, they were still significantly better than the values

obtained at the first measurement, which mean the learned effect was retained for at least 1

month. For the subjects who were sensitive to pattern glare, the rebound effect was not as dra-

matic as in the normal subjects. This does not mean that the subjects who were sensitive to pat-

tern glare retained the learned function better; it was simply due to the fact that the reduction

in threshold from the training sessions that occurred a month ago were not as great as those in

normal subjects to begin with. In other words, there was not much space for rebounding.

The limitations of current study

We compared our normal subjects with other studies to ensure that they are indeed normal.

For PGT test, the scores to gratings at all three spatial frequencies were within the normal

ranges established by Evans et al. The mean scores to gratings at low, middle, and high spatial

frequency were 0.52, 1.72, and 2.11 respectively, which were very close to the normative values

reported by Evans et al. (0.53, 1.59, and 1.82) [26]. Moreover, the difference between scores to

middle and high spatial frequency was -0.39 in our study and -0.23 in Evans’ study. For global

motion, the normal subjects mean thresholds (0.29 ± 0.15) were very close to those reported in

the studies with similar choice of parameters (0.37 ± 0.10) [28].

However, caution has to be applied that when interpret the findings on the subjects with

visual stress. From above comparison, it is clear that when the diagnosis of visual stress relies

on either symptoms or signs, the findings may vary. When this study was already in the data

collection stage, no unified diagnostic criteria with balanced utilization of signs and symptoms

were available. Fortunately, in two recently published studies [48, 49], Evans and coworkers
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have filled this gap. They identified the six most important symptoms include words moving,

merging, and fading, patterns and shadows in text, text standing above page, and discomfort

to flickers. They also pointed out the three most important signs include voluntary use of a

color overlay over 3 month, an improvement more than 15% in Wilkins Rate of Reading Test

when using colored filters, PGT result greater than 3 with mid-spatial frequencies. It is recom-

mended that at least three of the six typical symptoms and two of the three signs should be

present for a visual stress diagnosis. The emergence of such diagnostic standard will greatly

push forward the research in this field. Another point that we want to point out is that we

could not exclude the influence about the potentially co-existing conditions, such as certain

learning difficulties, migraine, epilepsy, and medications on the global motion results.

Conclusions

Subjects with PRVS are less sensitive at detecting global motion. This difference becomes sig-

nificantly greater, instead of disappearing, over sessions of practice.
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