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Abstract

In this study, porous bioceramic scaffolds are developed with two materials, β-tricalcium

phosphate (β-TCP) and hydroxyapatite (HA), with order of 10 micron-scale surface pores

and approximately 40–60% volume porosity fabricated by soft templating of oil. Suitable oil

and surfactant concentrations are determined for the creation of particle-stabilized emul-

sions with nearly spherical pores, as well as the capillary suspensions with elongated pores.

The bioceramic scaffolds surfaces are then assessed for their ability to support osteoblast

adhesion and growth, for applications as scaffolds for bone regeneration. The porous scaf-

folds’ surfaces are compared to denser surfaces of the same material, where only submi-

cron porosity arise from partial sintering, to interrogate the impact of surface topography on

cell behavior. On the denser surfaces where no large pores are templated, β-TCP supports

a larger number of osteoblasts compared to HA. Templated surface porosity significantly

impacts the morphology and growth of the osteoblasts. Amongst the pore morphologies, the

capillary suspension demonstrates enhanced biological function, whereas the emulsion per-

forms the poorest. The β-TCP capillary suspension scaffold surface appears to provide the

most favorable conditions for the osteoblasts.

1. Introduction

Global deaths and disability-adjusted life-years (DALYs) attributed to fractures from bone dis-

eases (such as osteoporosis and low bone mass) have more than doubled in the last thirty years

[1], exerting serious economic and social burdens on populations worldwide [2]. In orthopae-

dic repair and replacement, allografts and autografts currently constitute the “gold standard”.

However, they are associated with shortcomings such as immunogenic rejections and limited

availability [3]. With an improving life expectancy translating to an expected increase in mus-

culoskeletal diseases and injuries worldwide, it is imperative to develop high-performing syn-

thetic bone substitutes to meet the demand [4].

The role of synthetic bone substitutes has fundamentally shifted from tissue replacement to

tissue regeneration, tapping into our ability to self-heal with a 3D scaffold that provides
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temporary mechanical support for physiological loads, as well as stimulates cell growth [5].

Currently, metals are used for repairing load-bearing bone defects such as in bone fixation

plates and screws [6, 7], while polymers (including hydrogels) are the most commonly 3D-

printed material (86%) for medical applications [8]. Although they are biocompatible and

mechanically stable, they are bioinert and either have limited bioresorptive capabilities [9] or

produce acidic degradation products which increase the risk of inflammation [10–12]. Ceram-

ics such as hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) closely resemble the

mineral component of natural bone and provide excellent biocompatibility as well as better

bioactivity. These calcium phosphates have demonstrated good bone ingrowth in non-critical-

size defects most likely due to their superior bioresorbability [13]. Their ability to dissolve over

time, releasing calcium and phosphate ions, is believed to be their source of bioactivity [14].

On the other hand, ceramics are inherently brittle and have limited load-bearing abilities.

Dense calcium phosphates have a Young’s modulus of 40–117 GPa [15], which is higher than

the reported range of 0.02–5 GPa for trabecular bone [16]. The elastic modulus for medical

beta titanium alloys is in the range of 14–85 GPa [17]. It is important to match the elastic mod-

ulus of the implant to the surrounding bone otherwise stress shielding may occur, which is a

common issue with conventional metallic implants [18, 19]. However, it may be possible to

overcome these issues by producing multiscale porous structures that have a lower modulus

and enhanced blunting of crack tips when encountering pores [20]. This is the primary reason

why dense hydroxyapatite and TCP are not typically used in bone healing and regeneration

applications, except when in granular configuration. Instead, porous ceramics with modulus

similar to trabecular bone are typically used. This is the approach we apply in the current

research.

The ability to use porous ceramic formulations to better match the mechanical properties

of native bone tissue is a promising avenue of research. However, cells are highly sensitive to

the physical cues in their micro-environment, including surface roughness and topographical

features. For instance, cell culture experiments have shown that microscale and nanoscale fea-

tures, such as surface roughness, grooves, or nanopatterns can enhance cell adhesion, prolifer-

ation, and differentiation. These features have been created using techniques such as grinding

[21, 22], electron beam irradiation [23], anodization and chemical etching [24], however such

techniques are generally limited to accessible surfaces. An interconnected, open porous struc-

ture is advantageous for the transport of nutrients and metabolites. In other words, fluid per-

meability is essential for improved bone ingrowth [25]. There are many approaches to

producing internally connected porosity in ceramics [26–28], such as solid porogen leaching

[29] and freeze-casting [30, 31]. Porogens are referred to herein as a sacrificial material

included within the main structure to form pores after it is removed, for example by pyrolysis

or dissolving. Some of their shortcomings respectively include smaller and fewer pores on the

surface than in the interior [29], and difficulty achieving homogeneity throughout the scaffold

[32]. Other techniques to create open cellular networks include foam impregnation molding,

however during calcination of the foam template, cracks often appear [33]. In this work, we

apply a soft porogen templating technique with the purpose of fabricating a homogeneous

interconnected porous structure. Interconnected open-cell pore structures created by soft

porogen templating has also been reported for materials such as alumina [20, 40, 86], hydroxy-

apatite [81], without issues reported of cracking. The specific goal of this research is to under-

stand the various types of porous ceramic structures that can be generated via oil templating,

and to understand the impact of the surfaces of these structures on osteoblast cell behaviour.

This work is important because the fundamental interaction of cells with the material must be

established so that appropriate formulations can be selected for device fabrication. Oil was

used as the pore forming agent instead of air, due to the smaller oil droplet sizes achievable
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than air bubbles [34]. The oil, binder and surfactants are completely burned out during sinter-

ing of the material at 1100˚C. Therefore, only the ceramic would be left in the scaffolds, so the

scaffolds are expected to be biocompatible. Micropores smaller than 10 μm have been shown

to enhance protein adsorption and ion exchange [35]. The authors have previously demon-

strated with oil-templated alumina-stabilized emulsions that micropore size and porosity can

be controlled by modifying formulation parameters, such as the concentrations of oil and sur-

factant, particle size and mixing speed [40]. Other researchers have also proven the controlla-

bility of the pore formation process in a variety of ceramics by particle stabilization of oil

droplets [26, 27, 34, 48]. In this study, we create two types of structures. The first is the particle

stabilized emulsion (or Pickering emulsion), and the second is another structure which may be

the capillary suspension or bijel structure [36–38], but we will refer to it here as capillary sus-

pensions. These two structures produce two different surface pore morphologies. A schematic

illustration of these two microstructures is shown in Fig 1. We then investigate the in vitro
osteoblast performance on three materials and two surface microstructures.

2. Materials and methods

2.1 Materials

β-tricalcium phosphate (β-TCP) and Hydroxyapatite (HA) was obtained from Plasma Biotal

Limited, UK. Polycaprolactone (PCL) with number-averaged molecular weight of 80,000 was

obtained from Sigma Aldrich, as a control. The particle size distribution of the ceramic pow-

ders (dispersed into RO water) was measured using a laser diffraction particle size analyzer

(Mastersizer 3000, Malvern, UK). A refractive index of 1.63 and an absorption index of 2 were

utilized. Before measurement, ultrasound of 20 W was applied to the suspension for 1 min, as

well as mechanical stirring at 1000 rpm (Hydro EV, Malvern, UK). Five measurements were

taken per replicate, and a total of three replicates were measured. The size statistics of the parti-

cles and their distributions are presented in the supplementary materials. The d50 of the β-TCP

is 1.5 μm and the HA is 3.0 μm.

Fig 1. Schematic illustration of (a) particle stabilized emulsions where weakly hydrophobic particles (black) stabilize

oil droplets (gold) in an aqueous (blue) suspension of particles and (b) capillary suspensions where strongly

hydrophobic particles produce a bicontinuous interconnected two-phase oil-water system, where perhaps the particles

partially or completely transfer into the oil phase. (Note this description of the capillary suspensions is slightly different

from our previous hypothesis published as Fig 1 in reference [39]).

https://doi.org/10.1371/journal.pone.0318100.g001

PLOS ONE Surface pore morphology of bioceramic scaffolds through colloidal processing for bone tissue engineering

PLOS ONE | https://doi.org/10.1371/journal.pone.0318100 February 27, 2025 3 / 21

https://doi.org/10.1371/journal.pone.0318100.g001
https://doi.org/10.1371/journal.pone.0318100


Polyvinyl alcohol (PVA) was obtained from Sekisui Speciality Chemicals as Selvol205S, for

use as a binder. Cetyltrimethylammonium bromide (CTAB) was obtained from Sigma-

Aldrich, for use as a surfactant. Sunflower oil (Dhara sunflower oil, Parsram Foods Pty Ltd,

Malaysia) was used as the soft porogen.

2.2 Preparation of colloidal ceramic suspensions

Please refer to Fig 2A–2A for a schematic of this procedure. Polyvinyl alcohol (PVA) (4 wt.%

by solids weight), used as a binder for improved green strength, was dissolved in MilliQ water

(Fig 2A). The pH was adjusted to 10.5 with sodium hydroxide, then rolled overnight. An aque-

ous suspension was made by stirring in 35 vol.% β-TCP powder into the alkaline PVA solution

(Fig 2B). The ceramic suspension was adjusted to approximately pH 9.5 with sodium hydrox-

ide. To achieve pH equilibrium and a homogeneous suspension, it was rolled overnight. A

final adjustment to pH 9 was conducted before the addition of surfactant. Surfactant, as well as

sunflower oil, were added to these suspensions to produce either particle-stabilized emulsions

Fig 2. Schematic illustration of processing procedures, presenting (a) addition of polyvinyl alcohol (PVA) to water, (b) addition of ceramic powders to the

PVA solution, (c) addition of surfactant cetyltrimethylammonium bromide (CTAB) to TCP suspensions, (d) thin slip casting, (f) drying and (g) lastly sintering

of specimens. HA-D undergo steps a, b, e, f and g; TCP-D undergo steps a, b, c, e, f and g; TCP-E and TCP-CS undergo all steps a to g. (h) Procedure for the

preparation of PCL specimens by dip-casting, showing the dipping of a stainless steel rod into a PCL melt pool, cooling and trimming of specimens to size.

Colours and dimensions used in this schematic are not representative and are only for illustrative purposes.

https://doi.org/10.1371/journal.pone.0318100.g002
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or capillary suspensions similar to those previously reported [39, 40] and described in Fig 1.

Cetyltrimethylammonium bromide (CTAB) was obtained from Sigma-Aldrich and added as a

weight percentage of total solids (Fig 2C). As shown below, the 0.04 wt.% produced particle

stabilized emulsions referred to as TCP-E, while the 0.06 wt.% produced capillary suspensions

referred to as TCP-CS. For the denser β-TCP sample where only submicron porosity resulted

from partial sintering (henceforth denoted as TCP-D), 0.06 wt.% CTAB was added to increase

its viscosity. For the dense hydroxyapatite sample (henceforth referred to as HA-D), the above

protocol applies except that a lower solids fraction of 20 vol.% was used and no surfactant was

added.

2.3 Preparation of particle-stabilized emulsions and capillary suspensions

Oil templating was used to increase the amount of porosity in the ceramic materials. The

ceramic suspension was stirred with a whisk coupled to an overhead mixer (RZR 2020, Hei-

dolph, Germany) at a speed of 400 rpm (Fig 2D). Sunflower oil (Dhara sunflower oil, Parsram

Foods Pty Ltd, Malaysia; density = 0.90 g/cm3) was slowly added into the suspension, over a

period of 5 min. The amount of oil, as a volume percentage of total emulsion or capillary sus-

pension, was 40 vol.% for the emulsion and 60 vol.% for the capillary suspension.

2.4 Thin slip casting

The ceramic pastes were spread out on a slab of plaster of Paris and the top surface flattened

out with a blade to a height of about 5 mm. Molds of 12 mm diameter were used to cut out

cylindrical samples (Fig 2E).

2.5 Sintering

Samples were dried in air for more than 24 h under ambient conditions (Fig 2F). To avoid

warpage of the samples, no additional steps were undertaken to remove the oil phase before

sintering. Pressureless sintering in air was conducted in an electrical furnace (Model 1700,

Tetlow Kilns & Furnaces Pty Ltd, Australia). The temperature increase was set at 5˚C/min and

the ramp down at 10˚C/min. Additives were pyrolyzed at 350˚C for 1h, followed by sintering

at 1100˚C for 1h (Fig 2G).

2.6 Preparation of PCL samples

Please refer to Fig 2H for a schematic of the preparation procedure. Polycaprolactone (PCL,

Sigma Aldrich) with number-averaged molecular weight of 80,000 was used as a control for

comparison with the ceramic samples. The PCL pellets were melted, then a stainless-steel rod

with a flat end of 12.5 mm diameter was dipped in. The dip-cast PCL samples cooled and solid-

ified in air at room temperature, before being detached and having any edges removed.

2.7 Density measurements

All measurements were conducted on sintered cylindrical samples. Open porosity refers to

pores which are accessible by water from the exterior of the sample, whereas closed pores are

completely surrounded by solid without necks to the exterior. “Dry weight” refers to the mass

of the sample in air. The samples are then boiled in water for about 30 minutes to allow water

to penetrate any open pores. After boiling and cooling down, the sample is weighed while sub-

merged in water, which is the “submerged weight”. After removing the sample from the water

and gently blotting off excess surface water, the sample is weighed again in air, which is the

“saturated weight”. The Archimedes’ apparent density (ρA) was measured by the Archimedes’
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principle from the dry and submerged weights (see Eq 1), and considers only the volume of

the solid and closed pores. The Archimedes’ bulk density (ρB) was calculated from the dry, sub-

merged and saturated weights (see Eq 2), therefore it also includes the volume of open pores.

Total porosity is determined from the Archimedes’ bulk density (ρB) and the theoretical den-

sity (ρTD) of β-TCP at 3070 kg/m3 and hydroxyapatite at 3160 kg/m3 (see Eq 3). Open porosity

is calculated from the dry, submerged and saturated weights as per Eq 4. Closed porosity is the

total porosity less the open porosity (see Eq 5). 5 replicates were measured for the Archimedes

method.

rA ¼
Dry weight

Dry weight � Submerged weight
1

rB ¼
Dry weight

Saturated weight � Submerged weight
2

Total porosity ð%Þ ¼ 1 �
rB

rTD

� �

� 100% 3

Open porosity %ð Þ ¼
Saturated weight � Dry weight

Saturated weight � Submerged weight
� 100% 4

Closed porosity ð%Þ ¼ Total porosity ð%Þ � Open porosity ð%Þ 5

The geometric bulk density (ρGB) was determined from the dry weight and calculation of

the volume from the mean of three measured values each of diameter (d) and height (h), as per

Eq 6.

rGB ¼
4� Dry weight

pd2
6

2.8 Morphology characterization

A Scanning Electron Microscope (SEM) (FlexSEM 1000, Hitachi, Japan) was used to image

the fractured surfaces of sintered samples. Surface pore sizes were measured from the micro-

graphs using image analysis software, Fiji [41], a distribution of ImageJ [42], as a measurement

of Feret’s diameter of 100 locations per sample. The Feret’s diameter is the longest distance

between any two points along the region-of-interest boundary [43].

2.9 Osteoblast attachment and proliferation

2.9.1 Seeding and culturing of primary human osteoblasts. Normal primary human

osteoblast cells (HOBs) were obtained from Lonza Biosciences (Walkersville, MD). The cells

were cultured in Osteoblast Growth Medium Bulletkit (OGM, Lonza, USA), which contains

basal medium, supplemented with 10 vol.% fetal bovine serum (FBS), 0.1 vol.% gentamicin/

amphotericin-B and 0.1 vol.% ascorbic acid. The HOBs were cultured at 37˚C with 5% carbon

dioxide and complete medium changes were performed every two to three days. All HOBs

used in the experiments were at passage six. After the cells reached 80%-90% confluence, they

were trypsinized with Trypsin/EDTA (Lonza, USA) and neutralized with Trypsin Neutralizing

Solution (Lonza, USA), followed by centrifugation at 220g for 5 minutes to pellet the harvested

cells. The cells were next diluted in OGM to a cell density of 5.6 × 105 cells/ml. The specimens

were placed in 24-well plates (Corning, Sigma Aldrich), which were pre-coated with Pluronic
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F-127 (Sigma Aldrich, USA) to reduce cell attachment to the wells. The HOBs were seeded on

the disc specimens with an initial cell density of 6.4 × 104 cells/cm2 per top surface area. The

cell suspension was gently dripped onto the specimens and incubated for 90 min to allow for

cell adhesion. Next, OGM was added to the wells at 3.3 × 104 cells/ml, based on the number of

initially seeded cells per specimen.

2.9.2. Quantitative cell viability. HOB viability was evaluated after 7 days of culture,

using the alamarBlue assay, a resazurin-based assay, for quantitation of metabolic activity

(n = 3). Before the assay, the specimens were rinsed with PBS and transferred to new well

plates to avoid measuring the metabolic activity of any cells that may be adhered to the well

plate. Resazurin sodium salt (Sigma Aldrich, USA) in PBS at a concentration of 0.15 mg/ml

was mixed with OGM at a ratio of 20:100 Resazurin solution to OGM. 1 ml of final working

solution was placed in each well (including a blank well), followed by incubation for 4h. 100 μl

each was transferred to a black well plate, and the absorbance was measured using a microplate

reader (GloMax Explorer, Promega, USA) at the 560 nm wavelength. The results were normal-

ized to the geometric surface area of the respective sample, calculated from the mean diameter

of five replicates, with each replicate measured thrice.

2.9.3. Confocal microscopy. Laser scanning confocal microscopy (A1R+, Nikon) was

used to visually assess cell morphology and corroborate proliferation results. The scaffolds

were rinsed and transferred to a new well plate. Each rinse was conducted with three washing

cycles using PBS. The cells were fixed in 4 w/v% Formalin for 10 min at room temperature,

then rinsed thrice with PBS. Permeabilization was conducted using 0.2 v/v% Triton X-100

solution in PBS for 10 min at room temperature. To block non-specific binding, the scaffolds

were immersed in 1w/v% bovine serum albumin (BSA) (Sigma Aldrich, USA) solution in PBS

for 1h. ActinRed 555 ReadyProbes reagent (Invitrogen, USA) for 30 min at room temperature

was used to stain the F-actin in the cytoskeleton, then rinsed. To stain collagen Type I (extra-

cellular matrix laid by the HOBs), cells were labelled with a rabbit anti-collagen I antibody

(abcam, UK) at 1/250 dilution at 4˚C overnight, followed by a rinse and a goat anti-rabbit sec-

ondary antibody with Alexa Fluor Plus 488 (abcam, UK) at 1/500 dilution for 1h at room tem-

perature. The cell nucleus was counterstained with 40,6-Diamidino-2-phenylindole

dihydrochloride (DAPI) (Sigma Aldrich, USA) for 5 min at room temperature. After the final

rinse, scaffolds were gently patted dry, then mounted to 8-well chambered coverglass (Nunc

Lab-Tek II, ThermoFisher, USA) with SlowFade Antifade mountant (Invitrogen, USA). The

scaffolds were imaged at 20× magnification in air.

2.10 Statistical analysis

All data are represented as the mean value ± standard error of the mean. A one-way analysis of

variance (ANOVA), Fisher’s method for multiple comparisons, was used to evaluate differ-

ences among the groups. The Games-Howell method was used for the analysis of pore diame-

ters where variances were not assumed equal amongst the groups. A p-value of< 0.05 is

considered statistically significant. On the plots, a single asterisk (*) denotes p< 0.05, a double

asterisk (**) denotes p� 0.01, and a triple asterisk (***) denotes p� 0.001. Statistical calcula-

tions were processed using the Minitab1 Statistical Software [44]. All plots and charts were

made with the Origin Pro software [45].

3. Results

3.1 Physical and chemical characterization

The median diameter, d50, of the β-TCP is 1.5 μm and 3.0 μm for the HA. The particle size dis-

tribution plots as well as other details can be referred to in the S1 Fig and S1 Table. The X-ray
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diffraction graph as presented in S2 Fig shows clearly that the remaining material after pyroly-

sis is β-tricalcium phosphate. The oil and CTAB surfactant were pyrolyzed without affecting

the chemical composition of the β-tricalcium phosphate.

3.2. Density, porosity and mechanical behaviour

The sintered objects were cylinders of about 4 mm in height and 10 mm in diameter as shown

in S3 Fig in the supplementary materials section. The sintered ceramic materials’ density and

porosity was determined by geometric and Archimedes’ measurements as described above in

Section 2.7. The densities of the materials are shown in Table 1. The materials were generally

in the range of 40 to 60% of full density. The percentage of the volume which is porosity and

the distribution of that porosity as either open or closed is given in Fig 3.

The porous TCP-E and TCP-CS have similar total porosities of (60.3 ± 0.7)% and

(61.3 ± 0.5)% respectively. The dense TCP-D and HA-D have similar total porosities of (42.2±
1.1)% and (43.7 ± 0.5)% respectively. The open porosity for TCP-E is (53.2 ± 2.3)%, which is

again close to that of TCP-CS at (53.8 ± 1.2)%. The open porosity for TCP-D and HA-D are

lower at (34.4 ± 1.1)% and (36.5 ± 1.0)% respectively. The closed porosities for all four samples

are not statistically different, with means ranging from 6.82% to 7.48%.

Not surprisingly, the formulations of β-TCP and HA without oil (TCP-D and HA-D in Fig

2) have a lower amount of overall porosity. The formulations with introduced porosity

(TCP-E and TCP-CS) have means of total and open porosity which are statistically similar,

and the dense formulations (TCP-D and HA-D) are similar as well, whereas the pairwise com-

parisons between samples in these two sub-groups (porous versus dense) are significantly dif-

ferent with p< 0.001. The means of closed porosity for all four samples are statistically similar.

In other words, the materials processed with oil templating are lower in density and have more

open pores accessible from the exterior surfaces than the dense structures.

The mechanical properties of the TCP-CS material are reported in ref 73 as compressive

strength 1.39 MPa, flexural strength 1.09 MPa, compressive modulus, 26 MPa and flexural

modulus 440 MPa. The mechanical properties of the TCP-E and TCP-D materials are esti-

mated as described in the supplementary materials section and reported in S2 Table. The

mechanical properties of TCP-E are about twice those of TCP-CS while the mechanical prop-

erties of TCP-D are significantly higher at about 10 to 20 times those of TCP-CS. These

strength and modulus values are within the reported range of trabecular bone (strength rang-

ing around 0.5–30 MPa [46, 47] and an elastic modulus of about 20–5000 MPa [16]).

3.3 Pore morphology and size

The differences in pore morphology across the formulations are apparent in the electron

microscopy images presented in Fig 4. The emulsion formulation (TCP-E, Fig 4A and 4D)

produces pores that are formed by individual oil droplets so that the pore shapes are somewhat

Table 1. Density data measured by the Archimedes and geometric methods. TD: theoretical full density.

Sample Archimedes Apparent

Density

Archimedes Bulk

Density

Geometric Bulk Density

(g/cm3) (% TD) (g/cm3) (% TD) (g/cm3) (% TD)

TCP-E (emulsion) 2.62 85.4 1.22 39.7 1.11 36.1

TCP-CS (capillary suspension) 2.58 84.0 1.19 38.7 1.05 34.2

TCP-D (dense) 2.75 89.5 1.77 57.8 1.64 53.6

HA-D (dense) 2.72 86.2 1.73 54.7 1.67 52.8

https://doi.org/10.1371/journal.pone.0318100.t001
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like spheres [34, 39, 48] on order of 5 to 20 microns. Whereas the capillary suspension formu-

lation (TCP-CS, Fig 4B and 4E) produces pores of unequal aspect ratios because the oil exists

in the suspension as capillary bridges between particles. Although it is difficult to estimate the

length of the channels, they appear to be on order of 20 to 100 microns. In both samples cre-

ated from formulations with introduced porosity (see Fig 4D for TCP-E, and Fig 4E TCP-CS),

there appears to be ‘windows’ on the walls of the pores. This suggests that there is an intercon-

nected pore network where pores are connected by these ‘windows’, and internal pores possi-

bly accessible from the exterior via these networks. An image of a dense sample produced

without added oil (TCP-D) is also included in Fig 4C and 4F for comparison, which shows

only submicron-scale porosity from necking between particles during sintering. The general

surface topography for TCP-CS is much more varied than that for TCP-E and TCP-D.

Fig 5 show the median and distribution of pore size in each of the TCP samples (TCP-E,

TCP-CS and TCP-D). The pore sizes amongst the TCP samples with varying microstructures

show a statistically significant difference with each other, all pairwise comparisons revealing a

p-value of less than 0.001. The pores in the emulsion (TCP-E) are the largest, averaging

Fig 3. Means of percent of sample volume occupied by porosity in each formulation based on the Archimedes method, with error bars showing 95%

confidence interval. Open porosity refers to pores which are accessible externally, whereas closed porosity refers to pores which are fully within the material

without pore necks to the exterior. For total and open porosities, TCP-E and TCP-CS are statistically significantly higher than TCP-D and HA-D as indicated

by the asterisks (p< 0.001). p> 0.05 for all closed porosities. (Total porosity in this figure = 100%—Archimedes bulk density %TD in Table 1).

https://doi.org/10.1371/journal.pone.0318100.g003
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(13.50 ± 0.61) μm. The dense suspension (TCP-D) has the smallest pores of (0.98 ± 0.03) μm

diameter, within expectations as it does not have oil porogens to act as soft templates for pores.

Between these two extremes, lie the capillary suspension (TCP-CS) which has pore diameters

of (6.84 ± 0.23) μm. Do note that the elongated channels in TCP-CS are not included in these

measurements, as they meander, and it is difficult to ascertain their starting and ending points.

We believe that the larger oil droplets (seen in the emulsion) are not stable with increased sur-

factant and oil. Instead, the oil forms capillary, pendular and perhaps funicular bridges

between the particles which could produce capillary suspensions [49–52], perhaps associated

with primary phase inversion [40, 53]. Another possibility is the formation of a bijel structure,

but under these circumstances, the particles would remain primarily in the aqueous phase [36,

37]. These bridged structures form the channels visible in Fig 4B.

3.4 In vitro performance of osteoblasts on scaffolds

Fig 6 shows the metabolic activity of human osteoblasts on the scaffolds after 7 days of in vitro
culture, which is used as a proxy for cell number. All pairwise comparisons reveal a statistically

Fig 4. (a-f) Scanning electron micrographs of the as-fired surfaces of the β-TCP formulations at two levels of

magnification. (a and d) TCP-E (emulsion) displays mainly spherical pores (highlighted by white arrows), whereas (b

and e) TCP-CS (capillary suspension) has an uneven surface comprising elongated channels (highlighted by white

arrows) and smaller pores. (c and f) The surface of TCP-D (dense) is generally flat with largely submicron-sized pores.

(g, h, i) Confocal microscopic images with osteoblasts identified by the nuclei (blue), F-actin cytoskeleton (red) and the

collagen type I (green) extracellular matrix.

https://doi.org/10.1371/journal.pone.0318100.g004
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Fig 5. (a) Box plots of pore diameters–box indicates the 25% to 75% confidence interval, with the median line in the middle; whiskers show the

1.5 interquartile range; and dots beyond the whiskers denote outliers. (b-d) Histograms showing distribution of pore diameters of (b) TCP-E, (c)

TCP-CS, and (d) TCP-D (with inset at a different scale). Games-Howell post-hoc test revealed that all three samples are statistically significantly

different from each other with p< 0.001 for all pairwise comparisons.

https://doi.org/10.1371/journal.pone.0318100.g005
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significant difference except for TCP-E and TCP-D, TCP-E and HA-D, as well as TCP-D and

HA-D. When making a comparison of the three materials– β-TCP, HA and PCL–without the

larger templated pores, TCP-D and HA-D show similarly high metabolic activity, both with a

statistically significant increase from PCL-D. Therefore, β-TCP and HA appear to provide a

more conducive environment for osteoblasts than PCL. When compared to PCL-D as a con-

trol, all of the bio-ceramic samples, regardless of TCP or HA, with or without porous micro-

structure, facilitate significantly higher cell viability than PCL. Next, we compare the cell

viability on the three TCP microstructures (TCP-E, TCP-CS and TCP-D). We observed that

the type of porosity significantly impacted the osteoblast response. The highest metabolic

activity was recorded for TCP-CS, whereas TCP-E appeared to have the lowest level of meta-

bolic activity. TCP-D was found to perform worse than TCP-CS but similar to TCP-E.

The confocal images in Fig 7 are a visual indication of the anchorage and spread of osteo-

blasts on the sample surfaces. The osteoblasts are found mainly within the pores of TCP-E.

The cells are observed to be significantly elongated in TCP-CS, a marked difference from the

rounded cells found on the dense TCP-D, HA-D and PCL-D. TCP-D and HA-D show a more

homogeneous distribution of osteoblasts across the surface than the aggregated cells seen on

PCL-D. In terms of quantity, it is a visual confirmation of the assay results in Fig 6 that there

are more cells on the TCP and HA scaffolds than on the PCL. Collagen Type I was also visual-

ised in the confocal micrographs, as it is a main component of bone and important in the bone

remodelling process. All surfaces exhibited some degree of collagen staining, though notably,

Fig 6. Graph of metabolic activity of human osteoblasts after 7 days of incubation on scaffolds of varying microstructure (TCP-E, TCP-CS and TCP-D)

as well as different materials without templated porosity (TCP-D, HA-D and PCL-D). Solid bars illustrate the means and error bars represent the standard

error. All pairs show a statistically significant difference, except for TCP-E and TCP-D, TCP-E and HA-D, as well as TCP-D and HA-D.

https://doi.org/10.1371/journal.pone.0318100.g006
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the TCP surfaces showed the most robust collagen staining. Interestingly, the staining was cen-

tralised around the clusters of cells on the TCP-D and TCP-E surfaces, while it was more

evenly present on the TCP-CS surfaces.

4. Discussion

4.1 Influence of formulation on surface pore morphology

The 10 micrometre-scale, nearly spherical surface pores seen in Fig 4A and 4D are typical of

particle-stabilized emulsions (also known as Pickering emulsions), where the hydrophobized

solid particles decorate around the oil droplets at the oil-water interface and stabilize the drop-

lets as spheres. With an increase in surfactant adsorbed to the β-TCP particles, the hydropho-

bicity of the particles is increased, consistent with previous observations [40, 53]. When the

contact angle at the oil-water interface increases beyond the optimal angle to form particle-sta-

bilised emulsion droplets, it is possible that phase inversion occurs and the particles move into

the oil phase. Especially at a higher oil fraction, the oil forms bridges between particles to create

a particle network with bicontinuous interpenetrating oil and aqueous phases which produce

channels between the particles [39, 50, 51]. The channels formed by the individual phases act

as soft templates leaving behind elongated pores after pyrolysis, as described in Fig 1 and

observed in Fig 4B and 4E. Both the nearly spherical pores and elongated channels appear to

account for the additional amount of open porosity in Fig 3, which is beneficial for cell pene-

tration and migration.

4.2 Osteoblast viability on different surface pore morphology

In the emulsion (TCP-E, Fig 4G), the cells appear to the authors to be associated with the sur-

face pores because of the similar size and shape. The surface pores with cells in Fig 4G appear

Fig 7. Confocal microscopy of osteoblasts on the surfaces after 7 days of incubation. (a) TCP-E, (b) TCP-CS, (c)

TCP-D, (d) HA-D and (e) PCL-D. Blue represents the cell nucleus; red dyes the F-actin cytoskeleton of the cell; green

indicates the presence of Collagen Type I which is extracellular matrix laid down by viable cells.

https://doi.org/10.1371/journal.pone.0318100.g007
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slightly larger than the pores before cell culture (Fig 4A), suggesting that the pores may have

been enlarged by resorption [54] or perhaps the cells were involved in the ceramic resorption

[55–57]. These cells appear to be primarily equiaxed in shape. That is a promising sign of cell

migration into the scaffold, which is important for the formation of bone tissue throughout

the scaffold and eventually replacing the scaffold. It has been evidenced by others that greater

porosity increases the osteoinductivity of the scaffold as well as bone grows within pores

<50 μm and even<10μm in diameter [58]. So it is surprising that despite TCP-E having sig-

nificantly more porosity than TCP-D (Fig 3) as well as having suitable surface pore sizes (Fig

5A and 5B), it did not demonstrate a higher cell viability than the dense scaffold.

The mean cell viability of TCP-E appears to be slightly lower than TCP-D, however they are

not statistically different (Fig 3). Increased microporosity has been shown elsewhere to

improve new bone formation [58, 59], possibly due to increased surface area for cell adhesion

[59] and increased protein adsorption [60, 61]. However, these studies compare different sizes

or volume fractions of microporosity instead of against a sample void of microporosity as in

this study. It is possible that the cells settled into the surface pores of TCP-E, which act like iso-

lated pockets with reduced fluid flow. On the other hand, the cells adhered to the flat surfaces

of TCP-D have increased access to nutrients, oxygen and waste diffusion. Despite the cells in

TCP-CS also settling into the interior of its pores, the authors speculate that its longer channels

may offer overall more nutrient flow than the sphere-like pores of TCP-E. As mentioned in

section 3.3, the lengths of the elongated channels of TCP-CS are difficult to determine exactly

but are typically much longer than the diameters of the sphere-like pores of TCP-E, thus result-

ing in increased connectivity to the exterior. Additionally, the morphological improvements of

TCP-CS to cell growth as discussed below may have overruled any reductions from this and

resulted in an overall increase over that of TCP-E.

Constrictions from the interconnection windows between pores or pores to the exterior

can lead to localized accumulation of ions in the micropores and an ion gradient, which pro-

motes mineralization and osteoblast migration [62, 63]. Possibly there is a minimum require-

ment of micropore interconnection size for bone formation [62], which TCP-E did not meet

whereas channels of TCP-CS can be thought of as a series of micropores with connection

widths approximately the diameter of the micropores.

The osteoblasts cultured on the capillary suspension (TCP-CS, Fig 4H) have a highly elon-

gated morphology. Their growth is likely to be following the surface channels produced by the

oil-water phase inversion and separation as indicated by the arrows in Fig 4B. Such a cellular

spreading or extension of cytoplasmic processes demonstrates good adhesion to the substrate

[64, 65]. Our results support previous studies that show anisotropy of the surface topography

(or grooved surfaces) enhances osteoblastic proliferation [21, 22], as well as the synergistic

effect of microscale and sub-micron roughness [24]. The ability to control cell shape and mor-

phology by varying the surface pore morphology is an important outcome of this research.

Furthermore, this relatively cost-effective fabrication method of an interconnected pore net-

work (of about 53% of sample volume as presented in Fig 3) is an additional advantage for

enhanced bone ingrowth [66] over widely studied methods of surface modification, such as

grinding [21, 22], electron beam irradiation [23], anodization and chemical etching [24].

Other fabrication methods of porous scaffolds have been proposed, such as (i) by the intro-

duction other porogens such as air (foaming); or (ii) from the architectures created by additive

manufacturing or 3D printing processes. 3D-printing by direct ink writing typically forms

cylindrical filaments, which have convex surfaces. In comparison, air bubbles in foams or oil

droplets in emulsions form pores with concave surfaces. Only the concave surfaces of calcium-

deficient hydroxyapatite foams were reported by Barba et al. to induce significant ectopic bone

formation, and not the 3D-printed scaffolds with convex pores [67]. Similarly, 3D-printed
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hydroxyapatite scaffolds were found by Liu et al. [68] to promote bone marrow stem cell

spreading and a higher cell density when 3D-printed with emulsions as compared to a dense

suspension. This enhancement was attributed to the additional adhesion sites for cells pro-

vided by the microporous filament surfaces. Despite the merits of pores formed by foams or

emulsions, they are commonly limited to relatively simple overall shapes and homogeneous

internal structures [69]. On the other hand, 3D-printing is advantageous in its ability to create

near-net shapes, which can be easily customised to the implant site. Also, the precise control of

3D printing holds potential in creating functionally graded scaffolds to further tailor the

mechanical properties or degradation behaviour of BTE scaffolds [70–72].

The volume percent of total and open porosities in TCP-E and TCP-CS were very similar

(Fig 3), so the difference in their cell viability numbers could possibly be attributed to the dif-

ferent surface pore morphologies. The capillary suspension (TCP-CS) showed the highest level

of metabolic activity of all the samples (Fig 6), which could be due to cellular spreading on the

surface promoting cell growth [21, 22]. As compared to its dense counterpart of the same

material (TCP-D), the mean metabolic activity of TCP-CS was 16% higher. When compared

to the dense substrates of other materials, HA-D and PCL-D, TCP-CS was 20% and 138%

higher respectively. In contrast, for the dense substrates (Figs 4I and 7C–7E), regardless of

material (TCP-D, HA-D and PCL-D), the cells maintain their round shapes with negligible

spreading. Osteoblasts in vivo display a characteristic cuboidal or polygonal structure, and can

differentiate into osteocytes [73, 74]. Osteocytes are interconnected stellate cells with dendritic

or cytoplasmic processes [75, 76]. Surface topography or roughness (within a scale perceivable

by the cell) has been shown to have a positive effect on cell differentiation, as evidenced by oth-

ers [77–79].

The in vitro cellular responses in this study demonstrate that the surface pore morphology

of the emulsion and capillary suspension provide suitable 3D topographical conditions to the

cells, promoting cell migration on the surface and adhesion to the surface respectively. Fur-

thermore, the fabrication method proposed of using oil as a porogen is economical and its

removal during sintering is straightforward. The particle-stabilised emulsions created in this

study were stable for long periods of time–phase separation was not observed even after 2 to 3

months, simply stored in containers at ambient conditions. This long-term stability has also

been reported in other work, attributed to the adsorption of colloidal particles at the gas-liquid

(foams) or liquid-liquid (emulsion) interfaces that promote stabilization and inhibit coales-

cence and Ostwald ripening [48]. The pore sizes from air bubbles in foams tend to be larger

than that from oil droplets in emulsions. An advantage of using emulsions is that the oil drop-

lets are less compressible or deformed under pressure than air bubbles. This can be beneficial

for subsequent processing, such as to reduce die swell and prevent collapse when shear stresses

are applied during direct ink writing, a material extrusion 3D printing technique.

4.3 Osteoblast response on different materials

PCL is a popular synthetic polymer used as a base material for 3D-printed bone tissue scaffolds

[80–83], and therefore was chosen as a control for this work. Our hypothesis that β-TCP and

HA will perform better is supported by the results in Fig 6 that there is significantly more met-

abolic activity in both bio-ceramics than in PCL. Furthermore, it is corroborated visually in

the confocal images in Fig 7. Due to PCL’s hydrophobic nature, poor cell adhesion to the scaf-

fold results; PCL would require further treatment to improve its osteoconductivity [83–85].

β-TCP performs slightly better than HA in terms of cell metabolic activity, thus it is selected

as the main material for further investigation. Our findings corroborate current knowledge

using other models: greater in vivo proliferation was induced with β-TCP than HA [86] or

PLOS ONE Surface pore morphology of bioceramic scaffolds through colloidal processing for bone tissue engineering

PLOS ONE | https://doi.org/10.1371/journal.pone.0318100 February 27, 2025 15 / 21

https://doi.org/10.1371/journal.pone.0318100


biphasic calcium phosphate (BCP) than HA [87], as well as increased in vitro mesenchymal

stem cell proliferation in TCP compared to a composite of HA/TCP [88]. This work provides a

foundation to build upon for producing 3D tissue scaffolds with an additional level of macro-

porosity via the filament spacing by Direct Ink Writing (DIW, an extrusion-based Additive

Manufacturing technique). Further investigation of mechanical performance, influence of deg-

radation, and extended in vitro performance of osteoblasts was in progress at the time of writ-

ing. The current work suggests that capillary suspensions should be the preferred paste

formulation to produce surface pore morphology to maximize osteoblast growth.

5. Conclusions

Utilizing oil for soft templating, different porous surface microstructures (emulsion and capil-

lary suspension) were created in bio-ceramics by varying the oil and surfactant concentrations.

The nearly spherical surface pores of the emulsion and the elongated surface channels of the

capillary suspension form differing physical interfacial environments, which greatly influence

the behavior of osteoblastic growth. In terms of material, metabolic activity was found to be

highest in beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HA), compared to polyca-

prolactone (PCL). Amongst the surface pore morphologies, the capillary suspension demon-

strated enhanced cell proliferation, followed by the non-porous structure. The β-TCP capillary

suspension scaffold (TCP-CS) provided the most favorable conditions in response to osteo-

blasts, including cell spreading. After 7 days of culture, TCP-CS demonstrated a 16% increase

in metabolic activity over a dense scaffold of the same material (TCP-D), a 20% increase over

hydroxyapatite (HA-D) and an exceptional 138% increase over PCL. Therefore, the β-TCP

capillary suspension scaffold (TCP-CS) shows promise as a potential candidate in bone regen-

eration applications. Furthermore, the fabrication strategy proposed creates economical and

stable suspensions, which produce controllable, micrometer-scale pores with interconnected

porosity.
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