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Abstract
Exercise-associated physiological disturbances alter gastrointestinal function and integrity. These alterations may increase suscep-
tibility to dietary triggers, namely gluten and a family of short-chain carbohydrates known as FODMAPs (fermentable oligo-, di-, 
monosaccharides and polyols). A recent surge in the popularity of gluten-free diets (GFDs) among athletes without celiac disease 
has been exacerbated by unsubstantiated commercial health claims and high-profile athletes citing this diet to be the secret to 
their success. Up to 41% of athletes at least partially adhere to a GFD diet, with the belief that gluten avoidance improves exercise 
performance and parameters influencing performance, particularly gastrointestinal symptoms (GIS). In contrast to these beliefs, 
seminal work investigating the effects of a GFD in athletes without celiac disease has demonstrated no beneficial effect of a GFD 
versus a gluten-containing diet on performance, gastrointestinal health, inflammation, or perceptual wellbeing. Interestingly, the 
subsequent reduction in FODMAPs concurrent with the elimination of gluten-containing grains may actually be the factors 
affecting GIS improvement, not gluten. Pre-existent in the gastrointestinal tract or ingested during exercise, the osmotic and gas-
producing effects of variably absorbed FODMAPs may trigger or increase the magnitude of exercise-associated GIS. Research 
using FODMAP reduction to address gastrointestinal issues in clinically healthy athletes is emerging as a promising strategy to 
reduce exercise-associated GIS. Applied research and practitioners merging clinical and sports nutrition methods will be essential 
for the effective use of a low FODMAP approach to tackle the multifactorial nature of gastrointestinal disturbances in athletes.
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Key Points 

For athletes not diagnosed with a clinical condition 
requiring a gluten-free diet (GFD), this diet does not 
impart a beneficial or negative effect on performance, 
gastrointestinal health, or wellbeing. Factors such as 
nutritional adequacy and subsequent dietary changes 
should be evaluated when a GFD is considered.

Some fermentable oligo-, di-, monosaccharides and polyols 
(FODMAPs) may co-exist in gluten-containing foods. A 
reduction in FODMAPs, rather than gluten, may be the fac-
tors influencing gastrointestinal symptom (GIS) improve-
ment. Athletes following a GFD likely inadvertently reduce 
high FODMAP foods, which may reduce GIS.

Guided by a qualified sports nutrition practitioner, FOD-
MAP restriction may be an effective strategy to reduce 
the magnitude of exercise-associated GIS.

1 � Gastrointestinal Symptoms (GIS) 
in Exercise

Exercise-induced gastrointestinal syndrome, a recently 
coined term, describes disturbances of gastrointestinal 
integrity and function that are common features of strenu-
ous exercise [1]. Gastrointestinal conditions are recog-
nized as the most commonly reported illnesses at inter-
national sporting events [2]. Prevalence rates range from 
30 to 50% of athletes, and up to 90% in ultra-endurance 
events [3]. Moderate to severe gastrointestinal symptoms 
(GIS) of the upper and lower gastrointestinal tract may 
be detrimental to athletic performance, most notably dur-
ing strenuous endurance exercise. GIS triggered by the 
physiological responses to exercise are instigated through 
two main pathways: (1) a circulatory-gastrointestinal 
pathway where blood flow is redistributed away from the 
splanchnic area to peripheral circulation and contract-
ing muscles (termed splanchnic hypoperfusion); and (2) 
a neuroendocrine-gastrointestinal pathway characterized 
by increased sympathetic nervous system activation [4, 5]. 
Intestinal ischemia, resulting from splanchnic hypoperfu-
sion, disrupts the epithelial barrier and increases intestinal 
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permeability, allowing an upsurge of bacterial transloca-
tion and local and systemic inflammatory responses [6, 7]. 
Alterations in gut motility and oral rectal transit may also 
result from this exercise-triggered sympathetic response 
[8, 9]. Additionally, exercise-associated upper and lower 
GIS are influenced by foods and fluids consumed around 
exercise [10, 11].

1.1 � Dietary Strategies to Reduce GIS

Various nutrition strategies have been implemented with 
the aim to reduce exercise-associated GIS in training and 
competition [11–14]. Pre-exercise diet recommendations 
to attenuate symptoms during exercise include reduced 
fiber/low residue, low fat, moderate protein, and avoidance 
of lactose-containing dairy products. The transient nature 
and difficulty in reproducing GIS present a challenge in 
determining the efficacy of these strategies. Consequently, 
athletes pursue a variety of dietary approaches aimed at 
reducing GIS. Anecdotal-based approaches or implemen-
tation of strategies ad hoc abound, but several evidence-
based strategies for reducing GIS have been established 
[11–14]. One example is ingesting multiple transporter 
carbohydrates (e.g. glucose and fructose blends) during 
exercise [15]. More recently, an investigation in runners 
(six males, five females) demonstrated that carbohydrate 
and protein intake during exercise under conditions of heat 
stress (2 h run at 60% maximal oxygen uptake in a 35 °C 
environment) ameliorated intestinal injury and permeabil-
ity and decreased GIS with the carbohydrate feeding inter-
vention [16]. Gut training to increase carbohydrate toler-
ance and prepare race-day nutrition has also been shown to 
be beneficial [11, 17, 18]. Mechanisms potentiating nutri-
ent malabsorption, such as intestinal injury or decreased 
intestinal transporter activity, require further consideration 
when implementing strategies to address exercise-induced 
gastrointestinal syndrome [19]. Symptoms often persist 
despite implementation of a variety of strategies.

Being the body’s largest immune organ, the gut is central 
to immune function, which is further influenced by dietary 
intake and exercise [20, 21]. It is plausible that stress placed 
on the gut occurring more frequently than the 3–5 days 
required for epithelial cell protein turnover [22] generates a 
state with various levels of perpetual intestinal injury. This 
circumstance may increase susceptibility to dietary triggers 
(e.g. gluten) or food intolerances (e.g. lactose), associated 
GIS, and the long-term development of chronic disease [1]. 
Although this concept has not been directly demonstrated 
in athletes, better understanding of dietary factors affect-
ing GIS [e.g. fermentable oligo-, di-, monosaccharides and 
polyols (FODMAPs)] has improved the practitioner’s tool-
box for symptom management [23]. Bridging clinical and 

sports nutrition will become increasingly fundamental for 
the efficacious management of exercise-induced gastroin-
testinal syndrome and gastrointestinal conditions in athletes.

1.2 � Objectives

There are two main aims for this review. The first aim is to 
provide the sports nutrition practitioner with an overview of 
the current state of knowledge and considerations pertaining 
to the appropriateness of a gluten-free diet (GFD) for ath-
letes without a clinical requirement for this diet. The second 
aim is to review the use of FODMAP restriction in clinically 
healthy athletes to decrease GIS.

2 � Gluten‑Free Diet (GFD) Considerations

2.1 � Gastrointestinal Health

A high number of athletes link exercise-associated GIS with 
dietary triggers, particularly gluten-containing foods [14]. 
As a result, foods or food groups are eliminated from the 
diet, potentially unnecessarily. Gluten-containing foods are 
commonly blamed for GIS. Gluten, a plant storage protein, is 
a composite of gliadins and glutenins, complex proteins unu-
sually rich in prolines and glutamines that are incompletely 
digested by intestinal enzymes [24]. It is also important to 
acknowledge that gluten and fructans co-exist in cereals 
and yet gluten has been incorrectly blamed for related GIS 
[25–27]. In celiac disease, partial peptide digestion triggers 
increased intestinal permeability and innate and/or adaptive 
immune responses resembling exposure to gastrointestinal 
pathogens [28]. Non-celiac gluten/wheat sensitivity (NCGS) 
is acknowledged as a separate clinical entity, with symptoms 
similar to celiac disease. NCGS is characterized by variable 
pathogenesis, clinical history, and clinical course [29]. In 
other words, it is a heterogeneous condition but has symp-
tom overlap with other conditions, such as irritable bowel 
syndrome (IBS). Advancing work is narrowing the clinical 
picture for NCGS and suggests a central role of the intestinal 
innate immune system and elevated levels of intestinal fatty 
acid binding protein [30, 31]. However, due to the lack of a 
diagnostic biomarker for NCGS, non-specific symptoms, as 
well as the resemblance to gastrointestinal and extraintes-
tinal symptoms associated with strenuous exercise (e.g. 
fatigue, bloating, diarrhea), many athletes believe gluten to 
be the cause.

A recent questionnaire-based study quantified athletes’ 
(n = 910) beliefs and reasons for adhering to a GFD [14]. 
Forty-one percent of the non-celiac athletes surveyed 
reported following this diet [14, 32] at least 50% of the 
time [14]. The foremost rationale for athletes to adhere to 
a GFD was self-diagnosis of gluten-related conditions or 
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non-clinical motivations (e.g. healthier, improved body com-
position) [14]. Observationally, athletes often implement 
dietary strategies ahead of supportive research, which may 
or may not be accurate. It is however prudent to consider a 
potential interplay between exercise-induced gastrointesti-
nal injury, gastrointestinal dysfunction, and susceptibility to 
the negative effects of known dietary triggers, in this case 
gluten.

Average intakes of gluten vary individually and geo-
graphically [33]. Athletes’ consumption of gluten-containing 
foods may be higher than average due to the increased vol-
ume of food and possibly higher reliance on wheat-based 
foodstuff (e.g. energy bars, breads, and pasta) to fuel ele-
vated energy and carbohydrate demands. The combination 
of increased exercise-induced gastrointestinal permeability 
and high intakes of gluten peptides could allow for a greater 
gliadin peptide translocation across the epithelial barrier. 
This permutation of physiological stress and consumption 
of a known dietary trigger could amplify GIS associated 
with exercise-induced gastrointestinal syndrome. In vivo, 
this concept is speculative, and current research is limited 
to cell culture studies or populations with celiac disease that 
have demonstrated that gliadin peptides trigger, or are asso-
ciated with, tight junction protein dysregulation [34, 35]. In 
the only randomized controlled trial to investigate athletes’ 
(n = 13) gastrointestinal injury and symptoms in response 
to a GFD during strenuous exercise, gluten did not increase 
exercise-induced alterations in epithelial injury or GIS [36]. 
While the alleged detrimental effects of gluten on gut barrier 
function or GIS in healthy athletes have not been validated, 
a multitude of physiological elements and psychosocial fac-
tors influence GIS and the perception of gluten’s effect on 
gastrointestinal health.

2.2 � Inflammation

In addition to exercise stress, the potential of gluten to trigger 
inflammatory responses could have an additive toll on the 
immune system [1]. Immune-associated symptoms are diffi-
cult to isolate, yet the influential role of nutrition on immune 
parameters is an integral component of athletic health and 
performance. A ‘J-shaped curve’ model has been used to 
demonstrate the relationship between high-volume/intensity 
exercise and increased illness rate [37]. In celiac disease, a 
GFD restores innate and adaptive immune parameters [38]. 
However, no evidence supports the idea that gluten avoid-
ance in clinically healthy athletes improves measures of 
immune function [36, 39]. In a 7-day randomized crossover 
GFD intervention study of competitive non-celiac cyclists 
(n = 13), gluten did not elicit an adverse inflammatory profile 
(interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-15, tumor necrosis 
factor-α) pre, during, or after a strenuous cycling bout (45-
min steady-state cycling at 80% maximum power at VO2max, 

followed by a 15-min time trial) compared with an isoca-
loric gluten-containing diet [36]. Nutrition strategies that 
improve immune function are desirable, particularly during 
heavy training periods. However, too little is known about 
the effect of gluten on immune health to support adherence 
to a GFD for clinically healthy athletes. Future work should 
continue to evaluate the unique connection between a GFD 
and the body’s cornerstone for immune health, the gut [14].

2.3 � Confounding Dietary Changes

Perceptions of improved perceptual wellbeing [14] are likely 
influenced by dietary changes concurrent with following a 
special diet, and not gluten itself. Following a GFD may 
increase awareness of food choices and encourage more 
fruit, vegetable, and gluten-free whole-grain intake [14]. 
These are healthy eating guidelines that align with foun-
dational sports nutrition recommendations [40]. Positive 
dietary changes associated with this diet are likely to influ-
ence perceptions of improved health, psychology, or exercise 
performance. The ‘belief effect’ is also expected to influence 
performance outcomes [41] as many athletes trust that a 
GFD provides an ergogenic edge [14, 32] and has a net posi-
tive impact on performance outcomes [41]. However, when 
13 trained cyclists were blinded, no difference in a 15-min 
time-trial performance was found between a gluten-contain-
ing diet (245.4 ± 53.4 kJ) and a GFD (245.0 ± 54.6 kJ) [36]. 
Widespread convictions of the overall health and perfor-
mance benefits of a GFD are not well-supported in athletes 
not requiring gluten avoidance. In a few cases, the ‘belief 
effect’ as it relates to a GFD may be a strategic ergogenic 
tool; however, these circumstances should be carefully 
assessed.

2.4 � Effects on Body Composition

In many endurance and aesthetic sports, body composition 
is an important factor in performance outcomes. Weight 
changes before and after adherence to a GFD have been 
examined in celiac disease. However, poor dietary control, 
methodological differences, and a complexity of confound-
ing factors (e.g. type 1 diabetes) limit the applicability of 
findings to healthy athletes without celiac disease [42, 
43]. A possible increased risk of obesity with adherence 
to a GFD in celiac disease populations is suggested to be 
linked to improved nutrient absorption upon villus recovery. 
Intakes of gluten-free specialty products, historically higher 
in fat and sugar than their gluten-continuing counterparts, 
may also contribute to increased obesity [43]. Research in 
male mice suggests some metabolic differences pertaining 
to adiposity and metabolism with a GFD versus an isoca-
loric gluten-containing diet over 8 weeks [44, 45]. Impaired 
glucose homeostasis, decreased fasted and non-fasted 
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oxygen uptake, lowered energy expenditure, and increased 
adipocyte content and proinflammatory cytokines were 
associated with increased body weight and adipose tissue in 
gluten-fed mice [45]. Upregulated expression of some genes 
(e.g. peroxisome proliferator-activated receptor-α and -γ, 
lipoprotein lipase) and hormone concentrations (e.g. leptin, 
resistin) provide some mechanistic insight [45]. Although 
these in vitro findings provide an interesting rationale, it 
would be far-reaching to accept that gluten would elicit 
the same alterations in clinically healthy athletes. Dietary 
changes and confounding factors associated with a GFD 
may be more potent influencers of energy balance and body 
composition.

2.5 � Nutritional Adequacy of a GFD for Athletes

Only approximately 1% of Americans have diagnosed 
celiac disease [46]. According to the National Health and 
Nutrition Examination Survey (2009–2014; n = 7417), 25% 
of American consumers reported consuming gluten-free 
foods in 2015, representing a 67% increase from 2013 [46, 
47]. GFD adherence in athletes is estimated to be fourfold 
higher than the proportion of the general population that is 
considered to require gluten-avoidance for clinical reasons 
(e.g. celiac disease, wheat allergy, NCGS) [14]. As men-
tioned, positive dietary behaviors may accompany a GFD. 
However, unnecessary food restriction is concerning for 
athletes given increased fuel requirements and the impor-
tance of adequate nutrient intake on health, training adapta-
tion, and performance [14, 40, 48]. Elimination-type diets 
pose a risk of suboptimal fueling and uncertainty remains 
whether a GFD is a healthier or less healthy diet to support 
athlete nutrition demands [49]. Previous studies have found 
no difference in energy intake with a GFD compared with 
control diets. However, suboptimal intake of fiber, vitamin 
D, vitamin B12, folate, iron, zinc, magnesium, and calcium 
have been reported [42, 50]. With one-quarter of Americans 
eating gluten-free foods, it is also speculated that consum-
ing alternative rice-based grains may increase exposure to 
higher levels of arsenic and mercury [47]. In many parts of 
the world, a proliferating gluten-free market has improved 
the availability of more nutrient-rich pseudo-cereal-based 
products, such as amaranth, buckwheat, and quinoa. These 
are replacing less nutritious corn and rice flour and reduc-
ing suboptimal nutrient concerns [51]. However, athletes 
with modest nutrition knowledge, limited capacity to finance 
more expensive gluten-free food products [48], or travelling 
abroad for training/competition may still face food accessi-
bility challenges. Alongside unique athletic fueling require-
ments, the socioeconomical, psychological, and logistical 
implications associated with a GFD should be considered 
when determining the appropriateness of the worlds most 

popular diet for athletes [52, 53]. An individualized and 
evidence-based approach to a GFD is advised to optimize 
nutrition intake to support optimal wellbeing, training adap-
tation, and performance.

The appropriateness of a GFD for clinically healthy ath-
letes should consider several factors (Fig. 1). One of the most 
important features is that some athletes use avoidance of glu-
ten-containing foods to conceal restrained eating behaviors 
and eating disorders, particularly in weight-dependent sports 
[49, 54]. Orthorexic behaviors may also become more com-
plicated with the belief that a GFD is healthier [14]. Eating 
gluten-free may become such a focal point that the impor-
tance of consuming a balanced diet supportive of training 
and recovery is overlooked. Complications possibly arising 
from adherence to a restrictive diet while aiming to balance 
the demands of athletic training include increased time com-
mitment involved in shopping, preparing gluten-free meals, 
and expense. Additional food-related anxiety, social con-
cerns, and interference with appropriate nutritional/medi-
cal guidance are also concerns related to this diet [48, 55, 
56]. An awareness of the known associations of elimination 
diets with restrictive eating behaviors and evaluation of all 
potential benefits and risks of going gluten-free is prudent 
(Fig. 1) [49, 54, 55].

2.6 � Link Between a GFD and FODMAPs

An emerging trend of athletes self-diagnosing NCGS has 
been partially underpinned by the lack of a definitive diag-
nostic biomarker [52, 57, 58]. As mentioned, advancing 
work proposes that a unique systemic immune response to 
microbial and wheat antigens, together with intestinal cell 
damage, occurs in NCGS [59]. Until validation of estab-
lished biomarkers becomes possible, athletes may continue 
to attribute gastrointestinal issues to gluten. However, other 
proteins or nutrients existing in wheat-based foods could be 
the actual culprits. A previous review has extensively sum-
marized the potential for other proteins existing in gluten-
containing grains, mainly cereal protein amylase-trypsin 
inhibitors, to trigger GIS [60]. Amassing evidence indi-
cating that FODMAPs play a role in augmenting exercise-
induced GIS suggests that this frontline dietary manage-
ment for IBS may cross over to address GIS in athletes [1, 
13, 61, 62]. Certain FODMAPS are subsequently reduced 
with the reduction of wheat-based grains. A decrease in 
FODMAP intake and not gluten itself may be the true fac-
tor for improved GIS attributed to a GFD [63]. This has 
been well-demonstrated in a handful of clinical studies 
indicating that fructan and not gluten elimination reduced 
GIS in IBS patients with self-reported NCGS [26, 63, 64]. 
This promising area of work may open an entirely novel 
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dietary strategy to manage an extremely common illness 
among athletes.

3 � GIS Crossover Between Irritable Bowel 
and Exercise‑Induced Gastrointestinal 
Syndrome

As a first-line treatment for IBS, a low FODMAP diet has 
become a widely established strategy for efficacious reduc-
tion of GIS [65–69]. These carbohydrates are consequently 
cosmetically active and fermented in parts of the GI tract 
[70]. Variable digestion occurs due to either the incom-
plete absorption (e.g. monosaccharides such as fructose, 
or polyols such as sorbitol) or the lack/reduced concentra-
tion of a specific hydrolase enzyme (e.g. fructans, galacto-
oligosaccharides (GOS); see Staudacher et al. for a review 
of digestion of FODMAPs and the low FODMAP diet for 
IBS [70]). Variable digestion of these carbohydrates in the 
small intestine, and fermentation in the colon, potentially 
elicits adverse GIS in IBS. Interestingly, symptoms related 
to IBS are analogous to those reported in exercise-induced 
gastrointestinal syndrome, with diverse mechanisms [10]. 
Collective symptoms include (1) upper GIS with upper 
abdominal bloating, regurgitation, belching, nausea, epi-
gastric pain, and heartburn; and (2) lower GIS with lower 
abdominal bloating, abdominal pain, abnormal, flatulence, 
urge to defecate, diarrhea and/or defecation, including loose 
watery stools and fecal blood loss [1, 71].

3.1 � FODMAP Elimination

A recent questionnaire-based study reported that 55% of 
athletes (n = 910) self-report eliminating at least one food 
high in FODMAPs with the aim to reduce GIS [13]. Sub-
sequently, up to 85% reported symptom improvement with 
removal of the offending food. Lactose (86.5%) was most 
frequently eliminated, followed by GOS (23.9%), fructose 
(23.0%), fructans (6.2%), and polyols (5.4%). A case study 
report of a clinically healthy competitive multisport athlete 
with persistent exercise-induced GIS similarly confirmed 
FODMAP restriction compared with a high FODMAP diet 
(7.2 ± 5.7 g vs. 81.0 ± 5.0 g·FODMAP·day−1) measurably 
reduced daily and during exercise GIS. Lactose intake was 
presumably the most ubiquitous symptom contributor [61]. 
Correspondingly, athletes with IBS, estimated to account 
for 22% of endurance athletes [72], would likely benefit 
from FODMAP restriction, both for daily and sport-specific 
fueling.

3.2 � Rationale for a Low FODMAP Diet Approach

The efficacy of FODMAP modification for the treatment of 
exercise-induced GIS in clinically healthy endurance athletes 
is emerging as a novel approach to attenuate symptoms [1, 
73]. The physiological alterations occurring with exercise-
induced gastrointestinal syndrome may impair nutrient 
absorption, alter gastric/intestinal motility, and impair overall 
gastrointestinal function. Impaired digestion and absorption of 

Fig. 1   Schematic overview 
of the potential negative or 
positive effects/interactions of 
a GFD as it pertains to athlete 
performance or health. ED eat-
ing disorder, GFD gluten-free 
diet, UCP1 uncoupling protein 
1, GIS gastrointestinal symp-
toms. Modified from Lis et al. 
[73], with permission
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FODMAPs may contribute to symptoms related to this multi-
factorial condition. Adverse lower GIS appear to be dominant 
in exercise and may be associated with the osmotic effect of 
these malabsorbed carbohydrates, which can increase lumi-
nal water content first in the small intestine [74]. Undigested 
FODMAPs then travel to the ileum and onwards, where rapid 
bacterial fermentation may increase intestinal luminal pres-
sure by increasing colonic content through gas production 
(e.g. H2, CH4, CO2, and H2S) and osmotic water translocation. 
Subsequently, lower GIS are triggered or amplified [75, 76]. 
As a result, bloating, abdominal pain, flatulence and altera-
tions in bowel movement may occur with greater severity in 
hypersensitive individuals [70, 75]. FODMAPs also influence 
upper GIS, such as the sensation of fullness, as demonstrated 
in a clinical feeding study that administered doses of fruc-
tose and glucose via gastric infusion [77]. FODMAPs are not 
likely to be an exclusive GIS trigger but may amplify symp-
toms initiated by other factors [1, 62].

3.3 � A Modified Low FODMAP Strategy 
for Exercise‑Associated GIS

IBS-like symptoms experienced by many athletes are likely 
induced by the mechanical, psychological, environmental, 
and nutritional components related to strenuous exercise. 
Several dietary strategies may decrease the magnitude of 
these symptoms. Recently, a short-term low FODMAP diet 
has been shown to significantly reduce daily GIS in clini-
cally healthy runners with exercise-associated GIS [62]. This 
randomized, blinded, crossover study assessed the efficacy 
of a short-term low FODMAP diet (6 days in total), includ-
ing 2 days of prescribed high-intensity running, on daily and 
during exercise GIS compared with a high FODMAP diet. A 
significantly smaller area under the curve for daily GIS was 
demonstrated in 80% of subjects with consumption of a low 
compared with a high FODMAP diet [62]. During exercise 
in the two conditions, symptoms were not significantly dif-
ferent and it is probable that an exercise bout of longer dura-
tion or greater intensity may be required to detect measur-
able differences in GIS during exercise between the two diets 
[e.g. 2 h running at 60% maximal oxygen uptake (VO2max)]. 
Results from this study verify previous case study outcomes 
and establish the foundation for future research [61]. Forth-
coming investigations of the efficacy of FODMAP modifica-
tion in athletic populations should aim to determine the ideal 
timing and amount of FODMAP intake around strenuous 
exercise while maintaining a focus on minimizing the risks 
associated with unnecessary food restriction.

3.4 � High FODMAP Food Ingestion During Exercise

A limited number and variety of specialty sport foods (e.g. 
energy bars, gels) have been analyzed for FODMAP content. 

All of the products analyzed to date are classified as high 
FODMAP (Low FODMAP Diet App, Monash University, 
Melbourne, VIC, Australia). FODMAPs that are com-
mon ingredients in sports foods include dried dates, oats, 
almonds, fructose, mannitol, inulin, apple juice concentrate, 
chicory root, honey, and others (Table 1). Especially when 
sports foods are consumed in accordance with sports nutri-
tion guidelines, high amounts of FODMAPs are liable to be 
ingested [40, 61, 62], and potentially malabsorbed, with the 
resultant amplification of GIS. For example, osmotic effects 
may contribute to loose, watery stools. Increased colonic gas 
volume may amplify symptoms such as lower abdominal 
bloating and pain. Gastrointestinal dysfunction and malab-
sorption of FODMAPs may increase breath hydrogen and 
methane excretion. Breath testing is an assessment tool to 
measure carbohydrate malabsorption, and is used to explore 
the pathophysiology of functional gastrointestinal disorders 
[78, 79].

A small number of studies have used breath testing to 
measure carbohydrate malabsorption during and post exer-
cise, with variable results [11, 79, 80]. During mixed endur-
ance exercise (3 h at 75% VO2max), breath hydrogen was 
higher during running than during cycling, with ingestion 
of glucose-rich carbohydrates in semi-solid and fluid forms 
(approximately 1.2 g·kg body mass·h−1), resulting in negli-
gibly higher breath hydrogen excretion (2–3 ppm increase) 
compared with a non-carbohydrate placebo [79]. It is likely 
that increased ventilation rates accompanying exercise may 
skew gas (hydrogen) production values, and the ecological 
significance is unspecified. Measures taken during the recov-
ery time course after exercise may be more accurate. In a gut 
adaptability study, after 3 h of running (2 h at 60% VO2max, 
followed by a 1 h distance test), 68% of runners demon-
strated evidence of carbohydrate malabsorption (breath 
hydrogen ≥ 10 ppm above baseline) during the recovery 
period [11]. Forthcoming research will better characterize 
FODMAP malabsorption during and after exercise to better 
inform food selection. However, hydrogen breath testing has 
demonstrated poor reproducibility and low predictive value 
for symptom responses to lactose and fructose [78]. Variable 
absorption of FODMAPs should be considered a potential 
factor contributing to GIS, but the use of breath testing to 
diagnose malabsorption may not be reliable [78].

3.5 � Nutrition Considerations with a Low FODMAP 
Diet

Depending on the extensiveness of high FODMAP food 
restriction, several complications associated with a strict 
long-term low FODMAP diet have been identified. A low 
FODMAP diet may be associated with alterations in gut 
microbiota, reduced short-chain fatty acid production, and 
impacts on aspects of physical and psychological wellbeing, 
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similar to those mentioned in Sect. 2.5 with regard to a GFD 
[75, 76, 81]. Diminished concentrations of bifidobacteria 
after 3–4 weeks of reduced FODMAP intake have been 
observed [76, 81]. Exercise may neutralize the adverse 
effects of diminished prebiotic consumption on the micro-
biota. If adherence to FODMAP restriction is periodic/short-
term, or limited to a few foods, altered microbiota is less 
concerning [82]. Coadministration of a multistrain probiotic 
has also been shown to mitigate the detrimental effects of 
lowered prebiotic intake [83, 84]. In addition, short-chain 
fatty acid production, which is highly reliant on fermentation 
of undigested carbohydrates in the large intestine [85, 86], 
may theoretically be compromised with reduced substrate. 
However, after 21 days of a low FODMAP diet, short-chain 
fatty acid fecal concentrations were similar between the low 
FODMAP and control diets [81]. A multitude of dietary 
and environmental factors modulate the composition and 
metabolic activity of the gut microbiota. Research on the 
microbiota in clinically healthy athletes implementing a low 
FODMAP diet has not been published; however, it is prudent 
to consider this aspect of gut health with frequent or long-
term FODMAP restriction.

3.6 � Practical Applications of a Low FODMAP Diet 
for Athletes

For some athletes, supporting optimal nutrient intake and 
fueling for exercise while adhering to a low FODMAP diet 
may be challenging [75, 87]. Dietitian-led support from a 
professional specially trained in sports nutrition and the low 
FODMAP diet may facilitate proper use of the diet [88]. If a 
long-term low FODMAP diet is warranted, the three phases 
of the diet, as designed by the gastroenterology group at 
Monash University (Melbourne, VIC, Australia), should be 

followed [74, 88]. Transferring this clinical diet to a healthy 
athletic population will likely not necessitate the strictest 
form of the diet. For example, lactose or fructose may be 
the only symptom triggers [13]. Therefore, reduction of high 
lactose and excess fructose-containing foods (e.g. cow’s 
milk and some fruits or sports foods) that are habitually con-
sumed may be the only modifications required for symptom 
improvement. Trigger foods may only elicit symptoms when 
ingested before or during strenuous exercise, such as rac-
ing. In this case, practical evidence suggests reduction of 
these foods will only be required 1–3 days before and during 
intensive endurance exercise. Using this concept, a 3 day low 
FODMAP diet has been implemented based on the idea that 
a minimal period of 24 h is required to eliminate short-chain 
carbohydrates from the GI tract [61, 62]. During the imme-
diate post-exercise recovery phase, when optimal nutrient 
delivery is important but may be compromised, reduction 
of high FODMAP foods may also be warranted [11]. Fig-
ure 2 summarizes a notional decision-making process for 
sports nutrition practitioners integrating a low FODMAP 
diet into a treatment plan for exercise-induced gastrointes-
tinal syndrome.

FODMAP diet application in the athletic arena is in its 
infancy; however, the development of low FODMAP sports 
food products/energy bars, as well as oral nutrition sup-
plements [89], will support adherence to sports nutrition 
guidelines alongside FODMAP restriction. Introduction of 
a low FODMAP diet must be carefully navigated to mini-
mize the risks associated with unnecessary dietary restric-
tion (Fig. 2) [75, 90, 91]. It is imperative that practitioners 
consider underlying clinical conditions, such as functional 
gastrointestinal disorders (e.g. IBS, Crohn’s disease, func-
tional idiopathic nausea), and the potential for unnecessary 
food restriction to foster eating disorders.

Table 1   High FODMAP foods and low FODMAP alternatives commonly consumed in an athlete’s diet

FODMAP fermentable oligo-, di-, monosaccharides and polyols
a Check cereals, bars, sports foods, and mixed meals for high FODMAP ingredients
b Low FODMAP diets should be guided by a sports dietitian. Sports dietitians advising on low FODMAP diets should be guided by the Monash 
Low FODMAP Diet course® [74, 88]

FODMAP categories High FODMAP foodsa Low FODMAP food exchangesb

High lactose Yogurt, cow’s milk Lactose-free milk, soy milk (from soy protein)
Excess fructose Apples, figs, watermelon, cherries, agave, honey, many 

fruit juices (e.g. apple), beetroot juice with apple juice 
included/whole beetroot

Oranges, berries, bananas, grapes, kiwifruit, cantaloupe, 
strawberries, blueberries, raspberries, blended vegetable 
juice (tomato-based) canned or pickled beets

High fructans/galacto-
oligosaccharides

Dates, cashews/pistachio nuts, breads/bagels, onions, wheat-
based energy bars

Gluten-free, spelt, special sourdough spelt breads, rice 
cakes, corn tortillas, wheat and/or gluten-free energy 
bars

High polyols Dried apricots, protein bars and powders, some electrolyte 
tablets, sugar-free gum/candies

Protein bars with alternative sweeteners, limit intake of 
sugar-free gum/candies or choose sugar-containing 
brands
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4 � Conclusions

Novel nutrition strategies continue to emerge that will 
enhance our understanding of the interplay between 
exercise-associated gastrointestinal dysfunction and diet. 
Although no supportive evidence exists, GFDs have gained 
far-reaching recognition as a successful strategy to reduce 
exercise-associated GIS and improve parameters influenc-
ing athletic performance. Emerging evidence suggests that 
the modulation of GIS reported with reduction of FOD-
MAPs concomitant with elimination of gluten-containing 
grains may be secondary to reduction of FODMAPs rather 
than gluten. Furthermore, and of relevance to the clinical 
application of a low FODMAP diet to treat IBS symp-
toms, there is increasing awareness that malabsorption is 
a potential factor contributing to exercise-associated GIS. 
The etiology of GIS remains complex, but advancing work 
offers preliminary insight into the application of FOD-
MAP manipulation for management of exercise-induced 
gastrointestinal syndrome. Evolving applied research and 
informed practitioners will be essential for the effective 
integration of low FODMAP strategies to address the mul-
tifactorial etiology of gastrointestinal issues in athletes.
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