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ABSTRACT

The Human Metabolome Database or HMDB (https:
//hmdb.ca) has been providing comprehensive ref-
erence information about human metabolites and
their associated biological, physiological and chemi-
cal properties since 2007. Over the past 15 years, the
HMDB has grown and evolved significantly to meet
the needs of the metabolomics community and re-
spond to continuing changes in internet and comput-
ing technology. This year’s update, HMDB 5.0, brings
a number of important improvements and upgrades
to the database. These should make the HMDB more
useful and more appealing to a larger cross-section
of users. In particular, these improvements include:
(i) a significant increase in the number of metabo-
lite entries (from 114 100 to 217 920 compounds); (ii)
enhancements to the quality and depth of metabolite
descriptions; (iii) the addition of new structure, spec-
tral and pathway visualization tools; (iv) the inclusion
of many new and much more accurately predicted
spectral data sets, including predicted NMR spec-
tra, more accurately predicted MS spectra, predicted
retention indices and predicted collision cross sec-
tion data and (v) enhancements to the HMDB’s search
functions to facilitate better compound identification.

Many other minor improvements and updates to the
content, the interface, and general performance of
the HMDB website have also been made. Overall, we
believe these upgrades and updates should greatly
enhance the HMDB’s ease of use and its potential ap-
plications not only in human metabolomics but also
in exposomics, lipidomics, nutritional science, bio-
chemistry and clinical chemistry.

INTRODUCTION

The Human Metabolome Database (HMDB) is the
world’s largest and most comprehensive, organism-specific
metabolomic database. It contains richly annotated, care-
fully cross-checked, extensively referenced information
about all currently known human metabolites. This in-
cludes information contained in HMDB’s ‘MetaboCard’ on
their chemical structures, names or identifiers, detailed tex-
tual descriptions, references, chemical taxonomy, biologi-
cal roles, physiological concentrations, tissue/biofluid lo-
cations, disease associations, genetic associations, chemi-
cal and enzymatic reactions, metabolic pathways and refer-
ential MS/MS (tandem mass spectrometry), GC–MS (gas
chromatography mass spectrometry), and NMR (nuclear
magnetic resonance) spectra. The HMDB supports a wide
range of interactive web queries that allow metabolomic
researchers to identify and annotate human (and other
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mammalian) metabolomic data through text, structure,
mass or spectral matching. Unlike general metabolism or
metabolic pathway databases such as KEGG (1), Reactome
(2) and the Cyc databases (3) or general spectral databases
such as the BioMagResBank (4), Metlin (5) or MassBank
[https://massbank.eu/MassBank/], the HMDB is not sim-
ply an archival database of compounds or spectra. Rather
it is a colorfully illustrated, extensively annotated online en-
cyclopedia covering almost everything that is known about
human metabolites and human metabolism.

Since its first release in 2007 (6), the HMDB has gone
through extensive development and improvement to meet
the changing needs of the metabolomics community. These
changes have also been driven to keep pace with new
metabolite discoveries and new insights in metabolism, to
stay current with advancing metabolomic technologies, and
to adapt to changes in modern web design and data deliv-
ery technologies. Over the past 15 years the changes to the
HMDB have been quite remarkable. The first release of the
HMDB (HMDB 1.0) contained limited biological, phys-
iological and physico-chemical data on just 2180 human
metabolites (6). HMDB 2.0, which was released in 2009,
included more spectral data and much more literature-
derived physiological and biochemical data for 6408 human
metabolites (7). HMDB 3.0, which appeared in 2013, con-
tained a total of 40 153 human metabolites (8). This third
release greatly expanded the HMDB’s spectral reference li-
brary, added metabolic pathway data and modernized the
HMDB user interface. HMDB 4.0, which was published in
2018, contained at total of 114 100 compounds (9). This ver-
sion massively increased the number of NMR, MS/MS and
GC–MS reference spectra and the number of illustrated
metabolic pathways. It also added new data on metabolic
reactions, pharmacometabolomic data, metabolite-SNP as-
sociations and introduced the ClassyFire (10) chemical tax-
onomy.

For this year’s release of HMDB (version 5.0), the
HMDB curation team has implemented a number of very
significant and noteworthy improvements to the database.
In particular, the HMDB 5.0 now has 217 920 annotated
metabolite entries, as well as another 1 581 537 unannotated
derivatized metabolite entries for GC–MS. As part of a
large-scale, multi-year database update, the HMDB 5.0 has
also significantly improved quality and depth of metabo-
lite descriptions, with thousands of metabolite descriptions
being manually or semi-manually rewritten, corrected and
expanded. The HMDB 5.0 now includes a new Chemical
Functional Ontology (ChemFOnt) which provides a more
machine-readable route to extract metabolite functions and
origins. In addition, many new, far more powerful and far
more interactive structure, spectral and pathway visualiza-
tion tools have been added to HMDB 5.0. Likewise, 9 445
375 highly quality predicted spectral data sets and other ex-
perimental ‘observables’ have been added to the database,
including 312 980 predicted 1H and 13C NMR spectra, 1 752
677 more predicted GC–MS spectra, 1 440 324 predicted
LC–MS/MS spectra, 5 067 714 predicted retention indices
and 871 680 predicted collision cross section values. Fi-
nally, significant enhancements to the HMDB’s search func-
tions have been added to facilitate better and more accurate
compound identification. More details describing these im-

provements are given under the following five subsections:
(i) New Metabolite Entries; (ii) Improved Metabolite De-
scriptions; (iii) New Visualization Tools; (iv) New Spectral
Data and (v) Improved Search Functions.

NEW METABOLITE ENTRIES

One of the most significant challenges facing metabolomics
researchers concerns the annotation or identification of
m/z features in MS spectra obtained from metabolomics
studies. In many cases, the number of m/z features in
untargeted MS-based human metabolomics studies that
can be confidently identified is typically <2% (11). Even
among targeted metabolomics studies, it is rare to iden-
tify >900 human metabolites (12), which is <1% of the
known human metabolome. This strongly suggests that
both the metabolite coverage and the MS spectral coverage
in the HMDB (and other databases) has been inadequate or
incomplete.

To address these issues, a concerted effort was under-
taken by the HMDB curation team to increase the HMDB’s
metabolite coverage. From 2018 to 2020 a continuous scan
of the literature as well as a more detailed historical review
of published metabolomics and exposomics studies was
conducted. This led to the addition of another 1476 metabo-
lites to the database. Beginning in 2021 a more focused ef-
fort was undertaken to expand HMDB’s coverage of oxi-
dized lipids (i.e. lipids with oxidized acyl chains) (13), addi-
tional cardiolipins, exposome or environmental compounds
identified in human blood (14), acylcarnitines and their
corresponding acylCoAs (15), as well as acylamides (16).
We also included novel bile acid-amino-acid conjugates
(17), food-derived compounds (https://foodb.ca), sulfated
metabolites (18), other newly identified human metabolites,
newly approved drugs and a number of microbially or gut-
derived metabolites. These additions required careful re-
view of dozens of papers and textbooks, of which only a
few exemplar references are mentioned here. In total, 40
142 new oxidized lipids, 52 783 new cardiolipins, 14 929
blood exposome compounds, 2165 acylcarnitines and acyl-
CoAs and 188 acylamides were added to the database. In
addition, 65 bile acid amino-acid conjugates, 3168 food-
derived compounds, 35 additional sulfated metabolites, 65
newly approved drugs, 19 new microbially derived com-
pounds and 9 novel, experimentally identified metabolites
were also added to the database. In total, 113 568 new com-
pounds were appended to HMDB 5.0. In addition, another
9548 BioTransformer-predicted compounds as well as 323
disproven or erroneous compounds along with several du-
plicate entries were removed. As a result, HMDB 5.0 now
has a total of 217 920 compounds. Over and above these an-
notated metabolites, the HMDB also maintains an unanno-
tated collection of 1 581 537 derivatized compounds which
correspond to TMS and TBDMS derivatized metabolites
that could potentially be detectable via GC-MS methods.
This derivatized compound collection is described in more
detail later.

All of the exposome compounds identified in human
blood, the bile amino-acid conjugates, the food-derived
compounds, the sulfated metabolites, other newly identified
human metabolites, newly approved drugs and microbially
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or gut-derived metabolites are classified in the HMDB as
either ‘detected but not quantified’ or ‘detected and quanti-
fied’ metabolites. This classification, which has been in place
in the HMDB since 2013, simply means there is solid experi-
mental evidence and literature data supporting the metabo-
lite’s existence and/or quantification. On the other hand,
the vast majority of the newly added lipids and lipid/acyl
derivatives, are classified in the HMDB as ‘expected but
not quantified’ compounds. This category, which has also
been in place since 2013, includes those metabolites that
are expected to exist based on biochemistry, enzymology or
known constituents (i.e. acyl chains) found in the human
body. Evidence for their structure and existence is ascer-
tained based on an extensive literature review by the HMDB
curation team, along with a detailed analysis of known con-
stituents in human samples and putative identifications re-
ported from human metabolomic studies of various bioflu-
ids and tissues. In all cases, specific literature references are
provided to support the existence of these newly added com-
pounds.

Each newly added metabolite in the HMDB 5.0 has gone
through HMDB’s comprehensive data update process. In
particular, every metabolite is given an accession number
and a variety of in-house programs and commercial soft-
ware tools are run to collect, calculate, generate or predict
data covering up to 130 data fields for each compound’s
MetaboCard. Many of the resulting data updates (or se-
lected samples) are manually reviewed by members of the
curation team to ensure consistency and accuracy. Details
on the data sources, curation protocols, data harvesting and
description-writing software (ChemoSummarizer and Data
Wrangler), prediction software, data management system,
and quality assurance criteria for the HMDB have been de-
scribed previously (8,9).

IMPROVED METABOLITE DESCRIPTIONS

A particular strength of the HMDB, and one of the main
reasons for its popularity within the metabolomics commu-
nity, is its rich collection of metabolite descriptions. Every
compound in the HMDB has a detailed textual description
ranging from 50 to 500 words that describes the compound,
what it does or where it’s located in the body or in the cell. In
addition, many metabolites in the HMDB have additional
information regarding their occurrence in biofluids or tis-
sues, their normal/abnormal concentrations, their disease
associations, their MS and/or NMR spectra, their known
pathways, their external database hyperlinks and their as-
sociated enzymes or transporters.

To update the HMDB 5.0, a concerted effort was made
to manually research, rewrite and remediate compound
descriptions for more than 800 well-known or disease-
associated metabolites. This process required hundreds of
hours of intensive literature research and writing. In addi-
tion, dozens of lesser-known metabolites with inadequate
or incomplete descriptions were also manually researched
and re-written. For those HMDB compounds that were
modular in structure (i.e. lipids, bile acids and acyl deriva-
tives), so-called ‘template descriptions’ were carefully writ-
ten by hand and then computer programs were run to gen-
erate >200, 000 individualized or customized compound

descriptions using these fill-in-the-blank templates. In ad-
dition, HMDB’s ChemoSummarizer (a program that has
been used to auto-describe compounds in the HMDB since
2017) was modified and upgraded to incorporate more
chemical/biological data, to extract data from DrugBank
(19) and MarkerDB (20) and to generate more informative
descriptions. Overall, these improvements to the quality and
coverage of HMDB’s descriptions should greatly enhance
the overall utility and reliability of the database.

In addition to these ‘human readable descriptions’, fur-
ther development also continued with HMDB’s chemical
functional ontology, called ChemFOnt (9), which is dis-
played under each MetaboCard’s ‘Ontology’ field. Chem-
FOnt was first introduced in HMDB 4.0 as a hierar-
chically structured ontology that was both OWL (Web
Ontology Language) and OBO (Open Biological Ontol-
ogy) compliant. ChemFOnt was developed to help estab-
lish a chemical/biochemical ontology for the metabolomics
community that could complement the better-known
Gene Ontology or GO (21). GO is widely used in the
proteomics/genomics community to assist with gene anno-
tation and pathway analysis. The near-term goal for Chem-
FOnt has been to help automate and extend metabolite de-
scriptions within the HMDB. The second near-term goal is
to make HMDB’s compound descriptions more fully ma-
chine readable. The 2017 version of ChemFOnt covered
four major functional categories (process, role, physiologi-
cal effect and disposition) that were associated with 35 sub-
categories and 3150 descriptors or definitions. For HMDB
5.0, ChemFOnt has grown to include 247 subcategories,
with a hierarchical structure of up to 6 nested categories
and a total of 221 454 definitions. All categorical asser-
tions or assignments in ChemFOnt have been restructured
to have clear provenance with either a database or a liter-
ature reference. Furthermore, the quality and correctness
of the ChemFOnt entries have been greatly improved over
what was initially presented in HMDB 4.0. Every metabo-
lite entry in HMDB 5.0 now has a hierarchically structured,
fully hyperlinked ChemFOnt table where every descriptor
definition can be accessed by mousing over the term of inter-
est. Much more detailed disposition data about the origin
(food, microbial, endogenous), originating species, biofluid
and body site of many metabolites (especially food and mi-
crobial metabolites) is now provided through ChemFOnt.
The data within ChemFOnt is still evolving and growing
on a daily basis. This is because functional data is being
continuously added to every HMDB entry through ongoing
‘background’ data mining and natural language processing
activities. These background processes are being run and
overseen by the HMDB curation team. Over the next year it
is expected that nearly every ChemFOnt entry will contain
significantly more human-readable and machine-readable
information than what is available in standard HMDB com-
pound descriptions.

In addition to these widespread improvements in
HMDB’s compound descriptions, another major data up-
date effort has been directed to expanding the amount of
experimentally measured data in HMDB 5.0. This experi-
mentally measured data includes more quantitative data on
vitamin levels (normal and abnormal), extensive metabo-
lite data on the human fecal metabolome (22), quantita-
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tive data on reference values for urinary metabolites in new-
borns (23) and substantially more quantitative data on the
NIST (National Institute of Standards) human serum ref-
erence known as SRM-1950 (24). These updates are visi-
ble under the ‘Normal/Abnormal Concentration’ field in
each MetaboCard. In total, more than 19 715 compound
concentrations have been added, corrected or annotated.
Likewise, significant numbers of experimental NMR and
MS data for purified reference compounds have also been
added. These include reference NMR spectra from ongo-
ing activities within the Wishart laboratory (309 experimen-
tal NMR spectra for 218 compounds) as well as 37 589 ex-
perimental MS spectra made available from MassBank and
other MS spectral providers. These updates are visible un-
der the ‘Spectra’ field in each MetaboCard

NEW VISUALIZATION TOOLS

Continuing improvements to JavaScript technology have
meant that more sophisticated and more interactive visual
displays are now possible on most modern web servers and
web-based databases. In an effort to improve the quality of
its structure visualization tools, HMDB 5.0 now includes
several new tabs in the ‘Structure’ field of each Metabo-
Card. In addition to providing new tabs for ‘3D SDF’, ‘3D
MOL’ and ‘PDB’ formatted files, users can now select a
light blue tab under the thumbnail image, called ‘View in
JSmol’, to visualize the 3D structure of the molecule via
JSmol (25). This generates an interactive 3D display of the
molecule (in a new window) that supports mouse-driven ro-
tation and zooming of the molecule. Users may also select
another light blue tab below the thumbnail structure called
‘View Stereo Labels’ to visualize the structure with the ab-
solute configuration (R/S annotation) indicated in all chiral
centres. Examples of these images are shown in Figure 1.

New spectral viewing options are also now available in
HMDB 5.0. Each MetaboCard now has three spectral data
field headers (orange or tan-colored bars) marked as (i)
MS/MS Spectra; (ii) GC–MS Spectra and (iii) NMR Spec-
tra. Clicking the ‘View Spectrum’ button tab takes users to
the HMDB spectral viewing page (which differs slightly be-
tween NMR and MS spectra). This page displays all the
spectral and associated metadata, including general MS or
NMR spectral information, interactively viewable MS or
NMR spectra, experimental acquisition data, download-
able documentation and/or spectral files and literature ref-
erences. This page also provides hyperlinks on the right side
to navigate through the page(s). Both NMR and MS spec-
tra can be viewed through this ‘View Spectrum’ page via a
locally developed JavaScript spectral viewer called JSpec-
traViewer or JSV (9). For predicted MS data, JSV allows
users to mouse over each peak to interactively and see the
predicted mass and fragment ion structure. The MS data for
both experimental and predicted spectra are available and
downloadable as lists of m/z values and intensities (in *.txt
format) and in an mzML format.

For NMR data, JSV, is somewhat more sophisticated and
now supports the display of both 1D and 2D NMR spec-
tra (Figure 1). JSV displays NMR peak/chemical shift as-
signments both on the NMR spectrum and on the molecule
itself, which is shown as a thumbnail image with num-

bered atoms and an assignment table. In the spectral view
window JSV displays blue traces, which correspond to the
predicted/simulated NMR spectra while the black traces
correspond to the experimental NMR spectra. Only those
entries with experimental NMR spectra will display both
blue and black traces. Predicted or simulated NMR spec-
tra only have blue traces. For experimental spectra, users
can now toggle between the black (experimentally acquired
spectrum) and the blue (simulated spectra). Blue traces will
be very slightly different from black traces as the assignment
process inherently leads to some information loss (includ-
ing some couplings). JSV for NMR also supports interac-
tive spectral zooming, moving, gridding, scaling and image
saving/downloading. Interactive zooming, peak identifica-
tion and peak picking are also supported by the 2D version
of JSV. Each NMR spectrum of a pure compound (exper-
imental or predicted) in the HMDB has downloadable in-
formation in the form of a set of peak lists (CSV format),
peak assignments (CSV), spectral images (PNG), a spectral
and/or assignment validation report and the actual or sim-
ulated NMR data in the form of nmrML (26) and JCAMP-
DX files (27). If experimental data are available, the docu-
mentation section also provides native free-induction-decay
(FID) or time-domain data in the original depositor format
(Bruker, Varian, Agilent, JEOL).

Further improvements in HMDB’s pathway visualization
tools have also continued with HMDB 5.0. Pathways im-
ages created by PathWhiz (28) as part of the PathBank
project (29) have become increasingly standardized, more
fully annotated and more visually sophisticated relative to
the pathway images released in HMDB 4.0. PathWhiz is an
online pathway drawing server which has been used to pop-
ulate PathBank, which is a dedicated metabolomics path-
way database covering many model organisms. Hundreds of
old or outdated PathBank pathways have been remediated
and enhanced with improvements to the layouts, images,
formatting and pathway descriptions/references. Many im-
provements in the images for subcellular structures, tissues
and organs have also been made, allowing for much more
advanced pathway processes to be illustrated. Similarly, a
larger variety of action icons in the PathWhiz illustration
palette are permitting sophisticated physiological processes
and drug actions to be illustrated. An example of a uremic
toxin pathway (illustrating the toxic action and effects of
indoxyl sulfate) is shown in Figure 2. Alternate coloring
schemes and alternative pathway layouts are also offered
including a (default) colored, data rich pathway rendering,
a black-and white rendering, and a simplified KEGG-like
pathway rendering. All of the thumbnail PathBank pathway
images link to full size interactive pathway views that can be
saved and downloaded in static image formats (PNG and
SVG) as well as in a variety of common data exchange for-
mats such as SBML (systems biology mark-up language),
BioPax and PathWhiz’s own markup language (PWML).
HMDB 5.0 now has 132 335 metabolite pathways covering
136 878 metabolites or xenobiotics and 2153 proteins.

NEW SPECTRAL DATA

Key to the identification and annotation of metabolites for
metabolomics researchers is the availability of spectral ‘ob-
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Figure 1. A screenshot montage of some of the new visualization features in HMDB 5.0. (A) an example of a 3D-rendered JSmol image of 1-methylhistidine
as offered through HMDB’s ‘View in JSmol’ viewing option; (B) an example of the stereo-labeling (i.e. R/S) of Campasterol now offered through HMDB’s
‘Stereo view’ viewing option; (C) An example of a 1D 1H NMR spectrum of 1-methylhistidine as viewed through HMDB’s new JSpectraViewer (JSV);
(D) and example of a 2D 13C–1H HSQC NMR of 1-methylhistidine as viewed through HMDB’s new JSpectraViewer.

servables’ linked to specific reference compounds. Com-
paring experimentally acquired observables to databases
of reference compounds and reference observables allows
metabolites to be identified. These observables may include
parent ion masses, adduct masses, MS/MS spectra (at dif-
ferent collision energies), EI-MS spectra, 1H or 13C NMR
spectra, collision cross section (CCS) data, retention indices
and retention times. The HMDB 5.0 has continued to ex-
pand its collection of experimentally collected observables,
including MS/MS, EI-MS and NMR spectra. However, it is
clear that the number of new and metabolically relevant ex-
perimental MS and NMR spectra being deposited in public
databases is rapidly diminishing. Likewise, the coverage of-
fered by these experimentally measured observables is typ-
ically <5% (often much less) of the HMDB. It is because
of this limited coverage that the HMDB curation team has
placed increasing emphasis on generating accurately pre-
dicted observables. While experimentally collected observ-
ables are always preferrable over predicted observables, pre-
dictions have the advantage of offering complete or near-
complete metabolome coverage.

For HMDB 5.0 significant resources were placed into de-
veloping or implementing: (i) more accurate MS/MS spec-
tral predictions; (ii) accurate 1D 1H and 13C NMR spectral
predictions; (iii) accurately predicted retention indices for
analyzing GC–MS data and (iv) accurately predicted col-

lision cross section (CCS) data for analyzing ion mobility
spectroscopy (IMS) data.

The MS/MS predictions for HMDB 5.0 were performed
by the latest version of the competitive fragment mod-
eling tool for QTOF MS/MS spectral prediction, called
CFM-ID version 4.0 (30). CFM-ID 4.0 was trained on a
much larger data set and included much more sophisticated
machine learning approaches to improve its handling of
ring cleavages and molecular topology. It also incorporates
hand-made fragmentation rules to handle lipids, polyphe-
nols, acylcarnitines and other ‘modular’ molecules. As mea-
sured by a number of objective criteria, the performance
of CFM-ID 4.0 is approximately 30% better than previous
versions of CFM-ID (30). As a result, CFM-ID 4.0 was
used to predict both the positive ion and negative ion mode
QTOF MS/MS spectra of all 217 920 metabolites in the
HMDB 5.0, at three different collision energies (10, 20 and
40 eV). This led to the generation of 1 440 324 MS/MS spec-
tra (six spectra for each metabolite entry in HMDB 5.0),
with several million predicted fragment labels––all of which
have been rendered for interactive display in each HMDB
MetaboCard by JSV. These MS/MS data have also been
incorporated into HMDB’s new MS/MS search function.
Note that Orbitrap MS spectra closely resemble QTOF
MS/MS spectra (differing primarily in peak intensities but
not in their peak positions) and that spectral matching with
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Figure 2. An example of an HMDB pathway (generated via the online pathway drawing tool PathWhiz) describing the mode of action and mechanism of
formation of the uremic toxin known as indoxyl sulfate. This illustrates the breadth of molecular, subcellular, cellular and organ/tissue renderings as well
as the breadth of physiological effect renderings that are now possible with PathWhiz and the PathBank pathways now linked to the HMDB. More than
100 000 pathways are now linked to metabolites in HMDB 5.0.

CFM-ID predicted QTOF MS/MS spectra against Orbi-
trap MS spectra often yields excellent results (30).

In addition to generating >1.4 million MS/MS spec-
tral predictions to help improve MS-based compound iden-
tification, the HMDB curation team also generated 312
980 1H and 13C NMR spectral predictions to help with
NMR-based compound identification. The number of ex-
perimental NMR spectra available for metabolite identifica-
tion in metabolomics has always been disappointingly low
(<1000) and has increased only marginally in the past 10
years. Given the very limited compound coverage of ref-
erence metabolite NMR spectra, we decided to perform
chemical shift and NMR spectral predictions on all water-

soluble (predicted log P < 0 and –2 < log S < 0) metabo-
lites in the HMDB. This threshold cutoff led to the selec-
tion of 15 649 molecules from the HMDB. Recent advances
in NMR theory along with continuing innovations in com-
puting techniques are allowing remarkably accurate NMR
spectral simulations and NMR parameter predictions to be
made for many small molecules (31–33). In particular, it
is now quite routine to predict not only 1H and 13C shifts
but also 1H and 13C NMR spectra from chemical struc-
tures with impressive accuracy (< 0.15 ppm RMSE for 1H
shifts and <1.5 ppm RMSE for 13C shifts). The chemical
shift predictors we employed use a combination of machine
learning techniques and HOSE-code methods that nearly
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identical to the predictors available via NMRShiftDB (34).
Empirically derived rules were used to predict first-order J-
coupling constants and simple spin matrix calculations were
used to generate the predicted 1D 1H and 13C NMR spec-
tra at 10 different spectrometer frequencies (100 MHz to
1000 MHz for 1H and 25 MHz to 250 MHz for 13C). This
led to the generation of 312 980 NMR spectra (20 spectra
for each water-soluble metabolite entry in HMDB 5.0)––all
of which have been rendered for interactive display in each
HMDB MetaboCard by JSV. These NMR data have also
been incorporated into HMDB’s new ‘NMR Search’ func-
tion, which is described later.

Retention indices (RI) are another useful set of observ-
ables that can be used to identify molecules. RIs are es-
sentially adjusted retention times used in gas chromatog-
raphy that allow nearly universal comparisons of reten-
tion times across GC platforms. RIs are closely related to
a molecule’s boiling point and are much more reproducibly
measured in GC than retention times in liquid chromatog-
raphy. Tens of thousands of retention indices for thousands
of compounds (and their TMS or TBDMS derivatives) have
been compiled in databases over the past 40 years. Exper-
imentally measured retention indices can be used to help
greatly narrow down possible candidates and are often used
to assist in the identification of compounds by GC–MS.
Important developments have recently occurred in the ac-
curate (<2% RMSE) prediction of GC-MS retention in-
dices that make use of sophisticated deep learning meth-
ods (35). The HMDB curation team adopted the same ma-
chine learning methods described by Qu et al. (35) and ob-
tained essentially the same RI performance that was re-
ported. Using a cutoff mass of 900 daltons (the upper mass
limit for most GC-MS instruments), a total of 57 648 com-
pounds were selected from the HMDB as being ‘GC–MS’
compatible. These compounds were then computationally
derivatized with TMS and TBDMS to generate 1 581 537
derivatized structures. The RI predictor was then used to
predict the retention indices for these 1.58 million deriva-
tive structures across three standard types of GC columns
(semi-standard non-polar, standard non-polar and stan-
dard polar). This led to the generation of 4 744 611 pre-
dicted column-specific retention indices––all of which have
been entered in the ‘Predicted Spectral Properties’ subsec-
tion (under the ‘Physical Properties’ field) of every eligible
HMDB MetaboCard. These retention indices, the corre-
sponding metabolite derivative structures and the CFM-ID
predicted EI-MS spectra (36) for all 1 581 537 structures
have also been incorporated into HMDB’s new ‘GC–MS
Search’ function, which is described later.

The development of ion mobility spectroscopy (IMS) and
the appearance of tandem IMS-MS systems has led to a
growing interest in the metabolomics community in using
IMS as a constraint to help with metabolite identification.
Like GC separations, IMS separations are highly repro-
ducible and far more consistent or predictable than LC sep-
arations. Furthermore, IMS retention values are related to
the average collision cross section (CCS) of the molecule,
which can be accurately predicted based on a compound’s
3D structure. For HMDB 5.0 we have used a number of
published CCS predictors, included MetCCS and Deep-
CCS (37–39) to generate the CCS values for all HMDB

metabolites. Most of these CCS predictors report errors
of <3–4%. Using these predictors, a total of 871 680 pre-
dicted CCS values have been added to the HMDB. All pre-
dicted CCS values been entered in the ‘Predicted Spectral
Properties’ subsection (under the ‘Physical Properties’ field)
of every HMDB MetaboCard. These CCS values have also
been incorporated into HMDB’s new ‘LC–MS Search’ and
‘LC–MS/MS Search’ functions, which are described later.

IMPROVED SEARCH FUNCTIONS

The addition of many new or newly predictable spectral ob-
servables (CCS, RI, NMR chemical shifts, etc.) also neces-
sitated a substantial upgrade to the spectral search func-
tions for HMDB 5.0. Furthermore, improvements in our
spectral visualization program (JSV), also allowed us to un-
dertake improvements in the graphical display of the spec-
tral match output. Both the ‘LC–MS Search’ and ‘LC–
MS/MS Search’ functions now support IMS data as an ad-
ditional search constraint. Both have an option to input a
CCS value with a default 5% tolerance. Users may choose
any one of three specific CCS predictors or an averaged
value of all three CCS predictors. If no CCS input value is
provided, the search functions will still perform their regu-
lar MS or MS/MS searches without the CCS constraint.
Matched compounds for HMDB’s new ‘LC–MS Search’
are ranked according to their m/z and CCS matches (using
a combined weight of 90% for delta m/z and 10% for delta
CCS). The output table from HMDB’s ‘LC–MS Search’
provides a browsable list that contains information on the
matching compound names, the HMDB links, their m/z
values, the CCS matches (if a CCS value was provided) and
the overall score. In a similar manner, matched compounds
for HMDB’s new ‘LC–MS/MS Search’ are ranked accord-
ing to their spectral similarity and CCS matches. The out-
put table from HMDB’s ‘LC–MS/MS Search’ provides a
browsable list that contains information on the matching
compound names, the HMDB links, their m/z values, spec-
tral similarity, CCS similarity (if a CCS value was provided)
and the overall score. Clicking on the ‘Show Spectrum’ pro-
duces a JSV mirror plot with the input spectrum shown at
the top (in red) and the matching MS/MS spectrum shown
at the bottom (in blue). Both ‘LC–MS Search’ and ‘LC-
MS/MS Search’ have a ‘Load Example’ button to illustrate
how these new search functions work.

HMDB’s new ‘GC–MS Search’ has now been modified to
support RI data as an additional search constraint. Users
may input an RI value with a default 3% tolerance. If the
RI option is chosen, users must also choose any one of
three types of GC columns as the RI values are specific to
the column type (the default is the most popular column:
semi-standard non-polar). Additionally, the type of chemi-
cal derivatization(s) used must also be provided. Users have
the option to indicate no derivatization, TMS derivatiza-
tion, TBDMS derivatization or combinations of the above.
If no RI input value is provided, the GC-MS search func-
tion will still perform its regular EI-MS-only search with-
out the RI constraint. Matched compounds for HMDB’s
new ‘GC–MS Search’ are ranked according to their spectral
similarity and RI similarity. The output table from HMDB’s
‘GC–MS Search’ provides a browsable list that contains in-
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formation on the matching compound names of the under-
ivatized parent compound, the HMDB links, the names of
the derivatized compounds, their m/z values, spectral sim-
ilarity, the RI matches (if an RI value was provided) and
the overall score. Clicking on the ‘Show Spectrum’ button
for any given compound produces a JSV mirror plot with
the input spectrum shown at the top (in red) and the match-
ing EI-MS spectrum shown at the bottom (in blue). As with
other search functions, ‘GC–MS Search’ has a ‘Load Exam-
ple’ button to illustrate how the new search function works.

HMDB’s new ‘NMR Search’ has been simplified and it
now allows users to enter lists of 1H or 13C chemical shifts
to search for spectral matches to experimental NMR spec-
tra, predicted NMR spectra or both. Users must provide a
chemical shift list (relative intensities are optional), select
the nucleus (1H or 13C) of interest and choose a chemical
shift tolerance (default of 0.2 ppm for 1H and 2.0 ppm for
13C) before pressing the ‘Search’ button. A typical query
produces a browsable table of hits showing eight columns:
the compound name, the HMDB ID (with a hyperlink tab),
the structure, the chemical formula, the molecular weight
(average and monoisotopic), the chemical shift Dice score
(a measure of chemical shift matching), the fraction of peak
matches and a colored ‘Show Spectrum’ button. Clicking
on the ‘Show Spectrum’ produces a JSV mirror plot with
the input NMR spectrum shown at the top (in red) and the
matching NMR spectrum shown at the bottom (in blue).
As with other search functions, ‘NMR Search’ has a ‘Load
Example’ button to illustrate how the new search function
works.

Overall, these improvements to HMDB’s search func-
tions along with significant improvements to the quantity
and quality of the underlying data should greatly enhance
the performance and reliability of the HMDB as a ‘go-to’
resource for metabolite annotation. These improvements
should also increase the likelihood and confidence in find-
ing high quality metabolite matches.

THE HMDB IS FAIR-COMPLIANT

The HMDB is FAIR compliant (40) and details regarding
its ‘FAIRness’ are provided under the ‘About HMDB’ menu
tab. To ensure findability, all entries in the HMDB have a
unique and permanent 7-digit HMDB identifier. To ensure
accessibility, the HMDB website is open and free and its
data download operation is compatible with all modern web
browsers. The HMDB’s downloadable spectral data files
are available in the universally readable nmrML (41) and
mzML (42) formats. Furthermore, all MS/MS and GC–MS
spectra are assigned SPLASH keys (43) for rapid spectral
querying and matching. Likewise, all the HMDB’s chem-
ical structures are accessible in canonical SMILES, SDF,
MOL, PDB, InChI and InChIKey formats, while all se-
quence (DNA and protein) data are stored in FASTA for-
mat. To ensure interoperability, all textual data and meta-
data in the HMDB are written in English, all spectral data
are in the mzML or nmrML exchange format, all chemicals
are in canonical SMILES, SDF, MOL, PDB, InChI and
InChIKey formats, all sequence (DNA and protein) data
are stored in FASTA, all images are stored in PNG for-
mat, and all nomenclature for compounds and spectral

data follows standard ontologies or vocabularies used to
describe these entities. An extensive and well-annotated
data download section is also provided with files available
in standard TXT, CSV, JSON and XML formats. To en-
sure re-usability, all the data in the HMDB is extensively
sourced with clear information on provenance. The data
in the HMDB are released under a Creative Commons
Attribution-NonCommercial 4.0 International License.

CONCLUSION AND FUTURE DIRECTIONS

The HMDB has grown considerably, both in size and scope,
over the past 15 years. In 2007 it was a rather modest
database with just 2180 molecules and very limited content,
searching or visualization capabilities. Today, the HMDB is
∼100× larger (in terms of metabolite coverage) and more
than 1000X larger in terms of data size and content. The
HMDB now includes extensive spectral data, pathway data,
physiological and disease data and it offers many differ-
ent kinds of advanced visualization tools, search tools and
download or data accessibility options. The enormous size
and scope of the HMDB has also meant that it is be-
coming increasingly more challenging to update. In par-
ticular, the focus for this year’s update (namely expand-
ing compound and spectral or ‘observable’ coverage) pre-
cluded further expansion or updates with several other pop-
ular HMDB data collections (such as metabolite-disease,
metabolite-gene or metabolite-SNP associations). Likewise,
with the explosion in published metabolomics articles (now
averaging > 2000 papers/year), it has become increasingly
difficult to stay current with the literature on metabolite-
biofluid associations and metabolite biomarker identifica-
tions. To address these challenges, more and more of the
HMDB database updating process will rely on computa-
tionally based data harvesting and natural language pro-
cessing techniques. These approaches are already being de-
veloped and trialled by the HMDB curation team through
the ChemFOnt project. With ongoing improvements in
deep learning methods for text analysis and other tools for
text-to-data conversion, we are hopeful that these data har-
vesting and data updating approaches will allow previously
neglected aspects of the HMDB to grow robustly and re-
main both current and relevant to the metabolomics com-
munity for many years to come.

In terms of future directions for the HMDB, we are
particularly encouraged by ongoing developments in the
area of in silico metabolomics. Significant improvements in
the prediction accuracy (via quantum mechanics, machine
learning or hybrid approaches) of many chemical or spec-
tral observables (MS spectra, NMR spectra, IR spectra,
RIs, CCS, etc.) along with important enhancements to scor-
ing protocols suggest that in silico metabolomics will be a
worthwhile direction for the HMDB to continue to pursue.
As a result, HMDB users should expect to see even more
(and more accurately) predicted observables and more so-
phisticated searches (such as neutral loss searching) being
added. These should allow users to more accurately iden-
tify or annotate metabolites.

Beginning in 2022, the HMDB will also branch out with
the introduction of a new sister database, called ‘HypoMet’,
containing millions of hypothetical, biologically feasible
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metabolites generated computationally via BioTransformer
(44) and a deep generative model called DeepMet. The
data in HypoMet will also be enriched with various pre-
dicted spectral properties or predicted observables. The
intent of HypoMet is to allow metabolomics researchers
the opportunity to identify novel metabolites or generate
testable hypotheses regarding the identity of hitherto un-
known metabolites.

Another major effort with the HMDB over the coming
two to three years will be the updating or supplementation
of every HMDB entry with at least one machine-readable
pathway diagram. This process is ∼60% complete and is ex-
pected to pick up speed in the coming year. The intent of
this pathway updating process is to complement the work
with the ChemFOnt project, allowing much more sophis-
ticated interpretation (at a system-wide level) and integra-
tion of metabolomic, proteomic and/or genomic data. This
work will see a tighter coupling between the analytical and
statistical tools offered by MetaboAnalyst (45) and the vi-
sualization and query functions offered by HMDB.
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