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Abstract: Post-transcriptional control in both HIV-1 and HIV-2 is a highly regulated
process that commences in the nucleus of the host infected cell and finishes by the
expression of viral proteins in the cytoplasm. Expression of the unspliced genomic RNA
is particularly controlled at the level of RNA splicing, export, and translation. It appears
increasingly obvious that all these steps are interconnected and they result in the building of
a viral ribonucleoprotein complex (RNP) that must be efficiently translated in the cytosolic
compartment. This review summarizes our knowledge about the genesis, localization, and
expression of this viral RNP.
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1. Introduction

Human Immunodeficiency virus type-1 (HIV-1) and type-2 (HIV-2) belong to the Lentivirus genus
of the Retroviridae family and are the etiological agents of the Acquired Immunodeficiency Syndrome
(AIDS) in humans [1]. Both viruses primarily infect cells of the immune system that express the CD4
receptor and one of the chemokine receptors CCR5 or CXCR4 that act as co-receptors for viral entry.
The HIV replication cycle begins with the interactions between the surface glycoprotein gp120 with CD4
and one of the co-receptors in a process that induces conformational changes allowing insertion of the
viral transmembrane protein gp41 in the host cell membrane to trigger fusion of both membranes and
entry of the viral capsid into the host cell cytoplasm. Then, the positive single stranded RNA genome
is converted into double stranded DNA by the virally encoded reverse transcriptase, which is located in
the capsid. In association with viral and cellular proteins, viral DNA forms the so-called pre-integration
complex (PIC), which is imported to the host cell nucleus in an active process orchestrated by the viral
proteins capsid and integrase [2]. The latter then catalyzes integration of viral DNA into the host cell
genome to establish what is known as the proviral state. Once integrated, the provirus can remain latent
or undergo efficient gene expression in order to continue with late steps of the replication cycle. The
full-length unspliced genomic RNA (hence referred as unspliced mRNA) has a dual function as it is both
used as mRNA for the synthesis of Gag and Gag-Pol precursors and the genome that is incorporated into
the viral particles. The structural protein Gag drives both packaging of the genomic RNA and assembly
of newly synthesized viral particles, which will be maturated by the viral protease allowing initiation of
a new replication cycle.

HIV gene expression relies on the host for transcription, RNA processing, nuclear export and
translation, a series of complex processes that are assisted by at least, two major viral regulators namely
Tat and Rev. HIV transcription relies both on the promoter sequences present in the viral 51 long-terminal
repeat (51-LTR) region and the trans-activator viral protein Tat, which acts together with host cellular
proteins including the RNA polymerase II and the pTEFb transcription factor [3–7]. Transcription
from the provirus results in expression of the full-length unspliced mRNA, which is 9-kb long and
encodes structural and enzymatic proteins (Gag and Gag-Pol). However, the presence of multiple
splice donor and acceptor sites within the full-length mRNA supports alternative splicing which results
in the generation of a complex pattern of viral mRNAs harboring the open reading frames of Vif,
Vpr, Vpu/Env, Tat, Rev and Nef, which differ in their 51 untranslated regions (51-UTR) [8]. These
transcripts are both incompletely (4-kb) and completely spliced (2-kb) and are used for expression of
all remaining viral proteins. Several of these completely spliced transcripts coding for Tat, Rev, and
Nef are produced during the early steps of infection [9–11]. Later on, the full-length unspliced mRNA
together with further different 4-kb transcripts coding for Env/Vpu, Vif, Vpr, and Tat are then generated,
exported and translated in the cytoplasm [9–12]. All these RNA processing events generate different
viral mRNP complexes that will differ in the routes used to reach the host translational machinery.
As such, while completely spliced transcripts are exported by the canonical nuclear export pathway, the
unspliced and the 4-kb incompletely spliced transcripts require the binding of the virally encoded protein
Rev to the cis-acting RNA element called the Rev responsive element (RRE) present in all of these
intron-containing transcripts; this allows their export through the CRM1 pathway [13–20] (Figure 1).
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As mentioned above, in addition to its nuclear function as a pre-mRNA template for the generation 
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cytoplasm by serving both as a mRNA for viral protein production and as the packaged genome 

(Figure 1). In order to combine these different functions, the unspliced mRNA needs to overcome 

several structural and functional constraints that could affect cellular post-transcriptional events such 

as nuclear export and translation. In this review, we focus on how the virus has evolved to combine the 

building of a complex and specific mRNP on its mRNAs ensuring proper viral gene expression. 

Figure 1. Post-transcriptional control on human immunodeficiency virus (HIV). Upon
transcription, the capped and polyadenylated full-length genomic RNA is used as a template
for the host mRNA processing machinery in order to generate fully spliced and partially
spliced transcripts (partially spliced transcripts have been omitted for simplicity). In the
nucleus, fully spliced transcripts form a classical messenger ribonucleoprotein complex
(mRNP) together with host proteins such as the exon junction complex (EJC) and the mRNA
export factor NXF1. In the cytoplasm, fully spliced mRNAs recruit the host translational
apparatus for protein synthesis and later they are degraded by the mRNA turnover machinery.
In the presence of the viral protein Rev, the unspliced genomic RNA (and partially spliced
mRNAs) reaches the cytoplasm through the CRM1-dependent pathway avoiding the host
cell surveillance mechanisms. During this journey to the cytoplasm, the unspliced genomic
RNA forms a unique mRNP that favors its association with the host translational machinery.
In contrast to the fully spliced transcripts, the unspliced genomic RNA does not undergo
turnover as it is incorporated into viral particles.

As mentioned above, in addition to its nuclear function as a pre-mRNA template for the generation
of the 2 and 4-kb transcripts, the 9-kb full-length unspliced mRNA plays two additional roles in the
cytoplasm by serving both as a mRNA for viral protein production and as the packaged genome
(Figure 1). In order to combine these different functions, the unspliced mRNA needs to overcome
several structural and functional constraints that could affect cellular post-transcriptional events such as
nuclear export and translation. In this review, we focus on how the virus has evolved to combine the
building of a complex and specific mRNP on its mRNAs ensuring proper viral gene expression.
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2. Reaching the Cytoplasm Avoiding Surveillance Mechanisms

HIV-1 transcripts are synthesized by the RNA polymerase II and, consequently, are capped and
polyadenylated by the host machinery [21–24]. As described above, many different viral mRNA species
can be found in infected cells with at least four different 51- and eight different 31-splice sites being used
during pre-mRNA processing [9–11]. However, the cellular splicing machinery must be inefficient in the
usage of viral splice sites in order to ensure that appropriate pools of each subset of viral mRNAs can be
produced in the nucleus [25–27]. The vast majority of cellular mRNAs are usually spliced to completion
and thus all introns are removed during splicing [28]. This is the case for the viral 2-kb transcripts
that are completely processed and can be exported to the cytoplasm through the nuclear export factor
NXF1 [29–31]. However, nuclear export of mRNAs that harbor functional introns is quite unusual and
they are often retained in the nucleus by the interaction with splicing factors until they are either spliced
to completion or degraded [32–34]. In addition, viral intron-containing transcripts cannot be exported
through the NXF1-dependent pathway due to surveillance mechanism ruled by, amongst others, the
cellular protein Tpr [35–37]. As such, the 4-kb incompletely spliced and the 9-kb unspliced transcripts
are retained and degraded in the host cell nucleus unless the viral protein Rev is present [25,38].

Rev is synthesized from a 2-kb completely spliced transcript and is essential for virus replication [39].
Although the step of the replication cycle in which Rev activity is the most important has been
the subject of some controversy [39–41], there is no doubt that synthesis of the viral structural
proteins Gag and Gag-Pol from the unspliced mRNA is dramatically reduced in the absence of
Rev. Rev is a phosphoprotein of approximately 18-kDa that constantly shuttles between the nucleus
and the cytoplasm but accumulates in the nucleus [39]. The N-terminal domain of the protein
contains an arginine-rich motif that serves both as a nuclear localization signal (NLS) and as an
RNA-binding domain (RBD) [39,42–50]. While the NLS allows recognition and nuclear import of
Rev by Importin-β, the RBD allows the interaction with the Rev Responsive Element (RRE) which
is present exclusively in the incompletely spliced and unspliced viral transcripts as it is located within
the env gene [19,39,51]. The arginine-rich sequence is flanked from both sides by less defined
sequences required for oligomerization [39,49,50]. The C-terminal domain contains the leucine-rich
nuclear export signal (NES) that allows the interaction and nuclear export of the Rev-RRE complex
with the karyopherin CRM1 (Chromosome maintenance-1) bound to Ran-GTP [16,52–55]. Recent
structural studies have revealed that once bound to the RRE, the Rev protein oligomerizes in order to
promote nuclear export [49,56] while CRM1 forms a dimer that favors nuclear export of the Rev-RRE
complex [57]. Moreover, it was recently shown that Rev can interact with the nuclear cap-binding
complex (CBC) component CBP80 and block NXF1 recruitment in order to specifically enter the
nuclear export pathway through CRM1 [58]. In addition to CRM1-RanGTP and CBP80, Rev recruits
several host proteins including eIF5A, hRIP, DDX3, DDX1, and Sam68 to promote nuclear export [59].
Thus, by using this alternative pathway, the viral protein Rev ensures the cytoplasmic accumulation of
intron-containing transcripts and avoids NXF1-associated quality control mechanisms. This explains that
despite the presence of introns, viral transcripts that do not undergo complete splicing are not substrates
for non-sense mediated decay (NMD) [60,61].
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After completion of their journey from the nucleus and through the nuclear pores, the viral transcripts
must compete with cellular mRNAs in the cytoplasm to recruit the host translational machinery. In
mammals, ribosome recruitment onto the mRNA occurs by two main mechanisms: the cap-dependent
and the internal ribosome entry sites (IRES)-driven mechanisms [62,63] and HIV-1 has evolved strategies
to use both [64].

3. An Overview on mRNA Translation Initiation in Eukaryotes

The vast majority of cellular mRNAs recruit ribosomes through a cap-dependent translation initiation
mechanism. This process sequentially involves: (i) formation of a 43S pre-initiation complex; (ii) cap
structure recognition and loading of the 43S pre-initiation complex onto the mRNA; (iii) ribosomal
scanning of the 51-UTR; (iv) initiation codon recognition and (v) joining of the 60S ribosomal
subunit [62]. The 43S pre-initiation complex is composed of a recycled 40S small ribosomal subunit, an
eIF2-GTP-tRNAi ternary complex (TC), eIF3, eIF1, eIF1A and probably eIF5 [62]. At the 51 end of the
mRNA, the eIF4F holoenzyme binds to the cap-structure and unwinds local RNA structures assisted by
eIF4B or eIF4H creating the landing pad for the 43S pre-initiation complex. The eIF4F multimeric
complex is composed of the cap-binding protein eIF4E, the RNA helicase eIF4A, and the scaffold
protein eIF4G [65,66]. eIF4E exhibits high affinity for the cap structure and interacts with eIF4G to
mediate cap-dependent translation initiation by promoting assembly of eIF4F onto the capped mRNA.
The DEAD-box protein eIF4A is an RNA helicase with ATP-dependent RNA unwinding activity [67,68].
Although the intrinsic helicase activity of eIF4A is weak, its inclusion into the eIF4F complex together
with the binding of eIF4B and the related factor eIF4H strongly stimulates its enzymatic activity [69].
As mentioned above, the eIF4G scaffold protein associates with eIF4E and eIF4A to form the eIF4F
holoenzyme that binds to the 51 end of capped mRNAs [70–73]. By further interacting with eIF3, eIF4G
promotes attachment of the 43S pre-initiation complex onto the transcript to allow formation of a 48S
pre-initiation complex [72,74–78]. Once attached, this complex immediately starts scanning in a 51

to 31 direction from the cap structure until it reaches an initiation codon, which often corresponds to
the first AUG codon [79–81]. The ribosomal scanning model proposes that the translation initiation
complex unwinds secondary structures present in the 51-UTR and moves in the 51 to 31 direction
in an ATP-dependent manner [82,83]. Thus, in addition to their role in 43S pre-initiation complex
attachment, eIF4G, eIF4A, eIF4B (or eIF4H) also assist the scanning process [83,84]. Although the
RNA helicase eIF4A and its associated factors eIF4B/eIF4H can support the unwinding process of the
scanning pre-initiation complexes, it has been recently shown that additional RNA helicases can also
be recruited [85]. As such, the related DExH box protein 29 (DHX29) binds the 40S small ribosomal
subunits while RNA helicase A binds selected mRNAs and both are required for efficient scanning of
mRNAs containing highly structured 51-UTRs [86–88].

An alternative model of translation initiation has been described for mRNAs that harbor specific
RNA sequences termed Internal Ribosome Entry Sites (IRES). These sequences are generally present
in the 51-UTR of the mRNA whose function is to recruit ribosomes for translation initiation in a
cap-independent manner. IRES elements were first discovered in viral RNA genomes more than 25 years
ago with the studies of picornavirus translation [89,90] and have now been characterized in many viral
mRNAs including HCV, Pestiviruses, and Retroviruses [63]. Although IRES elements have also been
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described in near 100 cellular mRNAs their existence remains controversial mainly by the lack of
essential controls discarding cryptic promoters and/or alternative splicing during the characterization
process [91].

IRES elements promote the direct binding of the 43S pre-initiation complex and associated factors to
the mRNA. However, the precise mechanism of IRES-mediated translation initiation is not completely
understood. Although a classification of IRES elements by structural criteria is not possible due to
the lack of any conserved sequence, viral IRES elements can be grouped based on a mechanistic and
functional point of view involving: (i) the way by which the 43S pre-initiation complexes is recruited,
e.g., whether it is assisted or not by eIFs; and (ii) the site where the 43S pre-initiation complex is
positioned onto the mRNA, which can be close to the initiation codon or if it involves an additional
step of scanning. Moreover, IRES elements can also be characterized by the requirement of diverse
cellular accessory proteins denominated IRES trans-acting factors (ITAFs) for proper function.

IRES elements allow the selective translation of viral mRNAs under conditions in which global host
translation is compromised. When faced by several stresses (such as viral infections, hypoxia, or heat
shock) or particular cellular conditions (such as mitosis or apoptosis), Eukaryotic cells often respond
by reducing the global rates of translation [92]. However, a significant fraction of cellular mRNAs was
shown to remain associated to polysomes [93] and several of these are IRES-containing transcripts.
This shows that the presence of the IRES element allows mRNAs to be translated under unfavorable
conditions in which cap-dependent translation is slowed down or arrested [94–98].

4. Recruiting the Host Translational Machinery onto the Unspliced HIV Genomic RNA

The unspliced mRNA harbors a long (51-UTR) organized in several RNA structures involved in
many steps of the replication cycle [3,99–103]. Given the structure and complexity of the 5’-UTR, the
mechanism by which translation initiation takes place on the HIV-1 genomic RNA has been the subject
of debate for several years [104]. Indeed, it was initially shown that sequences derived from the 51-UTR
were inhibitory for translation [105–109]. Particularly, cell-free in vitro translation assays and ex vivo
experiments using reporter genes suggested that the presence and folding of the TAR RNA motif, which
is located at the very 51 end of the viral transcripts, exerted a negative effect on protein synthesis both by
impeding ribosome recruitment and by activating the kinase PKR [105–108,110,111]. However, despite
this incompatibility with ribosome recruitment by a cap-dependent ribosomal scanning mechanism,
an IRES-driven mechanism on HIV-1 transcripts was rapidly discarded indicating that cap-dependent
translation initiation was the major mechanism for ribosome recruitment [112].

5. Identification of a Cell Cycle-Dependent IRES

As mentioned above, initial attempts to identify sequences within viral 51-UTR supporting IRES
activity failed and the cap-dependent ribosomal scanning was proposed as the only mechanism to drive
Gag synthesis [112]. However, a more detailed study revealed that an IRES element was indeed present
within the 51-UTR of the HIV-1 unspliced mRNA [113]. This IRES element was mapped to nucleotides
104 to 336 where it spans the primer-binding site (PBS), the dimerization site (DIS), the major splice
donor (SD) and RNA motifs that are critical for encapsidation [113]. Interestingly, this IRES element
was shown to be activated during the G2/M phase of the cell cycle [113]. This peculiarity not only
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explained why previous studies failed to detect IRES activity but also emphasized the physiological
relevance that the use of an alternative mechanism of ribosome recruitment could have during viral
replication. Indeed, during HIV-1 and other lentiviral infections, the viral protein Vpr induces a cell cycle
arrest at the G2/M phase [114–117]. Although the G2/M phase is characterized by a strong inhibition
of cap-dependent protein synthesis [95,118,119], HIV-1 viral gene expression was shown to continue
during this phase of the cell cycle [120–122]. Although IRES elements were demonstrated to be able
to drive efficiently protein synthesis in G2/M [96], other authors have proposed another alternative in
which the translation of the HIV-1 unspliced mRNA was rather conducted by a eIF4E-independent,
CBC-driven, cap-dependent mechanism during the G2/M arrest induced by Vpr [122]. Nevertheless, the
ability of the 51-UTR of HIV-1 transcripts to drive IRES-driven translation has now been evidenced by
several groups in different experimental contexts and on different HIV-1 prototype strains [123–130].
Therefore, it is conceivable that the HIV-1 genomic RNA can use both strategies depending on some
physiological conditions that remain to be found. Moreover, similar to poliovirus, the HIV-1 and HIV-2
proteases were shown to process translation initiation factors eIF4GI and PABP in vitro and ex vivo
leading to the inhibition of cap-dependent ribosomal scanning with modest impact on viral unspliced
mRNA translation [70,131–134]. However, processing of eIF4GI and PABP during viral infection was
rather modest and occurred late during infection [131] and thus, the significance of these events in the
course of viral replication remains to be demonstrated.

Protein synthesis from the HIV-1 and HIV-2 unspliced mRNAs presents an additional layer of
complexity as IRES elements have also been characterized within the Gag coding region [64,135]. By
using the HIV-1 Gag ORF lacking the viral 51-UTR it was shown that this region was able to drive
synthesis of full-length p55 Gag and a novel 40-kDa N-terminally truncated isoform of Gag (p40)
initiated at an internal in frame AUG codon [136]. The presence of IRES elements downstream to
the authentic initiation codon and the synthesis of N-terminally truncated isoforms of Gag were also
characterized in other related lentiviruses such as HIV-2, SIV, and FIV indicating that the conservation of
the mechanism is a common feature of the genus and could be important for replication [135,137–139].
In HIV-1 and HIV-2, these Gag isoforms are incorporated into viral particles despite the lack of a
myristoylation site at their N-terminus, probably by protein-protein interactions with the full length
Gag polyprotein; this suggests a role for these truncated isoforms in the replication cycle [136,138].
Although the molecular mechanisms controlling this process in the HIV-1 unspliced mRNA are not
completely understood, an in vitro study revealed that the different modes of ribosome recruitment have
different levels of requirements for eIF4F [140]. In the case of the HIV-2, it was shown that three IRES
elements within the Gag coding region were able to directly recruit three independent 43S pre-initiation
complexes [138,141–143].

6. Translation by a Cap-Dependent Mechanism

More recently, by using synthetic constructs Berkhout and co-workers demonstrated that
cap-dependent ribosomal scanning occurs throughout the 51-UTR of the HIV-1 unspliced mRNA [144].
Using similar approaches, other groups including ours demonstrated that the cap-dependent mechanism
of translation initiation occurs both in vitro and ex vivo [109,121]. The ability of the 43S pre-initiation
complex to scan through the highly structured 51-UTR could be explained by the recruitment of the
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helicase RHA, which was shown to promote polysome association of the unspliced mRNA by interacting
with a post-transcriptional control element (PCE) located at the 51-UTR [88,145]. Although it is
thought that RHA helicase activity contributes to the unwinding of secondary structures during ribosomal
scanning, the involvement of other RNA helicases such as DHX29 has not yet been investigated and thus,
cannot be discarded.

While the involvement of RHA shed light on how the 43S pre-initiation complex moves along the
highly structured viral 51-UTR, it was still unclear how the cap-structure could be recognized by the
eIF4F complex in the presence of the TAR structure. Indeed, the 51 end cap moiety of all HIV-1
transcripts is base-paired and embedded within the basis of the stem of the TAR RNA motif and
thus, is likely to be inaccessible for the binding of the eIF4F complex and the ribosomal 43S subunit.
Surprisingly, although the presence of TAR was shown to strongly interfere with translation initiation in
the rabbit reticulocytes lysate (RRL), this was not the case in constructs expressed in living cells [109].
These data suggested that some specific host factor(s) that are absent or in limited concentration in
the RRL can be used to overcome the structural constraint imposed by TAR. A likely candidate was
found amongst one of the Rev cofactors namely the RNA helicase DDX3 [146]. DDX3 belongs to the
DEAD-box family of proteins whose prototype member is the initiation factor eIF4A [147]. DEAD-box
proteins are ATP-dependent RNA helicases that play pleiotropic functions within the cell by participating
in all steps of RNA metabolism [148]. These proteins are thought to participate in RNA:RNA
and RNA:protein remodeling or to act as RNA clamps for the assembly of large macromolecular
complexes [148]. DDX3 was first proposed to be a host factor involved in Rev-dependent nuclear
export [146]. By using a full-length reporter proviral DNA and viral infection, we were also able to show
that DDX3 was required for translation of the unspliced genomic RNA both in HeLa and T-cells and this
function required the ATP binding and ATPase activity of the enzyme [149,150]. We also reported that
the molecular target for DDX3 was actually the TAR RNA motif, an observation recently validated by
another group [151]. Interestingly, we observed that DDX3 was required to unwind TAR in cells and
this functional interaction was necessary when the latter was at its original location (e.g., at the 51 end of
the HIV-1 transcript) but the dependence in DDX3 was abolished when the TAR motif was preceded by
an unstructured spacer sequence [149]. These data suggested that DDX3 binds and unwinds TAR during
a pre-translation initiation step that is necessary to remodel secondary structures in order to render the
cap moiety accessible to the eIF4F holenzyme and the 43S complex [149] (Figure 2). In agreement with
this, we could also show that DDX3 was bound to, at least, two additional and specific sites within the
51-UTR of the HIV-1 genomic RNA [149]. These sites were located exclusively on RNA single stranded
regions and could correspond to loading platforms for DDX3 as had been previously suggested [148]. In
addition, an interaction between DDX3 and translation initiation factors eIF4GI and PABPC1 was also
evidenced by biochemical assays as well as confocal microscopy [149]. Interestingly, we observed that
the complex formed between the unspliced HIV-1 mRNA, DDX3, eIF4GI, and PABPC1 was assembled
in localized cytoplasmic granules that resembled but were different from stress granules as they lacked
the eIF4F components eIF4E, eIF4A, eIF4B, and the CBC component CBP80 [150] (Figure 2).
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Figure 2. DDX3-mediated translation of the HIV-1 genomic RNA. In the absence of
DDX3, the TAR RNA motif impedes binding of the eIF4F holoenzyme to the cap. Thus,
DDX3 binds the viral 51-UTR to nucleate formation of a pre-translation initiation complex
that involves ATP-dependent unwinding of TAR and specific recruitment of translation
initiation factors eIF4GI and PABP (and probably other unidentified cellular proteins). TAR
unwinding renders the cap accessible for eIF4F binding and subsequent recruitment of the
43S pre-initiation complex. It is possible that such a pre-translation initiation step driven by
DDX3 occurs compartmentalized in RNA granules (in yellow).

Another intriguing feature of the unspliced HIV-1 mRNA that could also influence its translation
is the presence of a trimethylguanosine (TMG) cap structure [152]. A few years ago, the peroxisome
proliferator-activated receptor-interacting protein with methyltransferase domain (PIMT) (the human
homolog of the yeast cap hypermethylase TGS1) was shown to interact with Rev and this resulted in the
hypermethylation of the 51 cap structure of the HIV-1 unspliced mRNA [152]. It has been known for
quite some time that TMG-capped mRNAs present reduced translational rates in vitro [153]. However,
in the case of the HIV-1 genomic RNA, the latter is efficiently used for viral protein production and
trimethylation of its cap was shown to be required in this process although the molecular mechanism
underlying was not elucidated [152]. In light of our data showing the presence of a pre-initiation
complex composed of DDX3/eIF4G/PABP, but lacking any of the major cap binding proteins CBC
and eIF4E [150], a further investigation into the role of a TMG cap would be interesting. Indeed,
as the affinity of the CBC and eIF4E for the TMG cap is largely reduced compared to the classical
m7G monomethylated cap [154], this could explain the exclusion of both eIF4E and CBC from this
pre-initiation complex and could suggest that other TMG-bound cellular proteins may be recruited for
initiation of HIV-1 unspliced mRNA translation.
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7. Assembly of Unspliced mRNA-Containing Granules

Cellular mRNAs are in a dynamic equilibrium between polysomes and cytoplasmic granules such as
stress granules and p-bodies [155,156]. While stress granules are sites of triage for mRNAs stalled in
translation initiation as a response to cellular stress, p-bodies are sites intimately related to the mRNA
decay machinery [155,156]. Both structures and/or some of their components have been shown to play
pivotal roles during replication of several viruses and thus, it is not surprising that viruses have evolved
different strategies to manipulate the assembly/disassembly of mRNA granules [157–159].

Although it was first proposed that HIV-1 translation could be negatively regulated by some
components of p-bodies including APOBEC3G [160,161], there is new evidence showing that HIV-1
replication induces the disassembly of p-bodies [162]. Moreover, it was also recently shown that
APOBEC3G activity on HIV-1 replication was independent of p-bodies [163] and that p-bodies
components such as DDX6 and Argonaute 2 were rather involved in viral particle assembly independent
of RNA packaging [164]. Therefore, further work is necessary to clarify the role of p-bodies in HIV-1
unspliced mRNA metabolism.

Interestingly, HIV-1 and HIV-2 have evolved completely opposite strategies to modulate and control
the assembly of stress granules. As such, it was shown that HIV-1 has the ability to interfere
with stress granule assembly induced by different types of stresses [162,165]. Indeed, the authors
showed that the HIV-1 Gag protein has the ability to interfere with stress granules assembly through
a direct interaction with eEF2 and G3BP1, two key factors required for assembly of these cytoplasmic
structures [165]. Thus, it is possible that by doing so, the HIV-1 unspliced mRNA promotes the assembly
of a pre-initiation complex with DDX3 and subset of eIFs in order to enter in translation initiation
and associate with polysomes [150] (Figure 3A). Then, the HIV-1 unspliced mRNA is assembled
into a Staufen1-dependent mRNP, which also contains the viral protein Gag and is required for RNA
packaging [162] (Figure 3A).
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Figure 3. RNA granules assembled during HIV replication. (A) Polysome association
of HIV-1 unspliced mRNA requires its previous assembly in DDX3-dependent granules
together with eIF4GI, PABPC1 and probably other, yet, unidentified cellular proteins.
Once translated, unspliced mRNA associates with the dsRNA-binding protein Staufen1 and
the viral protein Gag in order to form another specific RNA granule (Staufen1 granule),
which is required for viral particle assembly. This dynamic assembly of different RNA
granules allows HIV-1 to coordinate genomic RNA translation and packaging; (B) The
HIV-2 unspliced mRNA recruits the stress granule assembly factor TIAR to form a specific
viral mRNP that accumulates in stress granules in the absence of active translation. The viral
protein Gag also accumulates in stress granules suggesting that the transition from translation
to RNA packaging could occur in these structures.

In sharp contrast with what was described for HIV-1, we showed that HIV-2 replication induces the
spontaneous assembly of stress granules [166] (Figure 3B). Moreover, we observed that HIV-2 unspliced
mRNA was directly associated with the stress granule assembly factor TIAR in order to form a specific
viral mRNP [166] (Figure 3B). We have previously shown that ribosome recruitment onto the HIV-2
genomic RNA is very inefficient due to a strong interference imposed by the highly structured TAR RNA
motif [109]. Thus, stress granules could serve as sites of storage for the viral genome while threshold
levels of Gag required for RNA packaging are produced. Interestingly, the HIV-2 Gag polyprotein was
also observed in stress granules indicating that the transition from translation to RNA packaging may
occur in these structures [166] (Figure 3B).

8. Viral Proteins Promoting Translation

Some of the virally encoded proteins, namely Tat, Rev, and Gag have been involved in the control
of viral mRNA translation (Figure 4). Initial studies carried out in the RRL and Xenopus leavis oocytes
revealed that Tat was involved in the control of translation notably by counteracting the deleterious
activation of PKR [107,167,168]. Indeed, secondary RNA structures constituting the TAR motif at the
51-UTR were shown to activate the protein kinase R (PKR) leading to inhibition of translation [169,170].
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Once activated, PKR phosphorylates the α subunit of eIF2 resulting in a global inhibition of translation
initiation [171]. However, Tat binding to TAR and/or PKR could prevent activation of the kinase the
phosphorylation of eIF2α [172]. In addition, it was shown that Tat is able to stimulate translation both
in vitro and in living cells [129]. Moreover, binding of Tat to the 51-UTR of the unspliced mRNA could
stimulate the programmed-1 ribosomal frameshift [173]. More recently, Tat was shown to interact with
DDX3 and remain associated to polysomes together with the unspliced mRNA further indicating its role
in viral mRNA translation [151].
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Figure 4. Translational control by host and viral proteins. Schematic representation of the
panel of viral (Rev, Tat, Gag) and cellular (DDX3, PIMT, CBP80, RHA, and PABP) proteins
required to assist translation initiation from the HIV-1 and HIV-2 unspliced mRNA.

Another viral protein, Rev, was demonstrated to be required for association of the incompletely
spliced mRNAs vif, vpr, env, and vpu into polysomes [174]. By using a Gag expression vector lacking the
RRE, it was also shown that polysome association of the resulting gag mRNA was deficient either in the
presence or absence of Rev, suggesting that the Rev-RRE interaction and not the presence of Rev per se
is critical for ribosome recruitment [175]. Such a function of Rev in translation could be explained by
an enhanced recruitment of PABPC1 to Rev-dependent mRNAs [176] or by direct binding to the loop-A
of stem-loop 1 located within the packaging signal [177].

Finally the Gag protein was shown to modulate its own translation by exerting a bimodal effect
depending on its concentration [143,166,178]. As such, it was shown that HIV-1 and HIV-2 Gag
stimulate translation at low concentrations to then inhibit protein synthesis. In the case of HIV-1,
stimulation required the matrix domain while inhibition was dependent on the binding of nucleocapsid
domain to the packaging signal [178]. In the case of HIV-2, we also observed a bimodal effect of
Gag on translation with stimulation at low concentration and inhibition and higher concentrations [166].
Interestingly, we observed that such an effect of Gag on translation was concordant with the subcellular
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localization of the unspliced mRNA [166]. As such, we observed that both the unspliced mRNA and
Gag localized diffusely in the cytoplasm at low concentrations of Gag while both components were
assembled in stress granules at high concentrations of the viral protein [166].

9. Concluding Remarks

Post-transcriptional control of HIV-1 viral gene expression is regulated from the nucleus to the
cytoplasm and involves many host and viral proteins throughout this process. It is amazing to realize
that almost every step, from splicing, export, and translation, has its own regulatory pathway, which
often differs from that used by cellular mRNAs. This results in the constitution of a unique viral
RNP that reaches the cytoplasm to be translated by a spectrum of different mechanisms juggling with
cap-dependent and cap-independent mechanisms of initiation. The great diversity of these means of
expression confers to the virus several selective advantages such as preventing degradation of the
unspliced mRNA by surveillance mechanisms in the nucleus and allowing selective translation under
conditions that are not favorable for host gene expression. Evolution of diverse mechanisms for gene
expression also allows the conciliation of the presence of multiple RNA structures in the 51-UTR, that are
required for genome replication, with the need of an efficient mechanism for viral protein synthesis. For
instance, the TAR structure at the 51 end of the mRNA represents an essential element for transcription
that would be severely inhibitory for ribosome binding and scanning unless it can be counteracted by the
recruitment of the host RNA helicase DDX3 to assist pre-initiation complex formation. An interesting,
promising new direction concerns the recent identification of compartmentalized cytoplasmic foci
containing HIV-1 and HIV-2 viral RNPs. Although, the function of these foci are not fully characterized,
they may serve as sites of storage to ensure an equilibrium between unspliced mRNA translation and
its packaging into assembly virions. Interestingly, use of these cytoplasmic foci seems to be radically
different between the two closely related human immunodeficiency viruses. A better understanding of
this process may shed light on our understanding of the replication cycle of these two relatives. Such
a specific and complex control of post-transcription gene expression in lentiviruses can point to new
directions in the treatment of disease. As such, the targeting of essential host factors that are required
for viral replication, such as DDX3 for instance, could bring new therapeutical approaches. Above all,
due to great diversity of their strategies developed to express their genome, lentiviruses represent good
paradigms for the studies on the control of post-transcriptional gene expression.
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