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ABSTRACT

Introduction: Relapsed SCLC is characterized by
therapeutic resistance and high mortality rate. Despite
decades of research, mechanisms responsible for
therapeutic resistance have remained elusive owing to
limited tissues available for molecular studies. Thus,
an unmet need remains for molecular characterization
of relapsed SCLC to facilitate development of effective
therapies.
Dr. Chen received honoraria from QED Therapeutics (2019, 2020). The
remaining authors declare no conflict of interest.
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Methods: We performed whole-exome and transcriptome
sequencing of metastatic tumor samples procured from
research autopsies of five patients with relapsed SCLC. We
implemented bioinformatics tools to infer subclonal phy-
logeny and identify recurrent genomic alterations. We
implemented immune cell signature and single-sample gene
set enrichment analyses on tumor and normal tran-
scriptome data from autopsy and additional primary and
relapsed SCLC data sets. Furthermore, we evaluated T cell-
inflamed gene expression profiles in neuroendocrine
(ASCL1, NEUROD1) and non-neuroendocrine (YAP1,
POU2F3) SCLC subtypes.
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Results: Exome sequencing revealed clonal heterogeneity
(intertumor and intratumor) arising from branched evolu-
tion and identified resistance-associated truncal and sub-
clonal alterations in relapsed SCLC. Transcriptome analyses
further revealed a noninflamed phenotype in neuroendo-
crine SCLC subtypes (ASCL1, NEUROD1) associated with
decreased expression of genes involved in adaptive anti-
tumor immunity whereas non-neuroendocrine subtypes
(YAP1, POU2F3) revealed a more inflamed phenotype.

Conclusions: Our results reveal substantial tumor hetero-
geneity and complex clonal evolution in relapsed SCLC.
Furthermore, we report that neuroendocrine SCLC subtypes
are immunologically cold, thus explaining decreased
responsiveness to immune checkpoint blockade. These re-
sults suggest that the mechanisms of innate and acquired
therapeutic resistances are subtype-specific in SCLC and
highlight the need for continued investigation to bolster
therapy selection and development for this cancer.

� 2021 The Authors. Published by Elsevier Inc. on behalf of
the International Association for the Study of Lung Cancer.
This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Small cell lung cancer; Research autopsy; Tumor
heterogeneity; Treatment resistance

Introduction
SCLC is a lethal neuroendocrine malignancy ac-

counting for 13% to 15% of new lung cancer cases
annually worldwide.1,2 Most patients with SCLC present
with initially chemotherapy-sensitive disease, but almost
all will experience progression or relapse leading to
death. In 2019, combination chemotherapy and immu-
notherapy was approved by the Food and Drug Admin-
istration as first-line treatment for metastatic SCLC,3,4

with modest 2-month improvement in survival
compared with chemotherapy alone. For decades, top-
otecan was the only Food and Drug Administration–
approved second-line chemotherapy with objective
response rate of 10% to 20%,5 until lurbinectedin was
granted accelerated approval in 2020 on the basis of a
phase 2 trial revealing 35% objective response rate.6

Despite these recent approvals, there is an urgent need
to develop more effective therapies for advanced SCLC.

Key studies in the past decade have profiled the
mutational landscape of primary SCLC, driven by TP53
and RB1 inactivation.7–9 Furthermore, distinct SCLC sub-
groups have been identified on the basis of the expression
of key transcription factors including ASCL1 and NEU-
ROD1.10,11 How each SCLC subtype confers different
clinical phenotypes and differential response to anti-
cancer therapies is under active investigation,12 with the
goal of delivering precision therapy to patients with SCLC
by matching each SCLC subtype to specific treatments.

Molecular characterization of relapsed SCLC has been
hampered by tissue scarcity owing to rapid clinical dete-
rioration of patients with relapse. Therefore, unlike for
primary SCLC, less is known on the genomic and tran-
scriptomic landscapes of relapsed SCLC and mechanisms
that mediate therapeutic resistance, although recent
nonautopsy studies on relapsed SCLC have begun to
address this knowledge gap. For example, Gardner et al.13

used patient-derived xenografts of paired chemosensitive
and chemoresistant SCLC tumors to elegantly reveal that
acquired chemoresistance occurred through epigenetic
silencing of a DNA damage repair factor, SLFN11. Wagner
et al.14 performed genomic profiling on a cohort of pa-
tients with relapsed SCLC and identified recurrent Wnt
pathway alterations as a mechanism of acquired chemo-
resistance. Weiss et al.15 performed genome-wide exome
and RNA sequencing (RNA-seq) on 12 patients with SCLC
who relapsed after platinum-based chemotherapy. Aside
from driver mutations in RB1 and TP53, the authors
identified few recurrent targetable genomic alterations in
this cohort of patients. Finally, an important study by
Stewart et al.16 performed single-cell sequencing of
circulating tumor cells and circulating tumor cell-derived
xenografts from patients with platinum-sensitive and re-
fractory SCLC and revealed an association between
increased intratumoral heterogeneity and chemo-
resistance. The latter study is one of the first nonautopsy
studies to directly evaluate intratumor heterogeneity in
advanced SCLC. Overall, however, further study of
relapsed SCLC is needed to identify additional targetable
mechanisms underlying therapeutic resistance, including
resistance to immunotherapy, which is now approved for
frontline treatment in the metastatic setting.

The use of tumor specimens from rapid research au-
topsy has accelerated the study of tumor heterogeneity and
acquired resistance in advanced cancer.17 To our knowl-
edge, this is the first study to perform whole-exome and
transcriptome profiling of advanced SCLC through
research autopsy. From exome sequencing, we inferred
intertumor and intratumor clonal heterogeneity arising
from branched evolution and transcriptome analyses
supported the subtype-specific suppression of adaptive
antitumor immunity in primary and advanced SCLC. Our
results providenew insights into the subclonal architecture
of advanced SCLC and identify new potentially targetable
pathways involved in antitumor immune responses.
Materials and Methods
Rapid Research Autopsy

Informed consents were obtained from five patients
with advanced SCLC to participate in an institutional
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review board–approved clinical study for tumor
profiling by next-generation sequencing and body
donation (NCT02090530).17,18 Deceased patients were
transported to The Ohio State University Regional Au-
topsy Center, where research autopsy for tumor pro-
curement was performed no more than 16 hours after
the passing of the patients. Computed tomography im-
aging when available was used to guide procurement
from organs with cancer. After autopsy completion, the
deceased were transported to a designated funeral home
within 24 hours.

Tumor DNA/RNA-Seq
Samples with tumor cell content greater than 60%

and without substantial necrosis were selected for next-
generation sequencing analyses. Genomic DNA and total
RNA were extracted using Qiagen kits per manufac-
turer’s protocol. Libraries were prepared after estab-
lished protocols (TruSeq Stranded Total RNA with
RiboZero Gold, Illumina),18,19 enriched with the xGEN
Exome Research Panel version 1.0 (IDT) and sequenced
on an Illumina HiSeq 4000.

Circulating Tumor Sequencing
Circulating tumor DNA (ctDNA) sequencing was iso-

lated using QIAamp Circulating Nucleic Acid Kit (Qiagen)
per manufacturer’s protocol. An input of 300 ng was
used to generate libraries for paired-end sequencing on
a NextSeq instrument achieving median coverage of
approximately �500.20

Somatic Mutation and Copy Number Variant
Calling, Clonal Inference, and Mutational
Signatures

These bioinformatics analyses were performed as
previously described.18 Briefly, sequencing reads were
aligned to human genome build 19 (hg19) using Bur-
rows-Wheeler Aligner (bwa),21 deduplication with Pic-
ard (https://github.com/broadinstitute/picard), and
base quality score recombination and realignment
around insertion and deletion (indels) with GATK.22

Variants were called with VarScan223 and allele-
specific copy number variations (CNVs) with FAL-
CON.24 Clonal inference was performed using Canopy,25

and mutational signatures were inferred with decon-
structSigs.26 Bradley-Terry modeling was used to esti-
mate relative ordering of mutations in the phylogeny
branches of autopsy patients with SCLC as previously
described.18

Significantly Mutated Gene Analysis
Significantly mutated gene (SMG) analysis was iden-

tified using MuSiC version 2.0,27 with default settings.
Variants from all tumor samples were merged per pa-
tient by taking the highest variant allele fraction. The p
value and false discovery rate (FDR) estimates are on the
basis of three tests including Fisher’s combined p value
test, convolution test, and likelihood ratio test methods.
For a specific gene, if FDR for at least two of these tests is
less than or equal to maximum FDR, then it was called as
a SMG. For all five SCLC research autopsy patients, the
maximum FDR cutoff was set to 0.05.

Driver Mutation Prediction
CHASM was used to identify statistically likely driver

mutations.28 Missense variants were merged per patient
and deduplicated before input to CHASM.

Transcriptome Analysis
RNA-seq reads were aligned to hg19 using HISAT2,29

and fragments per kilobase per million reads and tran-
script reads per million (TPM) were calculated with
StringTie30 as described in the Supplementary Methods.

Single-Sample Gene Set Enrichment and Immune
Signatures

Single-sample gene set enrichment (ssGSEA) version
2.0 was implemented with default settings in R.31 Gene
sets assayed were obtained from PanCancer Immuno-
Oncology 360 and Tumor Signaling 360 from Nano-
String. Immune signatures (ImSigs) were run using TPM
values with default settings to identify enrichment of 10
ImSig.32 Linear mixed-effects models and t statistics were
used to model ssGSEA and ImSig scores by allowing
correlation among multiple samples within each patient.
Tukey’s method was used for adjusting p values of mul-
tiple comparisons of enrichment scores from ssGSEA us-
ing NanoString gene sets and scores from ImSig.

External SCLC RNA-Seq Data Sets
RNA-seq data of primary and relapsed SCLC and

normal lung tissue were obtained from four previous
publications.8,14,15,33 Of these four data sets, one had
paired primary SCLC and normal lung samples,8 whereas
the rest contained either exclusively tumor14,15 or
normal samples.33 Non-SCLC RNA-seq data were down-
loaded from the The Cancer Genome Atlas data portal
(https://portal.gdc.cancer.gov/). We randomly chose a
subset of 60 and 49 tumor-normal paired samples of
lung adenocarcinoma and squamous cell carcinoma,
respectively, for ssGSEA and ImSig analyses.

Molecular Subtyping of SCLC Samples
SCLC subtype classification was performed after a

previously published method.34 Briefly, the samples were
classified on the basis of defining thresholds

https://github.com/broadinstitute/picard
https://portal.gdc.cancer.gov/
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(log2[fragments per kilobase per million þ 1]) for tran-
scription factors YAP1 (2.5) and POU2F3 (2.5). Samples
were classified as ASCL1 or NEUROD1 subtype on the
basis of relative expression of these genes, with minimum
required difference of 1. The above-mentioned method
was unable to classify all samples included in this study;
therefore, remaining samples were assigned to SCLC sub-
types on the basis of the gene (ASCL1, NEUROD1, YAP1, or
POU2F3) with highest expression (TPM) value. When
expression difference was less than twofold between
ASCL1 and NEUROD1, samples were classified as dual-
positive ASCL1/NEUROD1. ARG2 expression between
subtypes was compared using two-tailed unpaired t tests.
T Cell-Inflamed Gene Expression Profile Scores
and Heatmaps

TPM values for genes in the housekeeping (n ¼ 11)
and predictor (n ¼ 18) sets were converted into count-
equivalent values, and gene expression profile (GEP)
scores were computed as previously described35 and as
detailed in the Supplementary Methods. Heatmaps of
log-transformed TPM values of the 18 genes in the T cell-
inflamed GEP were generated using Qlucore Omics Ex-
plorer (Qlucore AB) version 3.6.
Table 1. Demographics and Clinical Histories of Relapsed Smal
Autopsy

SCLC 1 SCLC 2

Gender Female Female
Age 59 54
Ethnicity Caucasian Caucasian
Smoking (pack years) 60 20
Stage at diagnosis Extensive Extensive
Radiation PCIa and

palliative
PCI

1st line therapy Cisplatin &
etoposide x6

Carboplatin &
etoposide x4

Best response to
platinum

PRb Mild/mixed
response

Subsequent therapies
received

Topotecan Irinotecan
Rova-Tc

Paclitaxel

Time from diagnosis to
death

23 months 12 months

# Metastatic tumors (#
organs) collected at
autopsy

25 (5) 17 (5)

Note: All patients had extensive smoking history, metastatic disease at time of d
therapy, and had partial response except for one patient. All patients received
trials as indicated in the footnote. Patients who received experimental therapi
aProphylactic cranial irradiation
bPartial response
cClinical trial NCT02674568: Study of Rovalpituzumab Tesirine (SC16LD6.5) for T
Like Protein 3-Expressing Small Cell Lung Cancer (TRINITY)
dClinical trial NCT02538666: An Investigational Immuno-therapy Study of Nivolum
Extensive-Stage Disease Small Cell Lung Cancer (ED-SCLC) After Completion of
Results
Demographic and clinical information of the five pa-

tients with SCLC who underwent research autopsy is
presented in Table 1. All had metastatic SCLC at diagnosis
and received multiple lines of treatments, including first-
line cisplatin or carboplatin and etoposide as autopsies
were performed before the approval of atezolizumab and
durvalumab. All patients responded to first-line chemo-
therapy but relapsed within 1 to 5 months of completing
the last treatment cycle. Three patients received immuno-
therapy subsequently but were nonresponders. The time
from diagnosis to death ranged from 12 to 25 months.
Numerous metastatic tumors from four to five different
organs were procured through autopsy of each patient. A
total of 60 metastatic tumor samples were selected for
whole-exome sequencing (WES) and 30 tumor samples for
RNA-seq (Supplementary Data 1). Pretreatment samples
were included for WES and RNA-seq when available.
Matched normal lung tissue was available for RNA-seq
from two autopsy patients (Supplementary Data 1).

Genomic Alterations in Relapsed SCLC
WES revealed high tumor mutational burden (TMB) in

our SCLC tumor samples, ranging from 5.7 to 29.8
l Cell Lung Cancer (SCLC) Patients Who Underwent Research

SCLC 3 SCLC 4 SCLC 5

Male Male Female
75 62 64
Caucasian Caucasian Caucasian
60 45 47
Extensive Extensive Extensive
PCI Palliative PCI

Cisplatin &
etoposide x6

Carboplatin &
etoposide x4

Carboplatin &
etoposide x4

PR PR PR

Irinotecan
Nivolumab

Immunotherapyd

Irinotecan
Immunotherapyd

Irinotecan
Rova-Tc

Paclitaxel
Gemcitabine

25 months 12 months 22 months

14 (4) 21 (5) 16 (4)

iagnosis, received standard of care platinum-doublet chemotherapy, radiation
more than one line of therapy, including experimental therapies on clinical
es were non-responders.

hird-line and Later Treatment of Subjects With Relapsed or Refractory Delta-

ab, or Nivolumab in Combination with Ipilimumab, or Placebo in Patients with
Platinum-based Chemotherapy (CheckMate 451)
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mutations per megabase of genome (Supplementary Data
2–6). The percentage of private somatic variants, or those
present in only one tumor sample, in patients 1 to 5 ranged
from 32% to 56%, suggesting high intertumoral heteroge-
neity (Supplementary Fig. 1A and B). We assessed the
identities of SMGs using MuSiC,27 finding TP53 as the top
SMG mutated in 100% of the tumor samples (Fig. 1A).
Additional SMGs included LRP1B, RYR2, and USH2A (Fig. 1A
and Supplementary Data 7). We sought to determine
whether these genes may be preferentially mutated in SCLC
relative to other cancer types by assessing their alteration
frequency in The Cancer Genome Atlas PanCancer Atlas
studies (>10,000 samples) and 210 predominantly primary
SCLC samples7–9,13 through cBioPortal for Cancer Geno-
mics.36,37 This analysis revealed a high-alteration frequency
of these genes in SCLC but also in other cancer types with
high TMB (Supplementary Fig. 2A and B).

We detected an RB1 E204X nonsense mutation in a
subset of tumor samples in patient 5 (Supplementary
Data 6), and PTEN mutations in patients 1 and 3. In
patient 1, PTEN C105F (a validated driver variant) was
present in all metastatic tumor samples except for a
residual primary right lung tumor and three brain me-
tastases (Supplementary Data 2). In patient 3, PTEN
Y46N was present in a single metastatic tumor sample
(Supplementary Data 4).

CNVs in Relapsed SCLC
We identified a high frequency of CNVs using FAL-

CON24 in all SCLC tumor samples from the five autopsy
patients (Fig. 1B, Supplementary Data 8). All patients
had monoallelic loss, defined as allele copy less than
0.5, of chromosome 17p regions containing TP53. We
also detected monoallelic loss of chromosome 13q re-
gions containing RB1 in patients 2, 3, and 5. Notably,
tumor samples from all five patients had monoallelic
deletions of a region on chromosome 5q containing
APC. Consistent with previous studies,8 we detected
allele-specific gains, defined as allele copy greater than
2, of chromosome 3q regions containing SOX2 in pa-
tients 1, 3, and 5; and 8q regions containing MYC in
patients 1, 3, and 4.

Clonal Heterogeneity and Evolution in Relapsed
SCLC

We used the tool CANOPY25 to integrate single-
nucleotide variant (SNVs), indels, and curated CNVs
(Supplementary Fig. 2C) to infer clonal diversity and
architecture in advanced SCLC.18 Between 5 and 8
genetically distinct tumor cell clones were inferred to
exist in each patient (Figs. 2A–D and 3A, Supplementary
Data 9). TP53 and RB1 mutations were classified as
truncal in all patients. Mutations in epigenetic modifiers
such as CREBBP and HDAC2 were also truncal, along
with APC (5q) deletion in a subset of patients. Subclonal
alterations included PTEN deletion and mutations and
MYC amplification. We used CHASM28 to identify pre-
dicted driver mutations in Wnt pathway genes such as
XPO1 and AXIN1 (Supplementary Data 10). We used
Bradley-Terry models18 to approximate the temporal
occurrence of clonal and subclonal alterations and
found that truncal alterations in TP53, RB1, CREBBP, and
HDAC2 occurred early, consistent with the critical role of
these tumor suppressors in SCLC biology (Supplementary
Data 11). Finally, we used deconstructSigs26 to analyze
mutational signatures and found truncal signature 4,
which is associated with tobacco smoking.38

We next evaluated spatiotemporal clonal heteroge-
neity in advanced SCLC. In patient 1, we identified a
tumor cell clone (clone 4) unique to brain metastases
(T3–5) and the remnant primary tumor (*T1) (Fig. 2A).
In patient 2, the biopsy and posttreatment samples had
similar clonal compositions (Fig. 2B). In patient 3, clone
5 in the biopsy sample decreased substantially in all but
three (T7–9) posttreatment tumors corresponding to the
brain and upper lung (Fig. 2C). Conversely, clone 6 in the
biopsy sample substantially increased in a subset of
posttreatment tumors, particularly in the lymph node
samples T10 to 12. In patient 4, clone 3 harboring a
BRCA2 G620E mutation decreased considerably in all
posttreatment tumor samples (T1–12) (Fig. 2D), consis-
tent with the well-characterized platinum-sensitizing
effects of BRCA mutations. Furthermore, posttreatment
tumors had increased proportions of clones 4 to 6
that contained predicted driver alterations by CHASM
in the Wnt pathway (AXIN1 mutation, APC deletion),
which has been associated with chemoresistance.14

Finally, in patient 5, we identified a tumor cell clone
(clone 5) present at increased proportions in all six
liver metastases (T6–11; Fig. 3A). In addition, ctDNA
was isolated from the plasma of this patient shortly
before death and subjected to WES (Supplementary
Data 12). We determined high concordance (p < 10�5)
between ubiquitous tumor variants and ctDNA vari-
ants, including SNVs (Fig. 3B, Supplementary Fig. 3A)
and indels (Supplementary Fig. 3B and C). To infer the
abundance of clones identified from autopsy in ctDNA,
we used a maximum likelihood approach that revealed
similar clonal composition between ctDNA (ctDNA,
Fig. 3A) and liver metastases, thus suggesting this
patient’s hepatic tumor burden preferentially
contributed to ctDNA.
RNA-Seq Reveals Decreased Antitumor Immunity
in Advanced SCLC

To further characterize advanced SCLC, we per-
formed transcriptome sequencing on a subset of tumor



Figure 1. Identification of SMGs and CNVs in SCLC autopsy patients. (A) Oncoplot of SMGs identified in our SCLC cohort using MuSiC
(FDR < 0.05). Multiple tumor samples per patient with SCLC were sequenced, resulting in exome data from 63 samples including
three pretreatment biopsy samples (marked by *). Vertical bar graphs (top) reveal total number of Mut. per corresponding tumor
sample below. Horizontal bar graphs and percentages (left) reveal mutational frequency of the corresponding gene (right). Type of
somatic variant is defined by colored box key at the bottom,with black boxes indicatingmultiple variants detected in a specific gene
in a given tumor sample. (B) Uncurated CNVs in SCLC autopsy patients detected by FALCON. Data from all tumor samples per patient
were pooled into a composite CNV profile as illustrated for each patient. Gainswere defined as allele number greater than 2.0 (e.g.,
SOX2) and loss less than 0.5 (e.g., APC). Red line, major allele. Blue line, minor allele. Green line, no change in one or both alleles.
CNV, copy number variation; FDR, false discovery rate; Mut., mutation; SMG, significantly mutated gene. #, number.
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samples from each SCLC autopsy patient (Supplemen-
tary Data 1). Given the limited number of matched lung
normal and pretreatment/primary SCLC tumors in our
data set, we incorporated additional publicly available
SCLC RNA-seq data sets8,14,15,33 into all subsequent
analyses. Two external SCLC data sets combined had 31
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relapsed and three pretreatment samples,14,15 one data
set contained 30 primary SCLC and 25 matched normal
samples,8 and one data set contained eight normal lung
samples.33 We first performed ssGSEA31 using gene sets
from the NanoString Tumor Signaling 360 panel
(Supplementary Data 13). Intriguingly, most SCLC
samples had decreased enrichment of pathways related
to antitumor immune response: “avoiding immune
destruction” and “tumor-promoting inflammation”
compared with normal samples (Supplementary
Fig. 4A).

To delineate how the immune tumor microenviron-
ment (TME) may be altered in SCLC, we next performed
ssGSEA using the NanoString PanCancer Immuno-
Oncology 360 panel. This revealed decreased enrich-
ment (p < 0.001) of processes annotated with adaptive
antitumor immune function and immuno-metabolism in
SCLC tumors relative to normal tissue (Fig. 4A,
Supplementary Data 13). We also used ImSig32 to
interrogate immune cell subsets in the SCLC TME, which
revealed low gene expression signatures of T cells and
innate immune cells in primary and relapsed SCLC tu-
mors (Fig. 4B, Supplementary Data 13). Finally, we
repeated ssGSEA and ImSig on our own research autopsy
data set, in addition to the above-mentioned analyses of
pooled data sets, and confirmed these results
(Supplementary Fig. 4B and C).

T cells are key mediators of the adaptive antitumor
immune response and targets of immune checkpoint
inhibitors (ICIs). Given that ssGSEA and ImSig results
indicated decreased T cell presence in the SCLC TME, we
further interrogated expression of 18 genes in the
analytically validated T cell-inflamed GEP, which was
developed as a predictor of clinical benefit to ICI in
multiple cancer types.39 Responders to ICI were re-
ported to have pretreatment baseline tumors with
higher GEP scores (hot), whereas nonresponders had
tumors with lower baseline GEP scores (cold).35,39



Figure 4. Transcriptome analyses reveal decreased expression of genes involved in antitumor immune responses in SCLC. (A)
Box plots of ESs from ssGSEA analysis of gene sets derived from NanoString PanCancer IO 360 panel. Statistically significant
differences in ES were detected in pairwise comparisons between normal-primary and normal-relapse. *, adjusted p < 0.0001.
(B) Box plots of ImSig scores for different immune cell types in the adaptive and innate immune systems. Statistically significant
differences in ES were detected in pairwise comparisons between normal-primary and normal-relapse. *, adjusted p < 0.0001.
ES, enrichment score; ImSig, Immune signature; IO, Immune-Oncology; Mac., macrophage; Mono., monocyte; Neutro.,
neutrophil; NK, natural killer; Pretx, pretreatment; sig., signature; ssGSEA, single-sample gene set enrichment.
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Hierarchical clustering (Fig. 5A, p ¼ 0.05) and calculation
of GEP scores in the pooled (Fig. 5B) and autopsy only
(Supplementary Fig. 5A) data sets revealed that most
primary and relapsed SCLC are cold relative to either
matched tissue normal or non-SCLC subtypes of adeno-
carcinoma and squamous cell carcinoma
(Supplementary Fig. 5B, Supplementary Data 14). Only
five SCLC tumors were inflamed and had GEP scores
higher than the median score of �0.09 in normal sam-
ples (Supplementary Data 15).

As atezolizumab and durvalumab are both pro-
grammed death-ligand 1 (PD-L1) monoclonal antibodies
approved in combination with chemotherapy in
advanced SCLC, we evaluated the expression of PD-L1
(CD274). CD274 expression was low in most primary
and relapsed SCLC samples (Fig. 5C, Supplementary
Fig. 5C), consistent with previous analyses revealing
that only a few patients (w20%) with SCLC had tumors
with PD-L1 protein expression greater than 1%.40 In
contrast to CD274, the expression of immune checkpoint
inhibitory ligands CD276 (B7-H3) and CD200 was
increased in most SCLC tumor samples (Fig. 5C,
Supplementary Fig. 5C). Consistent with ImSig revealing
a lack of T cell signature in their TME, SCLC tumor
samples had low expression levels of CTLA4, TIGIT, and
other immune checkpoint molecules found on T cells
(Fig. 5C, Supplementary Fig. 5C). Fially, interrogation of
50 SCLC cell lines from the Cancer Cell Line Encyclopedia
recapitulated these gene expression patterns of CD276,
CD200, and CD274 (Supplementary Fig. 5D,
Supplementary Data 14).

We further evaluated whether the four SCLC sub-
types, as defined by the expression of ASCL1, NEUROD1,
YAP1, and POU2F3 using a previously described
method10 (Supplementary Fig. 6) and on the basis of
highest gene expression evaluation (Supplementary Data
16), may have different immune phenotypes. As ex-
pected, most (n ¼ 56 of 94) SCLC samples were ASCL1-
high, whereas tumors with high expression of ASCL1/-
NEUROD1 (n ¼ 11), NEUROD1 (n ¼ 13), YAP1 (n ¼ 6),
and POU2F3 (n ¼ 8) were the minority. Hierarchical
clustering revealed that the non-neuroendocrine SCLC
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subtypes, YAP1 and POU2F3, had more tumors with
elevated T cell-inflamed GEP whereas the classic and
variant neuroendocrine subtypes were associated with
predominantly low GEP (Fig. 5D). When GEP scores were
calculated for each subtype,35 YAP1 and POU2F3 tumors
had GEP scores closer to that of normal lung tissue
(Fig. 5E). ImSig analysis further revealed that YAP1 tu-
mors, although limited in sample size, are particularly
associated with increased T cell and innate immune cell
signatures (Supplementary Fig. 7).

Finally, to extend our analysis of suppressed immune
function in SCLC, we interrogated expression of immu-
nometabolism genes (Fig. 4A) encoding indoleamine 2,3-
dioxygenase and arginase (ARG)1/2 enzymes (Fig. 5F),
whose metabolic function have been reported to inhibit
effector T cell and natural killer cell activity.41–43 Of the
four genes, only ARG2 expression was significantly
increased in primary and relapsed SCLC tumors (Fig. 5F)
and cell lines (Supplementary Fig. 5D). We then evaluated
ARG2 expression on the basis of SCLC subtypes (Fig. 5G)
and in NSCLC (Supplementary Fig. 8A and B). This analysis
revealed high ARG2 expression in the neuroendocrine
SCLC subtypes (ASCL1, ASCL1/NEUROD1, and NEUROD1)
and low ARG2 expression in the non-neuroendocrine
subtypes (YAP1 and POU2F3) (Fig. 5G) and low ARG2
expression in NSCLC (Supplementary Fig. 8B). Taken
together, these results support the need to further inves-
tigate ARG2 as a potential negative regulator of immune
TME in the most common neuroendocrine SCLC subtypes.

Discussion
In this study, we leveraged rapid research autopsy to

perform genomic and transcriptomic characterization of
advanced SCLC. Our results revealed substantial clonal
heterogeneity in relapsed SCLC, arising through
branched evolution. We identified numerous subclonal
alterations likely underlying treatment sensitivity, thus
explaining the expansion or reduction of specific clones
in tumors at different metastatic sites in each patient.
Although limited in sample size, our results revealed that
certain clones are enriched in metastatic sites such as
the brain and liver, with the liver as the main ctDNA
contributor in one patient. The ability to detect tissue-
specific clones may have certain clinical use. For
example, the central nervous system (CNS) is a frequent
lower scores indicate “cold” tumors. Two-tailed unpaired t te
selected T cell-inflamed GEP and checkpoint genes in normal
expression values (TPM) of T cell-inflamed GEP genes in SCLC
indicated. (E) Violin plot of GEP scores in different subtypes o
normal using two-tailed unpaired t test *, p < 0.01. (F) Violin p
relapsed SCLC. Primary/pretx or relapsed samples were compar
**p < 0.005. (G) Violin plot of ARG2 expression in SCLC tumor
against normal using two-tailed unpaired t test. *p < 0.001; **
indoleamine 2,3-dioxygenase; Pretx, pretreatment; TPM, trans
site of metastasis in patients with SCLC. The presence of
brain-specific subclonal alterations in the ctDNA may
help predict which patients are at highest risk for CNS
disease and therefore be considered for prophylactic
cranial irradiation or novel therapies to prevent CNS
disease. Our study demonstrates the use of autopsy in
studying subclone preference for specific metastatic
niches, which will require additional autopsies of pa-
tients with SCLC and other solid tumors.

In addition to identifying TP53 as the top SMG and
inferring TP53 mutations as truncal drivers in all au-
topsy patients, we also identified multiple mutations in
LRP1B, which has putative tumor-suppressor func-
tions.44–46 These truncal alterations raise the possibility
that LRPB1-mutant tumor cells may acquire an early
fitness advantage over wild-type cells, which is further
supported by an increased frequency of LRP1B muta-
tions in primary SCLC tumor samples (Supplementary
Fig. 1A). Thus, we propose that functional validation of
variants in this gene and others (e.g., RYR2, USH2A) in
appropriate model systems may begin to unravel their
roles in the biology of SCLC and potentially other
cancers.

Alterations in the Wnt signaling pathway have been
linked to acquired chemoresistance in relapsed SCLC.14

In a cohort of 30 relapsed SCLC samples, loss of het-
erozygosity of either APC or CDH8 was detected in 23 of
30 samples, whereas mutations in either gene were
detected in 10 of 30 samples. In our autopsy cohort, we
identified copy number loss of APC as truncal or very
early subclonal events in patients 1 to 3. We found
truncal (PSMC1) and multiple subclonal (TRRAP, FZD2,
and XPO1) predicted driver mutations in other Wnt
signaling pathway genes. For instance, in patient 3, the
autopsy tumor samples were enriched for clones C6 to
C8 containing an XPO1 mutation. In patient 4, mutation
of another Wnt signaling gene, AXIN1, was assigned to a
clone of tumor cells (C4) exclusively detected in post-
treatment autopsy tumor samples. Therefore, our results
are consistent with and support the established associ-
ation between Wnt pathway and early chemoresistance
in advanced SCLC.

Analysis of ctDNA in patients with advanced SCLC
represents a valuable approach to tracking tissue-
specific clones or emergence of resistant clones.47
st *p < 0.001; **p < 0.01. (C) Violin plot of TPM values of
and SCLC tumor samples. (D) Heatmap of log-transformed
tumor samples annotated by subtype and data source as

f SCLC and normal lung. Each subtype was compared against
lot of IDO1/2 and ARG1/2 expression in normal, primary, and
ed against normal using two-tailed unpaired t test *p < 0.001;
samples annotated by subtype. Each subtype was compared
p < 0.005. ARG, arginase; GEP, gene expression profile; IDO,
cript reads per million.
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Although most studies have compared ctDNA with either
a single primary or metastatic tumor biopsy, rapid au-
topsy enables the comparison of variants detected in
ctDNA against variants in multiple metastatic tumors. In
our study, we performed WES of ctDNA from patient 5
and detected nearly all ubiquitous tumor variants from
autopsy that likely represented most of this patient’s
truncal variants (concordance 97%–100% for SNVs and
indels). Not surprisingly, for variants that were classified
as shared or private at autopsy (e.g., subclonal variants),
the metastatic tumor-ctDNA concordance rates were
much lower. Therefore, our results reveal effective
detection of truncal variants in ctDNA, but considerable
limitations for detecting subclonal variants. These data
and future autopsy studies will provide important con-
tributions toward refining the limits of ctDNA detection
for clinical applications, including the evaluation of
minimal residual disease and cancer recurrence.

Within our autopsy SCLC cohort, we performed
transcriptome sequencing to evaluate whether muta-
tions in SMGs may correlate with altered expression,
thereby representing potential driver genes. However,
this initial analysis did not reveal a significant correla-
tion. In addition, consistent with previous studies
revealing a paucity of gene fusions as drivers in SCLC,48

we did not detect any putative fusions that were recur-
rent in more than one tumor sample within our cohort.
Recognizing that these results may be attributed to our
limited cohort size, we incorporated external primary
and relapsed SCLC RNA-seq data sets in subsequent
analyses, which ultimately revealed suppressed immune
TME in the neuroendocrine SCLC subtypes (ASCL1,
NEUROD1, and ASCL1/NEUROD1).

Given that only approximately 20% of patients with
SCLC have tumors expressing PD-L1 (>1% by immu-
nohistochemistry),40 improved characterization of the
SCLC immune TME remains an unmet need, particularly
given recent regulatory approvals of frontline PD-L1
blockade therapy. Our results confirmed low CD274
(PD-L1) expression in most SCLC tumors and cell lines,
supporting the above-mentioned clinical observations.
Additional ssGSEA and ImSig analyses corroborated
decreased adaptive antitumor immune function in pri-
mary and relapsed SCLC. Although we lacked outcomes
data to correlate with T cell-inflamed GEP scores, which
predicts clinical benefit to programmed cell death pro-
tein 1/PD-L1 blockade,39 hierarchical clustering
revealed a noninflamed phenotype in most primary and
advanced SCLC. Interestingly, T cell-inflamed GEP
expression was high, or close to that of normal lung
samples, in non-neuroendocrine SCLC subtypes (YAP1
and POU2F3) (Fig. 5D), which had low ARG2 expression
(Fig. 5E). In contrast, GEP expression was low in the
neuroendocrine SCLC subtypes (ASCL1, ASCL1/
NEUROD1, and NEUROD1), which had high ARG2
expression. Given these observations, we hypothesize
that increased ARG2 expression and function may
represent a cell-autonomous oncogenic metabolic adap-
tation enabling suppression of adaptive antitumor im-
munity in the SCLC TME independent of PD-L1
expression. These results will need to be validated in
larger, independent data sets but suggest that subtyping
patients with SCLC before systemic treatment should aid
in the identification of patients most likely to benefit
from chemo-ICI. Finally, it was recently reported that the
non-neuroendocrine SCLC subtypes were more likely to
be admixed SCLC and NSCLC,11 which in addition to low
ARG2 expression may further explain the higher GEP
scores and inflamed phenotype in these tumors given the
responsiveness of NSCLC to ICI.

Continuing the analysis of immune TME, in addition
to decreased CD274 expression, we reported decreased
expression of CTLA4, LAG3, TIM3, and other well-
characterized immune checkpoint proteins in advanced
SCLC. Conversely, we detected increased expression of
alternate checkpoint molecules, CD276 (B7-H3) and
CD200. CD276 is a member of the B7 family, which also
includes PD-L1 (B7-H1). Consistent with our finding of
increased gene expression, CD276 protein expression
was recently detected in 64.9% of a SCLC cohort with 90
patients.49 The same study reported PD-L1 expression at
a much lower rate of 7.3%.49 CD276 is expressed at low
levels in normal tissues but when aberrantly expressed
on various tumor cell types contributes to T cell inhibi-
tion, tumor cell immune evasion, and is associated with
poor prognosis.50 Therefore, targeting CD276 is being
explored as an immune-stimulatory strategy in cancer.51

CD200 is a checkpoint molecule that leads to suppres-
sion of secretion of proinflammatory cytokines, including
interleukin-2 and I interferon-g.52 Consistent with
increased CD200 expression in the SCLC samples we
analyzed, CD200 protein was expressed in two other
SCLC cohorts.53,54 Furthermore, inhibiting the CD200
signaling axis has been reported to stimulate antigen-
specific immune response against glioblastoma multi-
forme.52 Therefore, these results support further explo-
ration of targeting CD276 or CD200 in preclinical SCLC
models to determine whether inhibiting these check-
point pathways may yield viable therapeutic strategies
for advanced SCLC.

As drug development efforts focus on programmed
cell death protein 1/PD-L1 and other immune regulatory
checkpoints, characterization of both the immune
microenvironment and tumor heterogeneity will be
critical to differentiate responders from nonresponders.
It will also be important to define the relationship be-
tween tumor heterogeneity and neoantigen formation.
For example, in NSCLC, cytotoxic tumor-infiltrating T
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cells preferentially develop against clonal neoantigens
(derived from clonal or truncal mutations) in patients
with durable clinical benefit to ICI.55 The high smoking-
associated TMB of SCLC suggests that there may be a
high number of clonal neoantigens serving as thera-
peutic targets. Therefore, a combination of autopsy and
ctDNA samples will be critical resources to help char-
acterize the prevalence of clonal neoantigens and opti-
mize their detection from liquid biopsy. This will enable
the development of vaccine or T cell-based therapeutic
strategies in SCLC and other solid cancers.

In summary, we have partnered with patients for
rapid research autopsy to study relapsed SCLC and
performed extensive analyses of clonal heterogeneity,
subclonal architecture, and the immune microenviron-
ment. Our results suggest a potential explanation for
why SCLC, a cancer with high TMB and thus potential
tumor neoantigens, exhibits lower than expected
response rates to ICI compared with other solid tumors
with similar median TMB. Future studies using single-
cell sequencing strategies will shed light on unan-
swered questions, including which cell types are the
source of ARG2 expression and whether CD200/CD276
are coexpressed. Metabolome profiling could identify
additional metabolic vulnerabilities in SCLC that may be
cotargeted to enhance ICI response. Innovative immu-
notherapeutic approaches targeting alternate check-
points, potentially combined with isoform-specific ARG
inhibition, may ultimately result in more robust clinical
activity against advanced SCLC.
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