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Abstract: Probiotics are a viable alternative to traditional chemotherapy agents to control infectious
diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously
demonstrated several probiotic features, such as a strong antimicrobial activity against ichthy-
opathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim
of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain
deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and
libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were
subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs
(2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the
bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins
were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids,
adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic
resistance determinants and genes encoding detrimental enzymatic activities and virulence factors.
These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a
probiotic for aquaculture.

Keywords: aquaculture; probiotics; lactic acid bacteria; bacteriocins; nisin Z

1. Introduction

Aquaculture is a cornerstone in the food supply chain and the fastest-growing food-
producing sector worldwide [1–3]. The foreseeable growth in human population, which
could reach, according to projections, 9.8 billion people by 2050, will increase the demand
for food and protein sources [4]. In this respect, aquaculture is regarded as a key alternative
to supply this growing demand [3]. Nevertheless, for aquaculture to meet this demand,
intensification, and expansion, it will need to face challenges such as disease outbreaks, the
emergence and re-emergence of bacterial ichthyopathogens, and antimicrobial resistant
bacteria [1,5].

Microorganisms 2022, 10, 521. https://doi.org/10.3390/microorganisms10030521 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10030521
https://doi.org/10.3390/microorganisms10030521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-1774-3372
https://orcid.org/0000-0002-7513-9432
https://orcid.org/0000-0002-3239-9373
https://orcid.org/0000-0003-1147-7923
https://orcid.org/0000-0001-6259-8456
https://doi.org/10.3390/microorganisms10030521
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10030521?type=check_update&version=1


Microorganisms 2022, 10, 521 2 of 14

The widespread abusive and erroneous use of antibiotics and other veterinary drugs
in aquaculture has been to some extent underrated in the past. Nonetheless, aquatic envi-
ronments and the intensive nature of aquaculture are not only prone to support the thriving
of diverse pathogenic bacteria, but they can also act as reservoirs for antimicrobial-resistant
bacteria and antimicrobial resistance transferable genes. The residues and sedimentation
of the uneaten, non-absorbed antimicrobial compounds administered by medicated feeds,
and their metabolites, pose a serious threat of contamination to the surrounding ecosystems.
Additionally, there is an imminent hazard to the human health through direct contact with
contaminated facilities, or even through foodborne infections, considering that a signifi-
cant number of ichthyopathogens (e.g., Lactococcus garvieae, Streptococcus agalactiae, Vibrio
spp.) are also zoonotic agents [1,5,6]. In this regard, novel and complementary strategies
for disease control in aquaculture have emerged, including vaccines, probiotics, prebi-
otics/symbiotics, parabiotics, postbiotics, bacteriophages, and immunostimulants [1,7–9].

Although there are no specific guidelines for the evaluation and selection of probiotics
intended for aquaculture, there are general recommendations for their evaluation. These
recommendations are based upon safety assessments of microorganisms, both used in
food and feed, taxonomical identification, and for instance, resistance to antibiotics of
clinical importance for human medicine. In this regard, recently, the European Food Safety
Authority (EFSA) established the whole-genome sequence (WGS) of a bacterial strain as a
requisite for its future use in the food chain and stated the requirements for WGS analysis
of microorganisms intentionally used for this purpose [10,11]. To date there is only one
probiotic authorized for use in aquaculture by the European Union, which is Pediococcus
acidilactici CNCM I-4622 (formerly named MA18/5M) [7,8,12].

Lactic acid bacteria (LAB) is the most representative group of bacteria proposed as
probiotics for aquaculture. There is a growing interest in the use of LAB as probiotics
in aquaculture for reasons such as the general classification of most LAB as Generally
Recognized as Safe microorganisms (GRAS) and/or having Qualified Presumption of
Safety (QPS) status, and their current use as probiotics for both human and animal health.
Moreover, LAB have been assessed as probiotics due to their antimicrobial properties, such
as the production of organic acids and ribosomally synthesized antimicrobial peptides
referred to as bacteriocins [7,8]. Bacteriocin production is a common trait of LAB, and many
bacteriocinogenic strains have been characterized, displaying antimicrobial activity against
a wide range of Gram-positive bacteria, and, to a lesser extent, Gram-negative bacteria,
including spoilage and foodborne pathogens. Their spectrum of antimicrobial activity
has attracted great interest for their potential as food preservatives and as therapeutical
agents in both human and veterinary medicine [13]. In this regard, Lactococcus lactis subsp.
cremoris WA2-67, a strain isolated from the rearing environment of a Spanish rainbow
trout (Oncorhynchus mykiss, Walbaum) farm, has been previously assessed for its potential
as a probiotic for aquaculture [14,15]. Interestingly, L. cremoris WA2-67 has previously
demonstrated several probiotic features, such as survival in freshwater, resistance to fish
bile and low pH, hydrophobicity, and broad and strong antimicrobial activity against many
ichthyopathogens, including Lactococcus garvieae, which is a major pathogen in the rainbow
trout aquaculture. The antimicrobial activity exerted by L. cremoris WA2-67 is due to the
production of a bacteriocin identified as nisin Z (NisZ), being the first description of a NisZ-
producing L. lactis strain isolated from an aquatic environment. Moreover, the safety of L.
cremoris WA2-67 was demonstrated by the absence of antibiotic resistance genes, production
of biogenic amines, hemolysin and gelatinase, and its inability to degrade gastric mucin or
deconjugate bile salts [15]. Additionally, in vivo challenge tests demonstrated the ability
of L. cremoris WA2-67 to protect rainbow trout against bacterial infection by L. garvieae,
demonstrating, for the first time, the role of a bacteriocin (NisZ) as an effective weapon in
fish farm conditions [16].

Considering the probiotic potential exhibited by L. cremoris WA2-67, EFSA require-
ments for the evaluation of microorganisms intentionally used in the food chain and the
need to gain deeper insight into the safety and probiotic properties and their respective
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genetic foundations, the draft genome sequence of this bacteriocinogenic strain was deter-
mined. Then, we performed in silico analysis through use of diverse databases, tools, and
software [17–20].

2. Materials and Methods
2.1. Growth Conditions and Genomic DNA Isolation

L. cremoris WA2-67 was cultured in de Man, Rogosa and Sharpe (MRS) agar (1.5% w/v)
plates (Oxoid, Basingstoke, UK) at 30 ◦C for 16 h.

For genomic DNA isolation, the NZY Microbial gDNA Isolation Kit (NZYTech, Lisbon,
Portugal) was used. Briefly, cells were harvested by centrifugation, and then the pellet
was resuspended in 100 µL of elution buffer. The resulting mixture was transferred into a
NZYSpin Microbial Bead Tube, where 40 µL of buffer NML and 10 µL of proteinase K were
added. For the sample lysis, this new resuspension was applied to a TissueLyser II (Qiagen,
Hilden, Germany). Then, for DNA binding, 600 µL of buffer NML were added and briefly
vortexed. After centrifugation at 11,000× g for 30 s, the supernatant was transferred into a
NZYSpin Microbial Column for a new centrifugation under the same conditions. The silica
membranes of the column were washed by adding 500 µL of buffer NMW1, followed by
centrifugation. Then, 500 µL of buffer NMW2 were added, and the mixture centrifuged. In
order to guarantee the removal of the washing buffers the column was centrifuged once
again at 11,000× g for 30 s. For DNA elution, 100 µL buffer NME were added to the column,
and after incubation at room temperature for 1 min, recentrifuged at 11,000× g for 30 s.
After this point, the eluate was stored at −20 ◦C for further use.

2.2. Draft Genome Sequencing, Assembly, and Mapping

The Nextera XT library preparation kit (Illumina, San Diego, CA, USA) and the
Microlab STAR automated system for liquid manipulation (Hamilton, Reno, NV, USA) were
used to obtain DNA libraries. Libraries were quantified with a KAPA library quantification
kit (Roche, Basel, Switzerland). Subsequently, whole-genome sequencing was performed
in “Servicio de Secuenciación y Bioinformática de FISABIO” (Valencia, Spain) using a
MiSeq system (Illumina), with the 250-bp paired-end sequencing protocol. Reads were
analyzed with Trimmomatic v.0.38, for adaptor removal [21]. Reads with average Phred
scores of ≥15 and lengths of >36 bp were de novo assembled using SPAdes v.3.12.0 [22].
The quality of the assembled sequences was assessed using the QUAST v.5.0.2 tool [23].
Coding DNA sequences (CDSs) were predicted and annotated using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) [24]. Finally, a genome map of L. cremoris WA2-67 was
generated using CGView Server (http://cgview.ca/, accessed on 25 December 2021) [25].

2.3. Bioinformatic In Silico Analysis
2.3.1. Identification

Two different approaches were used for species and subspecies identification. First,
the SpeciesFinder v.2.0 tool (https://cge.cbs.dtu.dk/services/SpeciesFinder/, accessed on
25 December 2021) was used for a more traditional species prediction based on the complete
sequence of the 16S rRNA gene [26]. Then, the identification was checked using KmerFinder
v.3.0.2. (https://cge.cbs.dtu.dk/services/KmerFinder/, accessed on 25 December 2021),
a tool that predicts bacterial identity based on the number of concurrent k-mers (namely,
16-mers) between the assembled genome and those genomes present in the database [27].

2.3.2. Probiotic Traits

A manual prospection of CDSs was carried out by using the online server Rapid
Annotation using Subsystem Technology (RAST) and SEED v.2.0 (http://rast.nmpdr.org/,
accessed on 25 December 2021). The SEED is an online database that integrates updated
genomic data, being a reliable tool to predict gene functions, metabolic pathways, and
other bioinformatic data [28]. Amongst the probiotic traits analyzed were factors related
to adhesion and aggregation, vitamin biosynthesis, amino acids metabolism, production

http://cgview.ca/
https://cge.cbs.dtu.dk/services/SpeciesFinder/
https://cge.cbs.dtu.dk/services/KmerFinder/
http://rast.nmpdr.org/
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of lactic acid, active metabolism, enzyme production for food digestion, stress, and host
gastrointestinal tract adaptations.

2.3.3. Bacteriocin Production

For bacteriocin, ribosomally synthesized and post-translationally modified peptides
mining, the assembled genome in FASTA format, excluding contigs with a length under
3000 bp, was uploaded and analyzed under default settings in the online webserver BAGEL
v.4.0 (http://bagel4.molgenrug.nl/, accessed on 25 December 2021) [29].

2.3.4. Mobile Genetic Elements (MGE)

Both types of MGE were searched, that is, intracellular MGE, namely insertion se-
quences (IS), and intercellular MGE, such as plasmids and prophages.

Insertion Sequences (IS)

IS constitute one of the largest groups of MGE, or sometimes referred to as mobilome.
In this regard, the ISfinder database (https://www-is.biotoul.fr/index.php, accessed on
25 December 2021) was used in order to analyze the presence of bacterial IS in the genome
of L. cremoris WA2-67 [30].

Plasmids

The PlasmidFinder web-tool v.2.0.1. (https://cge.cbs.dtu.dk/services/PlasmidFinder/,
accessed on 25 December 2021) was used to detect the presence of plasmids in the WGS
of L. cremoris WA2-67. This web-tool allows the detection of replicons in the WGS and
assembles them under lineages [31,32]. Settings were adjusted for a threshold for minimum
percentage identity of 90%, and with a minimum coverage of 60%.

Prophages

For the detection of prophage regions, the Prophage Hunter web-service (https://pro-
hunter.genomics.cn, accessed on 25 December 2021) was employed. The Prophage Hunter
matches similarities within a phage library, scores the probability of a prophage being
active within a bacterial genome, annotates the function of phage proteins, and identifies
phylogenetically related phages [33].

2.3.5. CRISPR/CRISPR-Cas

The CRISPRCasFinder online program v.1.1.2. (https://crisprcas.i2bc.paris-saclay.fr/
CrisprCasFinder/Index, accessed on 25 December 2021) was employed to predict clustered
regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes
(cas) [34].

2.3.6. Transferable Antibiotic Resistances

A BLASTn search was performed against the ResFinder tool v.4.1. database (https://
cge.cbs.dtu.dk/services/ResFinder/, accessed on 25 December 2021) to search for acquired
genes encoding antimicrobial resistances. The ResFinder is a tool that identifies acquired
genes or chromosomal mutations that mediate antimicrobial resistances in total or partial
bacterial DNA [35].

2.3.7. Virulence Factors

Likewise, a BLASTn search was run in search of matchings using the VirulenceFinder
v.2.0.3 database (https://cge.cbs.dtu.dk/services/VirulenceFinder/, accessed on 25 Decem-
ber 2021), in order to find and predict genes encoding for bacterial virulence factors [36].

Additionally, a prediction to assess the virulence and pathogenicity towards human
health was performed using the PathogenFinder v.1.1. webserver (https://cge.cbs.dtu.dk/
services/PathogenFinder/, accessed on 25 December 2021) [37].

http://bagel4.molgenrug.nl/
https://www-is.biotoul.fr/index.php
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://pro-hunter.genomics.cn
https://pro-hunter.genomics.cn
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/VirulenceFinder/
https://cge.cbs.dtu.dk/services/PathogenFinder/
https://cge.cbs.dtu.dk/services/PathogenFinder/


Microorganisms 2022, 10, 521 5 of 14

3. Results and Discussion
3.1. Draft Genome Sequencing, Assembly, and Mapping

The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), with a
G + C content of 35.4%, and N50 and L50 values of 214,342 and 4, respectively. The total
numbers of CDSs and RNAs were 2493 and 65, respectively. Figure 1 shows the genome
map generated in CGView Server.
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3.2. Bioinformatic In Silico Analysis
3.2.1. Identification

The species prediction based on the complete sequence of the 16S rRNA gene, per-
formed by SpeciesFinder v.2.0 tool, identified the strain as Lactococcus lactis. Additionally,
prediction using KmerFinder v.3.0.2. revealed the most likely subspecies identification to be
L. lactis subsp. cremoris. In this regard, the strains present in the database with the highest
matching scores (i.e., number of matching kmers) were Lactococcus lactis subsp. cremoris

http://cgview.ca/
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KW2 (accession number NC_022369.1) and Lactococcus lactis subsp. cremoris NZ9000 (ac-
cession number NC_017949.1), with 63,348 and 7610 matching kmers, respectively. These
bioinformatic tools confirmed our previous results obtained by partial 16S rRNA gene
sequencing, identifying our strain as Lactococcus lactis subsp. cremoris WA2-67 [14,15].

3.2.2. Probiotic Traits

Amongst the probiotic traits, analyzed through RAST, were putative genes involved
in adhesion and aggregation, vitamin biosynthesis, amino acids metabolism, production of
lactic acid, active metabolism, enzyme production involved in food digestion, and stress
and host gastro-intestinal tract adaptation (Table S1).

One of the most important traits for a potential probiotic strain is the ability to adhere
to the gastro-intestinal tract of the host. In this regard, the genome analysis of L. cremoris
WA2-67 identified genes encoding enolase, fibronectin-binding protein, exopolysaccharide
(EPS) biosynthesis protein, triosephosphate isomerase, and sorties A (LPXTG). Enolase is a
protein that promotes the adherence of the strain to the gastro-intestinal tract of the host,
while the fibronectin-binding protein allows the bacterium to adhere to fibronectin of the
host. Additionally, the production of EPS by probiotic strains is linked with the adherence
to intestinal mucus, while proteins with the LPXTG-type anchor, as the identified sortase,
are associated both with cell surface localization and interaction with peptidoglycans [38].
Another desirable probiotic trait is the production of micronutrients, such as vitamins.
Vitamins are not only necessary for fish growth and development but have also been used
as immunostimulants in aquaculture [39,40]. The RAST analysis identified several genes
involved in the production of several B-group vitamins, such as thiamine (vitamin B1),
riboflavin (vitamin B2), pyridoxin (vitamin B6), biotin (vitamin B7), and folate (vitamin B9).
The importance of B-group vitamins for aquaculture and fish has been previously assessed
and demonstrated. For instance, thiamine (vitamin B1) was linked with a reduction of
dead and deformed fry in thiamine-supplement fish [41]. Moreover, thiamine (vitamin B1)
deficiency was associated with early mortality syndrome in salmonids, such as lake trout
(Salvelinus namaycush) [42]. Other B-group vitamins, such as biotin (vitamin B7), are also
regarded as essential for growth, development, welfare, and reproduction parameters in
fish [43]. Likewise, folate (vitamin B9) not only is regarded as an essential micronutrient
for teleosts, such as several salmonids, but it is also associated with growth rate, cellular
proliferation, and embryogenesis requirements for cold-water species [44].

The RAST analysis also allowed us to identify multiple genes involved in the metabolic
pathways of numerous amino acids, such as threonine, tryptophan, methionine, leucine,
lysine, cysteine, histidine, and arginine. Proteins and amino acids are fundamental for fish
nutrition, and such deficiencies have demonstrated impact on the immune system, namely
negatively affecting the susceptibility of fish to infectious diseases [45,46]. For instance,
tryptophan is a metabolic precursor of several compounds such as serotonin, melatonin,
and niacin (vitamin B3). Nevertheless, as an essential aromatic amino acid, tryptophan has
to be supplied via feed. For this reason, the aquaculture industry has tried for many years to
optimize the levels of tryptophan in feed, as it takes part in multiple physiological functions,
such as behavior modulation, antioxidant, stress, and immune responses [47]. Similarly,
arginine is also an essential amino acid that is mostly provided to fish via diet. In fish,
arginine is involved in various functions, such as innate immune defense by stimulating
nitric oxide (NO) production by macrophages, ammonia detoxification, insulinotropic
effect, somatotropic axis, growth performance, and antioxidant action [46]. On the other
hand, the role of histidine in fish physiology has been previously linked with reproduction,
spawning, and embryogenesis parameters, such as fecundity and fertilization rates, egg
viability, hatching rates, larval survival, egg protein content, and egg and larval size [48].

LAB attract great interest from different research areas and industries mostly due to
lactic fermentation, whose end-product is lactate, which exhibits antimicrobial activity [49].
Lactic acid can be found in both D and L enantiomer forms, depending on the genetic
determinants encoding D-lactate or L-lactate dehydrogenase, respectively [50,51]. The
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RAST analysis of L. cremoris WA2-67 identified the presence of only L-lactate dehydrogenase
(Table S1), thus predicting that this strain produces the enantiomer L-lactate but not D-
lactate, which is a desirable feature for a probiotic candidate since D-lactate acidosis, under
certain circumstances, may lead to animal poor appetite and retarded growth [52].

As mentioned above, due to the enormous interest of LAB, not only as probiotics
per se, but also as starter microorganisms in the production of fermented foods, their
ability to resist and cope with temperature changes is a feature of the utmost technological
importance, given the different temperatures they will undergo during the processing and
subsequent refrigeration or frozen storage [53,54]. This temperature tolerance becomes
even more significant when talking about probiotics for veterinary use as feed supplements
and, within this sector, aquaculture is the most challenging market, due to the extreme
temperatures that are reached during the processing of fish feed. In fact, although a
multitude of solutions and technologies have been developed to minimize the impact
that temperatures can have, not only on the probiotic microorganisms, but also on the
nutrients themselves, the possession of intrinsic mechanisms that allow them to face diverse
challenges broadens the possibilities of use [55–57]. In this regard, the finding of several
genes involved in increased resistance to suboptimal temperature conditions, both heat
and cold (such as molecular chaperones GroES and GroEL, and several CSP), supports the
probiotic potential of L. cremoris WA2-67 [58,59].

Furthermore, the replacement of fishmeal and fish oil by other more sustainable
sources of protein and fat in feed production is one of the main challenges facing modern
aquaculture. So far, vegetable sources have been the only real alternative at industrial level
that has been able to reduce the inclusion of these ingredients [60]. However, a higher
content of plant-based ingredients has meant an increase in the presence of undesirable non-
starch polysaccharides (NSP) and phytate. Although xylanases are routinely added to feed,
the presence of probiotic microorganisms that possess the genes for encoding xylanases
may be of great interest in preventing the negative effects that these substances can have
on fish health. [61,62]. Regarding the codification of amylase and lipases, in addition to its
technological interest as a potential producer of these enzymes (cell factory), it is a probiotic
characteristic occasionally present in LAB and, more specifically, in lactococci [63,64].
Furthermore, amylase, lipase and other digestive enzymes have been shown to contribute
to improved nutrient assimilation in aquaculture, resulting in a lower feed conversion ratio
(FCR) [65,66]. In this regard, α-amylase plays a crucial role in fish digestion of complex
carbohydrates, such as glycogen and starch, which are common compounds in the feed of
aquacultured species [67]. Therefore, the ability of fish to synthesize these enzymes, or their
external supplementation through feed, will strongly determine their capacity to degrade
and assimilate carbohydrates and proteins [68].

3.2.3. Bacteriocin Production

Bacteriocin mining, through the use of BAGEL v.4.0., identified three bacteriocinogenic
genetic clusters in the genome of L. cremoris WA2-67. In node 5, the webserver predicted
the presence of the genetic cluster encoding the production of the lantibiotic nisin Z
(NisZ), which is the most widespread natural variant of Nisin A [16]. This cluster includes
11 genes, typically organized into four operons: nisZ (nisin structural gene), nisBTCIP
(nisin maturation, immunity, and transport), nisRK (nisin regulation), and nisFEG (nisin
immunity) (Figure 2) [69–71].
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The nisZ gene encodes a NisZ biologically inactive precursor peptide of 57 amino acid
residues, with a 23-residue N-terminal leader-sequence (pre-NisZ). The intracellular post-
translational modifications of pre-NisZ require the existence of two membrane-associated
enzymes, encoded by nisB and nisC, which catalyze the dehydration of serine and threonine
residues and the formation of methyl-lanthionine or lanthionine rings, respectively [70–72].
Then, the fully modified but inactive NisZ is translocated through the cytoplasmatic
membrane by an ATP-binding cassette (ABC) transporter, encoded by nisT [71,72], that
forms a membrane associated complex with NisB and NisC. Finally, the leader peptide is
cleaved off by a cell-membrane anchored subtilisin-like protease encoded by nisP, resulting
in the mature and biologically active NisZ [71,73]. Furthermore, there are two mechanisms
by which nisin-producing strains protect themselves against the toxicity of their own
bacteriocin (self-immunity): (i) the lipoprotein encoded by nisI, and (ii) the ABC transporter
and accessory proteins encoded by nisFEG [71,74]. Finally, NisZ biosynthesis relies on a two-
component regulatory system, activated by NisZ, which consists of a sensor histidine kinase
and a response regulator, encoded by nisK and nisR, respectively [71]. Additionally, the
gene clusters of two previously described bacteriocins were identified: a bacteriocin of the
garvicin Q family (node 10), first identified in L. garvieae BCC43578 [75], and a sactipeptide
(node 13) related to the PqqA peptide cyclase of Gluconobacter oxydans [76]. In this regard,
we have previously demonstrated that the knockout isogenic mutant strain L. cremoris
WA2-67 ∆nisZ, lacking nisZ, does not exert antimicrobial activity against any of the tested
indicator microorganisms [16]. Based on these observations it can be hypothesized that:
(i) these bacteriocinogenic operons are not functional in L. cremoris WA2-67 (e.g., mutations
or inactivation of the bacteriocin structural gene and/or genes involved in its regulation
and/or transport) and/or (ii) that these bacteriocins are not biologically active under the
experimental conditions and/or against the tested indicator microorganisms. Nevertheless,
it is possible that the presence of these genetic clusters might be common in Lactococcus
lactis subsp. cremoris. In this regard, the analysis of the reference strain, L. cremoris KW2
(RefSeq: NC_022369.1), also unveiled the presence of such genetic clusters. Therefore,
further work would be necessary to proceed with: (i) functional analysis of the operon
of these bacteriocins (e.g., identification of transcriptional promoters and terminators,
identification of ribosome binding sequences and transcriptional regulators, transcriptomic
analysis, etc.), (ii) evaluation of its antimicrobial activity against a larger number of indicator
microorganisms, and (iii) in vitro synthesis and/or heterologous expression/secretion of
these bacteriocins in various hosts, both prokaryotic and eukaryotic (e.g., Escherichia coli
and Pichia pastoris).

3.2.4. MGE (IS, Plasmids and Prophages)

The search through the ISfinder service revealed the presence of two true IS, that is, IS
that obtain an e-value of 0.0 and in which each open reading frame (ORF) is recognized as
a transposase [77] (Table 1).

http://bagel4.molgenrug.nl/


Microorganisms 2022, 10, 521 9 of 14

Table 1. MGE (IS, prophages and plasmids) and CRISPR-cas systems identified in the genome of L.
cremoris WA2-67, characterized in this work.

Analyzed Element L. cremoris WA2-67

IS
IS similar/family/origin/length (bp)

IS981/IS3/Lactococcus lactis/1224
IS-LL6/IS3/Lactococcus lactis/1254

Plasmids ND a

Active prophages ND a

CRISPR-cas systems b CRISPR spacers/cas genes/contig
4/ND/27

a ND: Not detected. b CRISPR-cas: clustered regularly interspaced short palindromic repeats—CRISPR
associated protein.

After running an analysis using the PlasmidFinder web-tool, no plasmids were found
in the L. cremoris WA2-67 draft genome (Table 1). This result is to some extent a positive
probiotic characteristic, as plasmids can often carry antimicrobial resistance and virulence
factor genes [31].

The Prophage Hunter web-service did not predict any prophage region in the WGS
of L. cremoris WA2-67 (Table 1). Once again, this may reveal additional attractive traits,
as some prophages can participate in cellular processes such as resistance to antibiotics,
development of virulent characteristics, and new deleterious metabolic pathways [33,78].

3.2.5. CRISPR/CRISPR-Cas

The presence of CRISPR-Cas systems, an adaptative immunity mechanism against the
integration of exogenous DNA fragments, mainly MGE, was analyzed by the CRISPRCas-
Finder online program. In this regard, three sequences matched a positive prediction for
the existence of CRISPR arrays. Nevertheless, when adjusting from default settings to
hiding CRISPR arrays with an evidence level of 1 (1 being the lower evidence level out of 4)
only one sequence remained, positioned in node 27, with an evidence level of 3 (Table 1).
Furthermore, when the results were adjusted to hide sequences without the cas protein no
matches were found. In this regard, when using the CRISPRCasFinder, program sequences
with evidence level below 3 should be disregarded, as they indicate potentially invalid
CRISPR arrays [34,79].

3.2.6. Transferable Antibiotic Resistances

One of the most important characteristics for a bacterial strain to be proposed as a
safe microorganism, and eventually as a probiotic, is the absence of transmissible antibiotic
resistances, as they pose a threat to both animal and human health. Although LAB are
generally classified with GRAS and/or QPS status, it is of the upmost importance to screen
all potential LAB probiotic candidates for transferable antimicrobial resistances, as they
can still act as reservoirs for antimicrobial resistance genes [8,80–82].

In this regard, the BLASTn search performed against the ResFinder tool v.4.1. database
confirmed the absence of transferable and acquirable antibiotic resistances. Therefore,
confirming the results previously observed that positively assessed the safety of L. cremoris
WA2-67 [15].

3.2.7. Virulence Factors

When assessing the potential use of LAB strains as probiotics, additional traits, such as
virulence factors, should also be screened, both in vitro and in silico [83,84]. In this respect,
the BLASTn search on the VirulenceFinder v.2.0.3 database found no matchings, confirming
the lack of virulence factors. Once again, these results are in accordance with the in vitro
safety assessment experiments previously performed for L. cremoris WA2-67 [15].

Moreover, the input of the PathogenFinder v.1.1. webserver predicted L. cremoris WA2-
67 as a non-human pathogen microorganism. The prediction calculated the probability of
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being a human pathogen as 0.127, matching 0 and 220, pathogenic and non-pathogenic
families, respectively.

4. Conclusions

The present manuscript highlights the importance of the in silico analysis of WGS of
probiotic candidates, in particular L. cremoris WA2-67, which allows not only the detailed
assessment of their safety and probiotic traits, but also the confirmation of previous in vitro
and in vivo experimental results. Since WGS has become generally economically affordable,
it is possible to assess multiple genetic machinery traits of a bacterial strain in a way that
would not be sustainable and affordable using in vitro assays. In this regard, the WGS of L.
cremoris WA2-67 allowed the analysis of the genetic cluster encoding production of NisZ,
and the unexpected discovery of additional genetic clusters for the production of other
two bacteriocins, namely, a member of the garvicin Q family and a sactipeptide. Moreover,
the absence of both transferable antibiotic resistance determinants and genes encoding
detrimental enzymatic activities and virulence factors demonstrates the safety of this strain.
Furthermore, this work has shown several probiotic traits of L. cremoris WA2-67, such as the
genetic enzymatic machinery for the production of tryptophan, other amino acids and vita-
mins, adhesion and aggregation factors, and stress adaptation mechanisms. Nonetheless,
these probiotic characteristics, identified via in silico analysis, should be further assessed
through experimental studies to confirm their expression and active production.

In summary, the data presented herein strongly support the future use of the bacterio-
cinogenic strain L. cremoris WA2-67 as a probiotic for aquaculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10030521/s1, Table S1: Probiotic characteristics
based on genome analysis.

Author Contributions: Conceptualization, L.M.C. and P.E.H.; methodology, J.F., D.C., L.D.-F., B.G.-S.,
E.M.-A. and R.d.C.; software, M.P.-A.; validation, J.B. and B.G.-S.; formal analysis, J.F., D.C., M.P.-A.
and B.G.-S.; investigation, J.F., D.C., L.D.-F., C.A., N.P., E.M.-A. and R.d.C.; resources, C.A., J.B. and
E.M.-A.; data curation, E.M.-A.; writing—original draft preparation, J.F.; writing—review and editing,
L.M.C., P.E.H. and E.M.-A.; visualization, J.F., D.C., M.P.-A., C.A. and N.P.; supervision, L.M.C., P.E.H.
and E.M.-A.; project administration, L.M.C. and P.E.H.; funding acquisition, L.M.C. and P.E.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by project RTI2018-094907-B-I00 from the Ministerio de Ciencia,
Innovación y Universidades (MCIU) (Madrid, Spain). J.F. was supported by a predoctoral contract
from the Universidad Complutense de Madrid. N.P. holds a contract from project 2018-T1/BIO-10158
funded by the Comunidad de Madrid (Spain).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This Whole Genome Shotgun project has been deposited at DDBJ/ENA/
GenBank under the accession number JAJONJ000000000. The version described in this paper is
version JAJONJ010000000.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin.

Microbiol. 2011, 14, 251–258. [CrossRef]
2. FAO. The State of World Fisheries and Aquaculture; FAO Fisheries and Aquaculture Department: Rome, Italy, 2020.
3. Infante-Villamil, S.; Huerlimann, R.; Jerry, D.R. Microbiome diversity and dysbiosis in aquaculture. Rev. Aquac. 2021, 13,

1077–1096. [CrossRef]
4. United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Population Division, Working

Paper No. ESA/P/WP/248; Department of Economic and Social Affairs: New York, NY, USA, 2017.

https://www.mdpi.com/article/10.3390/microorganisms10030521/s1
https://www.mdpi.com/article/10.3390/microorganisms10030521/s1
http://doi.org/10.1016/j.mib.2011.03.004
http://doi.org/10.1111/raq.12513


Microorganisms 2022, 10, 521 11 of 14

5. Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet another environmental gateway to the development
and globalisation of antimicrobial resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [CrossRef]

6. Zhao, Y.; Yang, Q.E.; Zhou, X.; Wang, F.; Muurinen, J.; Virta, M.P.; Brandt, K.K.; Zhu, Y. Antibiotic resistome in the livestock and
aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. 2021, 51, 2159–2196. [CrossRef]

7. Pérez-Sánchez, T.; Ruiz-Zarzuela, I.; de Blas, I.; Balcázar, J.L. Probiotics in aquaculture: A current assessment. Rev. Aquac. 2014, 6,
133–146. [CrossRef]

8. Gómez-Sala, B.; Feito, J.; Hernández, P.E.; Cintas, L.M. Lactic Acid Bacteria in aquatic environments and their applications. In
Lactic Acid Bacteria: Microbiological and Functional Aspects, 5th ed.; Vinderola, G., Ouwehand, A.C., Salminen, S., von Wright, A.,
Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 555–570.

9. Wu, X.; Teame, T.; Hao, Q.; Ding, Q.; Liu, H.; Ran, C.; Yang, Y.; Zhang, Y.; Zhou, Z.; Duan, M.; et al. Use of a paraprobiotic and
postbiotic feed supplement (HWF™) improves the growth performance, composition and function of gut microbiota in hybrid
sturgeon (Acipenser baerii × Acipenser schrenckii). Fish Shellfish Immunol. 2020, 104, 36–45. [CrossRef]

10. Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.;
Gropp, J.; et al. Guidance on the characterization of microorganisms used as feed additives or as production organisms. EFSA J.
2018, 16, e05206. [PubMed]

11. EFSA (European Food Safety Authority). EFSA statement on the requirements for whole genome sequence analysis of microor-
ganisms intentionally used in the food chain. EFSA J. 2021, 19, e06506.
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