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On the thermodynamic origin of 
metabolic scaling
Fernando J. Ballesteros   1, Vicent J. Martinez1, Bartolo Luque2, Lucas Lacasa3,  
Enric Valor   4 & Andrés Moya   5

The origin and shape of metabolic scaling has been controversial since Kleiber found that basal 
metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, 
instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed 
in terms of the fractal properties of the nutrient network- has recently been challenged according to 
empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a 
conceptually simple thermodynamic framework, where the dependence of metabolic rate with body 
mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used 
by the organism to maintain its metabolism. This balance tunes the shape of an additive model from 
which different effective scalings can be recovered as particular cases, thereby reconciling previously 
inconsistent empirical evidence in mammals, birds, insects and even plants under a unified framework. 
This model is biologically motivated, fits remarkably well the data, and also explains additional features 
such as the relation between energy lost as heat and mass, the role and influence of different climatic 
environments or the difference found between endotherms and ectotherms.

The basal metabolic rate B (kJ/h) is the minimum energy expended daily by an animal in thermoneutral condi-
tions to keep its metabolism at work (for ectotherms that lack a thermoneutral zone, an alternative concept such 
as resting or standard metabolic rate at a given temperature is used). As early as in 1839, Sarrus and Rameaux1 
proposed that metabolic rates might depend on heat dissipation (Fourier’s law) and therefore increase with sur-
face area, something originally checked in dogs by Rubner in 18832.

Originally Krogh3 and more popularly Kleiber4 empirically observed that, indeed, a simple and robust 
allometric scaling between B and the animal mass M could account for most of the metabolic rate variability, 
B ~ Mα. However, he found that α = 3/4, instead of α = 2/3 that results of heat dissipation according to a simple 
surface-to-volume argument. Since then, extensive data have been collected, encompassing a fervent debate on 
the origin and concrete shape of the so called Kleiber’s law. While some of the empirical works seem to comply 
better to α = 2/35–7, a great majority took for granted a 3/4 power law8–10, raising it to the level of central par-
adigm in comparative physiology11. This scaling was subsequently elegantly explained by space-filling fractal 
nutrient distribution network models12–15 (with possible deviations for small masses due to finite size effects), 
thus apparently closing the debate on its origin. However, additional statistical evidence challenges the validity of 
α = 3/416–23 (see also24 for a recent experimental study of the fractal exponents in human vascular networks). For 
instance Dodds et al.16 found that, for masses under 10 kg, a 2/3 exponent gives a better fit, while 3/4 fits better 
the whole range. In the same vein, Kolokotrones et al.17, after fitting the encyclopaedic dataset of basal metabolic 
rates for mammalians compiled by McNab20, concluded that the scaling law was not after all a pure power law but 
had curvature in double logarithmic scales, giving an heuristic explanation as to why different exponents could 
be fitted depending on the range of masses considered (but see25). Strong evidence of curvilinearity in the log-log 
relationship is also reported by Clarke et al.26 who introduced the body temperature to mitigate the effect, and 
actually curvilinearity in log-log plots was already suggested by Hayssen et al. back in27. Other views are indeed 
more skeptic about the reality of allometric scaling28.
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In the last decades, a large number of theories of different garment and degrees of formality have been pro-
posed to justify the occurrence of particular scaling forms21,29, organized into four major brands (surface area, 
resource transport, system composition, and resource demand models) by Glazier29. For instance, the α = 3/4 
theories relate to the geometry of nutrient supply networks12–14 or general geometrical arguments15 whereas some 
advocates of the α = 2/3 include mainly heat dissipation5–7. To name a few other approaches, in the quantum 
metabolism (QM) model30 power laws with varying pre-factors are found. Similarly, the metabolic level bound-
aries hypothesis (MLBH)31 is an important conceptual framework that suggests that the power law exponent 
of metabolic scaling relationships should indeed vary between 2/3 and 1 according to the particular ‘metabolic 
level’ (activity level of the organism or metabolic intensity). The allometric cascade model32 on the other hand 
deals with a linear combination of innumerable allometric components, one for each different tissue, and ends 
with a complex formula depending on too many free parameters to fit. The three-compartment model33 deals 
with a linear combination of three allometric components that model different classes of organs and tissues. The 
Dynamic Energy Budget (DEB)34 comprises a weighted sum of four processes: assimilation, maintenance, growth, 
and maturation, the first one with exponent 2/3 as Kooijman assumes that surfaces assimilating the incomes 
(oxygen, food) scale as 2/3 (but West et al.12 showed that some respiratory variables in lungs scale rather as 3/4). 
The effect of cell number and size in body mass has also been claimed to be responsible for different allometric 
scalings35. The already mentioned metabolic-level boundaries hypothesis (MLBH)36 justifies the diversity of met-
abolic scaling relationships within physical limits related to body volume and surface area. Finally, gravity has 
been also considered as part of the problem37, due to response of body mass to gravity, which scales linearly with 
mass (see11,21,29 for reviews).

Not all of the mechanistic explanations for metabolic scaling are necessarily exclusive, and quite probably 
many of these remain valid on appropriately defined limits. Integration of those under a more parsimonious 
hallmark is, however, certainly needed21. In this work we aim at proposing such a hallmark, with the hope that it 
might help to reconcile several empirical and statistical results. Not all of the organism’s energy income is wasted 
as heat, and we find that this simple thermodynamic balance allows us to explain in a quantitative way the correct 
allometric curves for mammals (in different environments), birds, and insects, to account for other biological 
features such as the relation between energy lost as heat and mass, as well as to extend the analysis to plants.

The model
In this paper we advance a simple energy balance model that aims at unifying and reconciling previous models 
and results. As already discussed, numerous classes of metabolic models exist with a wide variety of complexities. 
We here focus on a remarkably simple class of model combining allometric and isometric terms. This model class 
was first considered by Swan38 and studied by Yates39. We will show that our novel interpretation both provides 
a bottom-up argument for the relevance of this model and shows that its parameters are physically interpretable. 
We will show that, despite being substantially more parsimonious than more complex models discussed above, 
this model explains well a wealth of data, admits ready physical interpretation, and can explain environmental 
dependence of metabolic scaling.

To be more concrete, we argue that the trade-off between the energy dissipated as heat and the energy effi-
ciently used by the organism to keep it alive results in a model for the dependence between B and M with an 
isometric (proportional to M) and an allometric (proportional to M2/3) term, balanced respectively by prefactors 
k (with units kJ/hg) and k′ (with units kJ/hg2/3) called Meeh factors40, which have clear biological meaning and 
can thus be estimated empirically. This balance complies with an effective (apparent) pure power law in a double 
logarithmic plot, with varying exponent in the range [2/3 − 1] as proposed by Glazier18,41. As shown later, we will 
be capable of recovering the correct (non)scaling form in mammals, birds and insects datasets, and explain why 
the apparent power law scalings show different exponents in all these cases, as well as extending the theory to 
plants. Furthermore, we will also predict an estimation for the energy conversion efficiency of mammals which 
agrees with independent considerations based on oxydative phosphorylation in mitochondria. We will also pre-
dict the different metabolic scaling shapes occurring in different environments (polar and hot desert mammals).

A priori, the energy intake is typically proportional to the number of cells in the organism, hence grows iso-
metrically with body mass M. Then, the first step is to recall that part of such energy is converted into work and 
used in a plethora of different metabolic and physiological processes, including the synthesis of ATP and proteins, 
cellular division, muscle contraction etc: it keeps the animal alive. These processes are thermodynamically ineffi-
cient, hence part of the energy consumed is dissipated as heat. Such dissipation is always present, and in the case 
of endotherms such dissipation is complemented with an additional amount due to internal heat production. 
The key question then is to assess how efficient such energy conversion is. Let us consider then two extreme 
(unrealistic) situations: in one end, suppose that the process is totally inefficient, i.e. zero work conversion and 
all energy dissipated as heat. The organism in that case would be a simple (dead) heater radiating as a black body, 
using energy intake only to keep itself warm. As this energy would be subsequently dissipated through the organ-
ism surface, thermoregulation would thus put an upper bound for the amount of energy that can be consumed, 
which according to simple surface-to-volume arguments is at most balanced with heat dissipation and then scales 
allometrically proportional to M2/3: this would yield an effective “metabolic rate” B = k′M2/3 for some constant k′. 
At the other extreme, we consider an ideal situation of perfect energy conversion efficiency, where all energy con-
sumed would be efficiently converted into work and the whole body would be a sink of energy with no heat losses. 
Since energy is originally consumed isometrically, without any further geometric restrictions on heat dissipation, 
the energy spent would also scale isometrically, hence B = kM for some constant k.

Now, our contention is that living organisms interpolate between these extrema: they are neither dead heaters 
nor optimal energy sinks, but lie somewhere in between, as any thermodynamic system operating away from 
equilibrium. As such, these simple thermodynamic arguments suggest an effective model where, if f is the frac-
tion of the energy income that is used “efficiently” by the cells to keep their metabolism working, and 1 − f is the 
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fraction of the energy lost as heat, there must be a balance between the isometric and the allometric term, as both 
mechanisms are present simultaneously. In principle, one can balance out these two terms by two generic weights 
labeled w and w′ respectively, in such a way that the basal metabolic rate would comply with

= + ′ ′ .B wkM w k M (1)2/3

Note however that w and w′ are not independent, simply because the two associated mechanisms use the same 
income energy. In other words, there is also a trade-off between them: if too much energy dissipates as heat, the 
organism keeps little energy for the metabolism. Moreover, these weights are in fact functions of f: w(f), w′(f) and 
have to fulfill the following constraints:

	 1.	 If f = 1 (no heat losses) then w = 1 and w′ = 0.
	 2.	 If f = 0 (only heat losses) then w = 0 and w′ = 1.
	 3.	 Both weights w and w′ range from 0 to 1, as f does.

The simplest choices that fulfill these three requirements are w(f) = f, w′(f) = 1 − f, which corresponds in fact 
to use the factor f itself as the weight of each process (although other possible more complex relations could be 
considered). Therefore, with this hypothesis, Eq. 1 becomes

= + − ′ .B fkM f k M(1 ) (2)2/3

Four simple observations are in order: first, Eq. 2 is not a pure power law but the linear combination of two, 
with exponents 1 and 2/3 respectively. It is well known21,39 that in a double logarithmic plot, this kind of equa-
tion yields a curved graph with convex curvature, in good agreement with the findings of Kolokotrones et al.17. 
Second, for small values of M (e.g. for mammals of small mass), this equation approximates very well to a power 
law with exponent 2/3, and is therefore in accordance with recent results by Dodds et al.16. Third, for a large range 
of masses, this equation approximates to an apparent pure power law with an effective exponent that can range 
between 2/3 and 1, in good agreement with empirical evidence (entropic considerations prevent the linear asymp-
totic regime to appear empirically, see however41). Fourth, in the case of ectotherms the allometric term is only 
associated to heat dissipated due to metabolic and physiological processes and not also due to thermoregulation 
as for endotherms, and therefore in that case we expect the pre-factor of the allometric term to be much smaller 
than in the case of endotherms, what would yield a larger apparent exponent if fitted to a single power law (see 
the next sections for validation).

According to Glazier classification of metabolic scaling models41, our model can be classified within the type 
III family: a shift for nearly isometric to negatively allometric behavior.

The parameter f and the Meeh pre-factors k and k′ have biological meaning and therefore can be measured 
experimentally (this will be discussed later). However at this point we consider them simply as constants, and 
since they are independent of M we can reabsorb them by defining a = fk and b = (1 − f)k′. Therefore our ther-
modynamically grounded model Eq. 2 reduces to B = aM + bM2/3, which is now a statistical model with only two 
fitting parameters that can be fitted to available databases. Note at this point that the use of power law functions 
as well as sums of power laws is not a new idea. Actually the combination of an isometric term (proportional to 
M) and an allometric term (proportional to M2/3) is also part of the DEB theory34,42, found following different 
arguments that the ones used here (although in the DEB theory this only applies for intra-species relationship). 
As Kooijman34 states, the intra- and the inter-specific scaling are numerically (although not formally) very simi-
lar, but in the first case the scaling responds to the reducing contribution of growth to respiration (obtaining the 
aforementioned aM + bM2/3), while in the second case to the increasing contribution of reserves to body weight 
(yielding [aM + bM2/3]/[c + M1/3]). A more detailed analysis of the different mechanistic explanations that could 
account for such a statistical model (e.g. DEB, MLBH) is beyond the scope of this work, and we refer the inter-
ested reader to43–45 and36. We now will proceed to fit our statistical model to experimental data.

Fitting the model in mammals.  As can be seen in Fig. 1 and Table 1, this model fits exceptionally well 
the collection of N = 637 mammal basal metabolic rates recently compiled by McNab20. Statistically, its fitting is 
as good as the exotic quadratic function logB = β0 + β1logM + β2(logM)2 proposed by Kolokotrones et al.17 to 
quantify the curvature underlying metabolic scaling, but has only two free parameters instead of three and, more 
importantly, is thermodynamically justified. Interestingly, if the exponents were left as free parameters, the best 
fit would indeed give 1 and 2/3 within a 0.5 % error. Fitting values are a = fk = 0.0016 for the pre-factor associated 
to efficient energy-work conversion isometric term and b = (1 − f)k′ = 0.079 for the pre-factor associated to heat 
dissipation, while a pure power law can be approximated with an effective exponent α ≈ 0.72 (see Table 1).

Once we have shown that the model fits exceptionally well the data (outperforming the pure power law model 
through a model comparison based on Akaike Information Criterion), in what follows we go back to the original 
model Eq. 2 and focus on the biological variables k,k′ and f; we will advance a formula for k′ and accordingly 
predict an estimation for f, which we will show to be on good quantitative agreement with independent empirical 
evidence.

Estimating k′ and f.  Note at this point that b and k′ should be of the same order of magnitude and k′ > b for our 
model to be consistent. Let us now estimate k′. For a pure heater of mass M and density ρ at constant temperature, heat 
generated inside its volume V is balanced with the heat lost through its surface area A. The’basal metabolic rate’ of the 
heater can then be defined as the total heat loss Q = qA = k′M2/3, where q is the energy loss per time and area units. 
Now, a simple dimensional analysis yields A = [d/ρ2/3]M2/3, where d is a dimensionless number depending on the 
geometry of the body −d = 6,4.83 or 7.2 for a cube, a sphere and a tetrahedron respectively– (note that body shape 
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considerations have been reported to play a role in other works41). Now, q can be further separated in several compo-
nents according to the different physical mechanisms that yield heat dissipation. If we only consider convection qC and 
radiation qR as sources of heat losses (this being a fair approximation under the conditions of basal metabolic rate 
measurement, where evaporation through transpiration or respiration is not relevant for most of the mammals), then 
q = qC + qR. The first summand qC = hCΔT, where hC is the convective heat transfer coefficient (which for still air hC 
ranges between 3–4 W/m2K46) and ΔT = Ts − Te is the difference between the surface temperature of the mammal 
(Ts) and the environment (Te). Considering on the other hand radiation losses, note that animals radiate heat similar 
to a black body in infrared wavelengths. Therefore, one can use Stefan-Boltzmann law for black bodies such that 

σ σ= − ≈ + ∆ = ∆q T T T T T h T( ) 4 (( )/2) :R s e e s R
4 4 3 , where σ ≈ 5.67 ⋅ 10−8Wm−2K−4 in SI units. Altogether, as 

k′M2/3 = qA, solving for k′ we end up with a general expression k′ = d(hR + hC)ΔTρ−2/3 where, remarkably, all param-
eters are now empirically observable.

As a rough approximation, we can now estimate k′ by taking average values for all the parameters: d ≈ 6, 
a water-like density ρ ≈ 1000 kg/m3, and hC ≈ 3.5. According to Mortola47 a good average for mammals is 
ΔT ~ 5 °C. Averaging for Te ranging between 15 °C and 30 °C, and for Ts being 1 to 10 degrees higher than Te, 
hR gives values between 5.5 and 6.5, thus we take hR ≈ 6 as an average. This yields k′ ≈ 3 in SI units, for which 
Q(W) = k′M2/3 ≈ 3M2/3(kg). Transforming into appropriate units Q(kJ/h) ≈ 0.1M2/3(g), i.e. k′ ≈ 0.1. Note that this 
estimation depends on several empirical variables that show variability, so this number should be taken with 
caution (performing a parametric analysis of k′ for a range of plausible values: d ∈ [5, 7], hC ∈ [3, 4], Te ∈ [280, 
300], Ts ∈ [Te + 1,Te + 10] we find however 〈k′〉 ≈ 0.1 so the approximation is robust). Note that k′ >  b but of 
similar order of magnitude, as previously required. Since b = k′(1 − f) ≈ 0.079, our simple approximation pre-
dicts an estimated f ≈ 0.21, and the efficient energy metabolic consumption per mass unit k = a/f ≈ 0.0076 kJ/
hg. Now, whereas (to the best of our knowledge) there are no accurate direct experimental estimates for f in the 
literature, our prediction can still be tested against experimental evidence in the following terms. The principal 
sources of heat in the organism of mammals are the synthesis of ATP through the oxidation of nutrients48, and 
the subsequent use of this ATP as energy source for other biological reactions. Animal ATP is generated inside 
mitochondria mainly via oxidative phosphorylation, or cellular respiration. It has been estimated49 that this path-
way actually produces more that 90% of ATP. Furthermore, note that glycolisis is discarded here as this alternative 
pathway is only significant under low levels of oxygen and other circumstance which do not typically hold under 
the comfortable conditions of basal metabolic rate measurement. Now, the oxidation of glucose produces the 
energy to create ATP from ADP, however, only about 42%48 of the energy stored in glucose is captured in ATP 
(the other 58 % being converted into heat), thus f ≤ 0.42. ATP is subsequently used to fuel a plethora of biological 
reactions, and rough estimations50 quantify that only about 50 % of this energy is actually used (ATP hydrolysis 
is usually higher than the energy necessary to carry subsequent biological reactions), and the rest contributes to 
heat losses. This gives a (totally independent) empirical estimation f ≈ 0.21, which remarkably matches our pre-
diction. Incidentally, note that a recent study51 elaborates on models similar to Eq. 2 at the cellular level to explain 
observed scaling relationships between mitochondrial populations, cell growth, and cell survival.

Varying climatic conditions: Polar vs hot desert mammals.  The universality of Kleiber’s law ulti-
mately stems from the universality of cell’s energy source. Consequently, the predicted values for f should be 
considered a reasonable average value for all mammals. Interestingly enough, mitochondria evidence slight adap-
tations for animals living in cold and hot environments. For example, for polar mammals, the concentration of 
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Figure 1.  Basal metabolic rate for mammals. Gray dots: basal metabolic rate data for mammals compiled by 
McNab20. Red line: fitting of our theory to the data (see Table 1 for statistical tests). Blue line: Kolokotrones et 
al. statistical model17. Green line: fitting to a pure power law. We also include a logarithmic binning of the data 
(pink dots) where the curvature is better appreciated. These binned points have been included as a guide to the 
eyes to enhance the curvature of data, but fits have been performed using the raw data. The size of the points 
correspond to the one sigma dispersion of the residuals respect to our model for the whole set of data.
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thermogenin inside the mitochondria is unusually high (constituting up to 15 % of the total protein in the inner 
mitochondrial membrane52). Thermogenin actually uncouples oxidative phosphorylation from ATP synthesis, 
causing all energy released by the oxidation of glucose to be released as heat, without creating ATP, hence warm-
ing up the animal: this and other similar uncoupling proteins are a way to effectively decrease energy conversion 
efficiency f in mitochondria. According to our theory, the climatic adaptations in mitochondrial energetic effi-
ciency should cluster polar and desert mammals, have a net effect in the respective values of f, and thus in the 
apparent exponent of a pure power law fitting. In particular, the ratio b/a ∝ (1 − f)/f increases as f decreases, i.e. 
polar mammals with lower (mitochondrial) energy conversion efficiency should have larger b/a ratios than hot 
desert ones, and hence lower effective exponents (closer to 2/3) in a pure power law fit according to Eq. 2. To test 
this prediction, we have extracted all polar and hot desert mammals from McNab’s dataset, and plotted their basal 
rates in Fig. 2 (blue points for polar environments, orange points for hot deserts), along with a fit to the model (of 
course parameter values from these fits will be different than for the whole set, as the whole set shows an aver-
age behavior for the whole mammals, with higher dispersion; this is confirmed by the fact that scatter in these 
subsets respect to their fitting line is smaller than in the whole set). Remarkably, both subsets are clustered, with 
polar mammals having on average larger metabolic rates than desert ones for a given mass, in agreement with the 
results presented by Lovegrove53,54. Fristoe et al.55 shows that shifts in the basal metabolic rate help both birds and 
mammals to adapt to different environmental temperature regimes. Both b/a and the effective exponents agree 
with the predictions of our theory. Interestingly, the effective slope for polars is α ≈ 0.69, a value which is closer to 
2/3, the expected one for pure heaters (see Table 1 for the fitting details). Accordingly, the well-known tendency 

Database & model Parameters fit b/a r2(%) χr
2 AIC

Mammals (all, N = 637)

 B = cMα c = 0.0692, α = 0.72 95.2 1.07 −1220

 logB = β0 + β1logM + β2(logM)2 β0 =−2.19, β1 = 0.54, β2 = 0.014 96.1 1.01 −1271

 B = aM + bM2/3 a = 0.0016, b = 0.079 49 97.9 1.00 −1264

Polar mammals (N = 14)

 B = cMα c = 0.1326, α = 0.6928 98.8 0.86 −32.0

 B = aM + bM2/3 a = 0.00085, b = 0.142 167 98.9 0.78 −33.2

Desert mammals (N = 99)

 B = cMα c = 0.0556, α = 0.7393 96.9 0.94 −233

 B = aM + bM2/3 a = 0.002, b = 0.066 29 97.2 0.93 −244

Polar and Desert mammals (N = 113)

 B = cMα c = 0.0569, α = 0.7468 96.9 1.02 −233

 B = aM + bM2/3 a = 0.002, b = 0.0706 35 97.0 0.97 −245

Hybrid 98.0 0.90 −277

Plants (N = 89)

 B = cMα c = 0.0053, α = 0.81 95.7 1.03 −77.5

 B = aM + bM3/4 a = 0.00021, b = 0.0064 30 95.8 1.00 −78.7

 B = aM + bMβ a = 0.00021, b = 0.0064, β = 0.750 30 95.8 1.00 −76.7

Flying Birds (N = 510)

 B = cMα c = 0.143, α = 0.657 88.4 1.04 −1309

 B = aM + bM2/3 a = 0.0001, b = 0.137 1370 90.9 1.01 −1308

Flightless Birds (all, N = 22)

B = cMα c = 0.062, α = 0.744 90.2 0.75 −55.0

B = aM + bM2/3 a = 0.0014, b = 0.092 66 85.7 0.69 −52.8

Flightless Birds (without outliers, N = 20)

 B = cMα c = 0.041, α = 0.805 98.6 0.88 −53.5

 B = aM + bM2/3 a = 0.0042, b = 0.062 17 98.7 0.88 −54.5

Insects

 B = cMα c = 0.007, α = 0.832 60.4 1.04 0.85

 B = aM + bM2/3 a = 0.0046, b = 0.0021 0.46 58.9 1.09 7.00

Table 1.  Fitting results and goodness of fit. See Statistical Methods section for details. The first three columns 
present the different fitting models considered for the different datasets, along with the parameter fits and ratio 
b/a (when applicable). The following columns display the goodness of fit results: the coefficient of determination 
r2, reduced χ2 and Akaike Information Criterion63. In every case, we find that Eq. 2 is statistically compatible 
with the data and has in several cases better goodness of fit than other fitting models. A model selection 
approach (based on AIC) suggests that Eq. 2 outperforms a pure power law model with varying exponent for 
mammals, polar mammals alone, desert mammals alone, polar and desert mammals alone, flightless birds 
without outliers and plants. Additionally, note that the pure power law fitting model systematically requests 
different power law exponents for different databases, challenging the validity of the 2/3 or 3/4 laws, whereas in 
Eq. 2 the exponents are fixed and only prefactors vary.
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of polar mammals to be larger than desert ones can be justified in terms of the aforementioned considerations 
(as polar mammals tend to be more energetically inefficient, they need to be larger to reduce the impact of heat 
dissipation).

From a statistical point of view, one can design a simple statistical experiment which can help to further 
confirm that predictions from our model are genuine and our model reflects some true underlying effects. The 
experiment consists in considering the subset of cold and desert mammals altogether (a total of N = 113 species) 
and make a model selection for three statistical models: a pure power law (M1), our model (M2) and an hybrid 
model which fits two versions of Eq. 2: one for desert mammals ahM + bhM2/3 and another one for cold mammals 
acM + bcM2/3. AIC for M1, M2, and M3 respectively are −233, −245 and −277. Note that M2 outperforms M1 for 
this subset. More importantly, if clustering of polar and desert mammals was an artifact, then M3 shouldn’t out-
perform M2. However we find much lower AIC in the last case: the relative likelihood of M3 with respect to M2 
is approx exp(16) ≈ 9 ⋅ 106, providing a compelling statement that the model reflects some true underlying effects.

Finally, note that while climatic conditions might have an effect on k′ (for instance, differences between skin 
and environment temperatures play a role in the computation of the radiative source qR), the constant related 
to efficient energy conversion should be considered similar for the whole set of mammals. If this hypothesis is 
correct, from Fig. 2 it would follow that f ≈ 0.14 for polar animals and f ≈ 0.4 for desert ones, while k′ = 0.16 and 
0.109 respectively. These new predictions await for experimental confirmation.

As f is the fraction that does not appear as heat, one would therefore expect to see differences between direct 
calorimetry (measuring heat production) and indirect calorimetry (oxygen consumption). These quantities can-
not coincide, otherwise all energy consumed would be lost as heat and this is not possible since a fraction of the 
chemical energy ingested by the organism must be used for cellular work, and for building blocks for storage, of 
for growth of the somatic body and for reproductive material. This is precisely what f quantifies. As we have 
already mentioned, there are not many reliable measurements of this quantity in the literature. It is clear that in 
rapidly growing embryos or organisms differences between direct and indirect calorimetry have to be more evi-
dent. In fact, Zotin56 shows several examples of this kind, allowing us to estimate = −f Q Q Q( )/O O2 2

, where QO2
 

is the consumed energy measured by the oxygen consumption (indirect calorimetry) and Q is the consumed 
thermal energy measured by the heat lost (direct calorimetry). We can see in the results shown in Zotin56 (in 
particular, Figs 3.26, 3.38, and 3.29, and tables 3.7 and 3.8), that values of f oscillate between 0.13 and 0.25, again 
in agreement with our predictions. Moreover, for human adults at rest, we see that f takes a value of about ≈0.15 
(Fig. 3.32 in)56.

So far our analysis dealt with mammals. In what follows, we extend this analysis to birds, insects and plants. 
These are smaller databases than the ones used for mammals which however are large enough for accurate sta-
tistical analysis. We will show that while in these cases a pure power law model provides reasonably similar 
statistical results than our proposal, the effective exponent found varies from case to case, thus one would need 
individual ad hoc theories that could explain the particular effective exponent for each case. On the other hand, 
all the results indeed comply with a combination of isometric and allometric scalings of the shape of Equation 2, 
with varying pre-factors.

Extension to birds and insects.  As an extension, we first make use of McNab’s collection of bird’s meta-
bolic rates22 (more than 500 species) and Chown et al.’s insect database23 (more than 300 species). In the case of 
birds, we further split the analysis into flying and flightless species, and plot their metabolic rates in both panels 
of Fig. 3. For the case of flying birds (503 species), the apparent power law exponent is α ≈ 0.657 -deviating from 
the theoretical prediction ¾-, but we can see that Eq. 2 fits reasonably better the whole range. For flightless species 
the dataset is much smaller (22 species). Within this category, note that the largest species (emu and ostriches) 

Figure 2.  Polar vs desert mammals. Orange dots: subset from McNab’s data20 corresponding to hot desert 
mammals. Blue squares: subset corresponding to polar mammals. Orange and blue lines: fitting to the model 
(see Table 1 for statistical tests).
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are known to have abnormally low metabolic rates57,58. In fact, the fitted apparent exponent α varies between 0.74 
and 0.8 if these species are removed. In this latter case, no strong differences are found between the pure power 
law and Equation 2 (if no splitting between flying and flightless birds is performed, results are very similar to the 
flying case, as flightless birds are much less common). Note that flying birds tend to have larger values of B than 
mammals and comparatively behave closer to the’heater’ limit α = 2/3. On the other hand, flightless birds cluster 
towards lower metabolic rates than flying ones, and behave closer to mammals (as a matter of fact, the rates for 
flightless birds are compatible with the curve found for mammals).

In the case of insects (ectotherms), metabolic rates were measured for external temperatures controlled 
between 20 and 30 °C depending on the species23. The scaling is plotted in Fig. 4, for which we find yet another 
different apparent exponent, α ≈ 0.82. Eq. 2 also gives a good fit to the whole range, although for this case data 
are highly scattered so it is difficult to compare the accuracy of both models. Note that in this case the effective 
exponent α is larger than what we observed for both birds and mammals (endotherms): this is consistent with 
our theory as insects are ectotherms and therefore the allometric term was expected to have a smaller pre-factor 
as thermoregulation is not present, in good agreement with empirical findings (see Table 1 where it is shown that 
the prefactor b of the allometric term for insects is one order of magnitude smaller than for birds or mammals). 
Incidentally, note that an analogous formula for k′ could be used to estimate f in these cases, provided we had 
empirical estimates for Ts for these families. Again, finding a smaller value for the pre-factor b suggests a small 
value for k′, and this can also be justified as ΔT tends to be much smaller for poikilotherms.

Extension to plants.  To round off, we consider the case of plants. In this case, it is neither clear what a basal met-
abolic rate is, nor if measurements for plants are done in their thermal neutral zone, as many are field studies in forests. 
Nonetheless, as plants also dissipate energy into heat our theory can be extended to this realm. Moreover, it has been 
found that the scaling of the respiration rate with respect to the total mass of the plant presents also a clear curvature59. 

Figure 3.  Basal metabolic rate for birds. Data have been drawn from McNab22, and split into flying species 
(503 data, left panel) and flightless ones (22 species, right panel. Both apparent exponents (dashed lines) differ 
α ≈ 0.66 for flying species, and α ≈ {0.74,0.8} (depending if we consider outliers ostriches57 and emus58 in the 
fitting) for flightless ones. The model fit is shown in solid green line (see Table 1 for statistical tests).

Figure 4.  Metabolic rate for insects. Data from more than 300 species are extracted from Chown et al.23. 
Metabolic rates were measured for external temperatures controlled between 20 and 30 °C depending on the 
species. Dashed line corresponds to the fit to a pure power law with α ≈ 0.82. Green solid line is a fit to our 
model. The data are highly scattered in this case and both models are equally statistically compatible (see 
Table 1).
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The term associated to heat dissipation must take into account that plants have a branched fractal surface encompassing 
their volume60. As the surface to volume ratio is higher (S ~ VD/3 where 2 < D < 3 is the surface fractal dimension), the 
risk of overheating is smaller, allowing much bigger sizes than in animals. According to West et al.12. S ~ V3/4, yielding 
D ≈ 2.25 (see also)61, and thus our effective model reduces to B = aM + bM3/4. As the exponents of the isometric and 
allometric parts are now closer, we expect a much less curved relationship with a higher effective slope ranging between 
0.75 and 1. To test these predictions we have used the database of basal metabolic rates compiled by Mori et al.62 that 
includes about 200 trees and seedlings. They showed measures of metabolic rate against both total mass (including the 
roots) and aboveground mass. To make the comparison with mammal data homogeneous, we have used metabolic 
rate against total mass. Figure 5 shows these data, together with a fit to the model. As can be seen in Table 1, the fit is 
excellent. A pure power low model with exponent α ≈ 0.81 (larger than for mammals) is a good fit as well, although our 
model seems to reproduce slightly better the high mass regime. As in the case of mammals, it is interesting to stress that 
if the second exponent of the model is left as a variable, the best fitting correctly yields the value 3/4. As a final comment, 
Mori et al. stated in their paper that they found a concave curvature in their data. But this was due to the fact that they 
were mixing measures from adult individuals with measures from seedlings, which are growing quickly and have an 
altered metabolism. If we exclude seedlings and consider masses higher than 10 g we find no vestige of concavity (if fact, 
for masses higher that 0.1 g curvature is imperceptible).

Statistical methods.  Here we summarise some statistical procedures for the model fits reported in Table 1. 
First, we found that the dispersion of the data is multiplicative (proportional to the magnitude) and log-normally 
distributed. That means that error is normally distributed in logarithmic space. Since least-squares minimization 
requires errors to be normally distributed, the fitting procedure of each model consists in applying least-squares 
minimization to the logarithm of data (log(B) vs. log(M)). In other words, the nonlinear regression procedure to 
fit the data tries to find those values of the parameter estimates which minimize the Residual Square Error (RSS) 
in logarithmic space = ∑ −= y yRSS (log( ) log( ))i

N
obs th1

2.
Goodness of fit results include the coefficient of determination r2, reduced χ2 and Akaike Information 

Criterion63. The χ2 test is performed using the version of the χ2 statistic which is common in particle physics and 
astronomy, namely χ σ= ∑ −= y k y k[ ( ) ( )] /k

N
obs th

2
1

2 2, where residuals are normalised by the standard deviation of 
data64. The computation of the χ2 statistic is also performed in logarithmic space. For good agreement and good 
estimation of standard deviations, its expected value 〈χ2〉 = N − p, where N is the total number of data and p the 
number of parameters to fit. We used the reduced version χ χ= −N p/( )r

2 2  whose expectation is one (i.e. good 
models and fits get values close to 1, and the golden rule is the smaller the better). For the Akaike Information 
Criterion (AIC), the golden rule is the smaller the better. AICs are computed by transforming the data into loga-
rithmic space (where error is normally distributed) and exploiting the relation between log-likelihood and RSS 
via AIC :=2k + Nln(RSS/N), where k is the number of free parameters in the model and N the number of data 
points (note that for practical reasons we assume σ to be constant across models as all have similar error distribu-
tions and thus the AIC is defined up to a constant, enabling its use to compare different models with respect to the 
same dataset, but not across different datasets).

Conclusion
In this contribution we have built on Swan’s38 (essential energesis is not enough to keep mammals warm) and the 
heat dissipation limit (HDL) paradigm6 (which assumes that the capacity to dissipate heat is in fact a limit more 
restrictive than the energy supply). Our effective model for the body mass dependence of basal metabolic rate 
was already suggested by Yates in the context of a comparison between homeotherms and poikilotherms39 (whose 
qualitative shape was already known to interpolate among several possible effective exponents)21; here we provide 
a simple yet sound thermodynamic interpretation of the isometric and allometric terms according to which the 

Figure 5.  Extension of the model for plant data. Green dots: metabolic rate data for plants compiled by Mori et al.62 
(M > 10 g). Green line: fitting of the model. Red line: fitting of a pure power law (see Table 1 for statistical tests).
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model is not anymore just a fitting function. According to such interpretation, pre-factors have a physical mean-
ing and can be measured experimentally; in this sense the model generates self-consistent predictions which 
successfully account in a simple and quantitative way for a range of biologically relevant features.

Following Glazier’s proposal41 and the DEB predictions34 that point to combinations of isometric and allo-
metric mechanisms operating underneath as explanation of the basal metabolic rate functional shape, we have 
confirmed that the wealth of different apparent exponents found for mammals, birds, insects and plants emerge 
possibly due to such an additive model. Under this interpretation of Yates’ model, the (now physically observa-
ble) pre-factors can vary according to exogenous conditions, what ultimately leads to different effective exponents 
from a pure scaling (single power law) point of view. That is, parameters of Eq. 2 are not just fitting constants but, 
much on the contrary, have a physical meaning and can be empirically estimated and self-consistently predicted, 
as we have shown. In the case of mammals, our proposal predicts an average value f ≈ 0.21 that is confirmed by 
independent experimental evidence, although further measurements of direct calorimetry (heat production) and 
indirect calorimetry (oxygen consumption) are needed to further test this prediction. The relation between energy 
lost as heat and mass, the energy conversion efficiency of the metabolism, the precise curvature observed in basal 
metabolic rate data and their asymptotic limit, the clustering in the data between desert and polar mammals and 
the lower efficiency for the second group, and the higher effective exponent found in insects and plants are also 
results that can be explained in the light of this approach. We humbly hope that these findings can help reconciling 
different empirical evidence and models, and sheds some light on the role that evolutionary trade-offs between the 
energy dissipated as heat and the energy efficiently used by the organism to keep it alive, might play in the onset of 
metabolic scaling laws. Finally, possible couplings and feedbacks at the ecological community level –due to com-
petition and other evolutionary gradients– might have also played a role in the ultimate shaping of these metabolic 
laws, which according to previous evidence have shifted across evolutionary transitions65. In this sense, the even-
tual influence from the macroecological level downwards is an open question that deserves further investigations.
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