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Abstract: A panel of potent neutralizing antibodies are protective against orthopoxvirus (OPXV)
infections. For the development of OPXV-specific recombinant human single-chain antibodies (scFvs),
the IgG repertoire of four vaccinated donors was amplified from peripheral B-lymphocytes. The
resulting library consisted of≥4× 108 independent colonies. The immuno-screening against vaccinia
virus (VACV) Elstree revealed a predominant selection of scFv clones specifically binding to the D8
protein. The scFv-1.2.2.H9 was engineered into larger human scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9
formats to improve the binding affinity and to add effector functions within the human immune
response. Similar binding kinetics were calculated for scFv-1.2.2.H9 and scFv-Fc-1.2.2.H9 (1.61 nM
and 7.685 nM, respectively), whereas, for IgG1-1.2.2.H9, the Michaelis-Menten kinetics revealed
an increased affinity of 43.8 pM. None of the purified recombinant 1.2.2.H9 formats were able to
neutralize VACV Elstree in vitro. After addition of 1% human complement, the neutralization of
≥50% of VACV Elstree was achieved with 0.0776 µM scFv-Fc-1.2.2.H9 and 0.01324 µM IgG1-1.2.2.H9,
respectively. In an in vivo passive immunization NMRI mouse model, 100 µg purified scFv-1.2.2.H9
and the IgG1-1.2.2.H9 partially protected against the challenge with 4 LD50 VACV Munich 1, as
3/6 mice survived. In contrast, in the scFv-Fc-1.2.2.H9 group, only one mouse survived the challenge.

Keywords: scFv; vaccinia virus; recombinant antibody; D8

1. Introduction

Vaccinia virus (VACV) is the prototype of the genus Orthopoxviruses [1]. VACV was
used as a heterologous vaccine against variola virus (VARV), the causative agent of small-
pox. Cessation of vaccination after smallpox was declared eradicated in 1980 left an
increasing susceptible population [2]. While VARV solely infects humans [2,3], zoonotic
poxviruses, such as cowpox virus (CPXV) and monkeypox virus (MPXV), can also cause
severe and sometimes fatal infections [4–10]. While vaccination is generally safe and
effective for the prevention of smallpox, in well-documented cases of various adverse
reactions in individuals, especially in immune-compromised humans, caused by licensed
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vaccines [11–13], vaccinia immune globulin (VIG) has been used for treatment [14–17].
Nevertheless, VIG prepared from human donors bears the risk of quality variances be-
tween batches [12] and, even though it is reduced, a risk for the transmission of pathogenic
agents [18].

Two antigenic distinct forms of VACV are present [19]. The intracellular mature virus
(MV) is the most abundant infectious form in Orthopoxviruses responsible for host-to-host
transmission. Extracellular enveloped virus (EV) consists of an additional envelope and is
thought to be important for dissemination within the host [19–21]. Targets for neutralizing
and protective antibodies were identified for MV surface proteins A13, A17, A27, D8, H3,
L1, A28, and EV surface proteins B5 and A33 [22–29]. One linear epitope, which is highly
conserved among OPXVs, was mapped at the C-terminus of A13 (amino acid residues
(aa) 59–69) [30]. Moreover, six linear epitopes were mapped on the A27 protein of OPXVs
(epitope #4: aa region 9–14, epitope complex #1A-D: between aa 26 and 39, and epitope #5:
aa region 68–71) [31]. Other studies discovered four epitope groups on the A27 protein of
VACV (group I: aa residues 21–40; group II: discontinuous; group III: aa residues 81–100;
and group 4: aa residues 91–110) [32]. Anti-B5 mAbs detected a conformational epitope (aa
residues 22–130) [33], as well as two additional ones localized to the SCR1-SCR2 border,
and in the stalk region [34]. Hitherto, five conformational antigenic sites were identified on
the D8 protein [35], and neutralization of VACV was demonstrated only in the presence of
complement [36,37].

The 32 kDa protein D8 is a type 1 membrane protein and plays a role in the adsorption
of the poxvirus to the host cell [22,38]. The atomic structure revealed a carbonic anhydrase
fold with a central positively charged crevice binding to chondroitin sulfate (CS) E on cell
surfaces [22,36,38,39]. Sequence alignments of D8 orthologs suggest a structural conser-
vation of this binding site [36]. A hexameric arrangement of D8 on the viral particle is
proposed, mediated as a trimeric self-association of disulfide-bonded homodimers, which
might increase the avidity of D8 to CS [39]. Cross-linking experiments suggest a spatial
proximity to A21, a member of the entry-fusion complex [40]. VACV D8L knockout mu-
tants exhibited reduced infectivity in a BALB/c mouse model [41], but replicated efficiently
in cell culture [42]. Using an optimized D8 DNA vaccine approach in a BALB/c mouse
model, high titers of neutralizing antibodies were induced, which were protective against
a subsequent challenge with VACV WR [43]. The characterization of a panel of murine
monoclonal antibodies revealed four distinct antigenic groups on the D8 surface. Most
effective were antibodies blocking the chondroitin sulfate CS-E interaction sites at K41, R44,
K108, and R220 [39]. In addition, D8 seems to possess a high- and a low-affinity binding
region within the central crevice for CS-E and CS-A, respectively [44].

Phage display provides a robust technique to isolate monoclonal antigen-binding frag-
ments, which can then be converted into other larger molecules or full-size antibodies [45].
Schmaljohn et al. [46] constructed a Fab phage display library from peripheral blood of one
human donor. Here, we isolated the peripheral blood mononuclear cells of four donors
immunized previously with Dryvax® and amplified the genetic information of all IgG
isotype heavy and light chains. We describe the selection, engineering, and full in vitro, as
well as in vivo, characterization of an anti-D8 antibody derived from a human IgG-based
phage display library.

2. Material and Methods
2.1. Immunization and Lymphocyte Preparation

Four human volunteers were immunized via scarification with Dryvax® (Wyeth Labo-
ratoires, Marietta, GA, USA) according to the manufacturer’s directions with a two-pronged
needle. In detail, naïve volunteers received five punctures, and booster vaccination in
previously immunized patients was performed with 15 punctures. Volunteer 1 was vacci-
nated five years ago, whereas Volunteer 2 was naive. Volunteers 3 and 4 were immunized
more than 10 years ago. After 20 (Volunteer 1 and 2) or 28 (Volunteer 3 and 4) days pos-
timmunization, approximately 500 mL peripheral blood was collected, respectively, and
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sera were tested in duplicates for the presence of circulating anti-vaccinia virus (VACV)
IgG in an ELISA and Western blot. For the ELISA, three volunteers (Volunteer 5 to 7) were
used as negative serum controls and to determine the unspecific background. Plates were
coated either with 2 µg/mL VACV or BSA (as irrelevant protein). For the calculation of the
antibody titer specific for VACV, the adsorption measured on VACV was corrected with
the corresponding value determined on BSA. The cut-off value was calculated according to
Frey et al. [47] for each respective dilution:

Cut off = X + SD× f

with:
X = mean of independent control sera;
SD = standard deviation of independent control sera;
f = 3.372 for confidence level 95% [47].
Peripheral blood mononuclear cells were isolated using Ficoll-Paque PLUS density

gradient (GE Bioscience, Freiburg, Germany). Total RNA was extracted from at least
107 cells per volunteer with the RNeasy MiniKit (Qiagen, Hilden, Germany), followed by
cDNA synthesis using oligohexamers (pdN6) (Invitrogen, Karlsruhe, Germany) according
to the manufacturers’ instructions. For the Western blot, 5 µg gradient-purified VACV
Elstree was separated on an SDS gel. Blots were incubated with human sera and detected
with goat anti-human IgG HRP antibody.

2.2. Library Construction

The amplification of the variable region of IgG-heavy and κ- and λ-light chains was
performed, with degenerated primer set (BACK primers) binding to the first 23 bp of
framework region (FR) 1 of the variable regions and primers binding to the first constant
regions, either of human IgG1 to 4 or κ- and λ-light chains (FOR primers, Table S1).
In parallel, the quality and integrity of the cDNA were monitored with a primer pair
amplifying 788 bp of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH, [48]).
A 50 µL PCR reaction consisted of 1–2 µL cDNA, 1x PCR buffer (7.5 mM Tris HCl pH 9,
0.2 mM MgCl2, 5 mM KCl, 2 mM (NH4)2SO4; Biotools), 0.4 µM of one BACK primer,
0.4 µM of one FOR primer, 10 mM of each dNTP, and 2 U DNA polymerase (Biotools).
Amplification was performed with 10 min denaturation at 95 ◦C, 25 cycles of 94 ◦C for
1 min, annealing at 58 ◦C for 1 min, elongation at 72 ◦C for 2 min, and final elongation
for 10 min. The length and purity of the products were visualized by 1% agarose gel
electrophoresis. The PCR products with a size of about 650 bp were purified with the DNA
Clean & Concentrator-5-kit (Zymo Research Europe, Glasgow, Scotland).

In the following second semi-nested PCR, the variable regions of heavy and light
chains were amplified. The purified corresponding PCR products of each volunteer were
pooled to equal amounts, of which 50 ng was used for amplification with Phusion poly-
merase and the 5xGC buffer (Finnzymes, Espoo, Finland). In the case of the variable region
of the heavy chains, the BACK primer set used in the first PCR was combined with primers
binding to FR4 (Table S2). Those primers were extended with 20 bp of an overlapping
sequence coding for the (G4S)3 linker. The complementary part is coded by an overhang
in the primers annealing to FR1 of the light chains. The reactions were incubated for
30 s at 98 ◦C, followed by 30 cycles at 98 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 30 s, and
final elongation for 10 min. The variable regions with their overhangs were gel-purified
(MinElute-Kit; Qiagen, Hilden, Germany).

The formation of single-chain fragment variable (scFv) occurred with splicing by
overlap extension. In the first step, 300 ng of mixed to equal amounts of heavy- and
light-chain variable regions were joined in the absence of primers. In a second step, 5 µL of
the connected products were reamplified with outer primers, including restriction sites
for SfiI (3′-GTC CTC GCA ACT GCG GCC CAG CCG GCC ATG GCC-HuVH BACK-5′)
and NotI (3′-GAG TCA TTC TCG ACT TGC GGC CGC-HuJκ/λ FOR-5′). The scFvs were
gel-extracted and cleaved, first by SfiI (NEB, Frankfurt, Germany) and then by NotI (NEB,
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Frankfurt a. M., Germany). The fragments were ligated into the phagemid pCANTAB5E
N-terminal of the internal E tag (GE Biosciences, Freiburg, Germany) and electroporated
into Escherichia coli, TG1. Colonies were grown overnight, either on bioassay dishes (NUNC,
Wiesbaden, Germany) or in 8 cm diameter petri dishes (Sarstedt, Germany) for titration on
2 × TYG-A (tryptone 16 g/L, yeast 10 g/L, NaCl 5 g/L, glucose 2%, ampicillin 100 µg/mL)
agar (15 g/L). Colonies were scraped into 5 mL 2 × TYG-A-15% glycerol and stored at
−80 ◦C.

2.3. Cells and Viruses

The permanent monkey kidney cell line MA104 cultured in minimum essential
medium (MEM) and supplemented with 7% fetal calf serum was used to propagate the
VACV strains Elstree and Munich 1 (M1) (for references, see [49]). Infectivity titers were de-
termined on 24-well plates (Nunc, Wiesbaden, Germany) and calculated as plaque-forming
units (pfu/mL). For plaque reduction neutralization test, Vero cells (obtained from A. Mayr,
Munich, Germany) cultured in MEM and supplemented with 5% fetal calf serum were
used and maintained in the same way as MA104.

2.4. Gradient Purification of Vaccinia Viruses Elstree and Munich 1

Vaccinia viruses Elstree as well as Munich 1 (M1) were grown in MA104 cells for one
day. Cells and virus in supernatant were harvested by pelleting at 13,700× g for 2 h. The
pellets were resolved with 1 mM Tris-HCl, pH 9.0, and sonicated/freeze-thawed three
times to lyse the cells. Cell debris and nuclei were removed by centrifugation (2200× g,
10 min). The supernatant was layered onto a 36% (w/v) sucrose cushion prepared in 1 mM
Tris-HCl, pH 9.0. After ultra-centrifugation in an SW28 -rotor (Beckman Coulter GmbH,
Krefeld, Germany) at maximum 112,700× g for 90 min, the pellet was resolved with 1 mM
Tris-HCl, pH 9.0, and applied onto a 60%/40%/20% (w/w in 1 mM Tris-HCl, pH 9.0)
sucrose discontinuous gradient and, again, ultra-centrifuged at maximum 40,018× g for
90 min in an SW40 rotor (Beckman Coulter GmbH, Krefeld, Germany). For each virus, the
visible white viral band was collected and washed with 1 mM Tris-HCl, pH 9.0, to remove
residual sucrose solution (maximum 111,160× g for 1 h). Finally, the pellets were resolved
in 1 mM Tris-HCl, pH 9.0, and the protein concentrations were determined [50].

2.5. ScFv Selection Using Purified Vaccinia Virus Elstree

The scFv-phage library was panned using VACV Elstree in four rounds. Phages were
rescued by infection of log phase E. coli TG1. The first phage rescue was performed from
6 × 109 bacteria cells cultured in 1 l 2 × TYG-A. The cells were grown to an optical density
at 600 nm (OD600 nm) of 0.4–0.5. M13K07∆pIII (Hyperphage, Progen, Heidelberg, Ger-
many) at a multiplicity of infection (MOI) of 30 were used to infect 150 mL of the bacterial
suspension. The incubation was stationary at 37 ◦C for 30 min, followed by shaking with
250 rpm (Sartorius Certomat® BS-1, Göttingen, Germany) under the same conditions. The
infected cells were harvested by centrifugation (137,000× g/4 ◦C/20 min) and resuspended
in 1 l 2× TY-A-K (kanamycin 70 µg/mL). For further replication and phage production, the
infected cells were incubated under gentle shaking at 30 ◦C overnight (Sartorius Certomat®

BS-1, Göttingen, Germany). Phages were precipitated two times by the addition of 1/5 vol-
ume 20% polyethylene glycol 8000/2.5 M sodium chloride (20% PEG/2.5 M NaCl). The
phages were resuspended in 1 mL PBS/15% glycerol. Aggregates were removed by high-
speed centrifugation (10,000× g/4 ◦C/1 min) and the supernatant stored at 4 ◦C overnight.
For the successive selection rounds, 109 bacteria cells were grown in 100 mL media. Twenty
milliliters of the bacteria solution were infected with M13K07 MOI 30 (NEB, Frankfurt,
Germany). Phage packaging was performed in 200 mL 2 × TY-A-K.

Unselected phages were used in a Western blotting assay on VACV Elstree gradient to
determine the range of VACV proteins detected by the phage repertoire. The visualization
occurred with HRP/anti-M13 monoclonal conjugate (GE Healthcare, Freiburg, Germany).



Vaccines 2021, 9, 1308 5 of 27

For phage selection, one well of a 96-well MaxiSorb plate (Thermo Fisher Scien-
tific, Langenselbold Site, Germany) was coated with 10 µg VACV Elstree diluted in 150 µL
carbonate-bicarbonate buffer (pH 9.6) at 37 ◦C for 4 h and stored at 4 ◦C overnight. The well
was washed three times using a Tecan washer (Tecan, Männedorf, Switzerland) for stan-
dardized washing procedure. The virus-coated and an additional empty well were blocked
with 2% skimmed milk powder (SMP) and 10% FCS in PBS/0.1% Tween at 37 ◦C for 2 h. Ap-
proximately 1 to 5× 1012 cfu phages diluted in 150 µL PBS/2% SMP/10% FCS/0.05% Tween
were incubated in the pre-blocked well at room temperature for 1 h. The blocking solution
of the coated well was replaced by the pre-blocked phages. Incubation occurred at room
temperature for 2 h. Unbound phages were removed by washing 10 times in the first
panning round, followed by a 15-times washing procedure using PBS/0.1% Tween in the
successive rounds. Bound phages were eluted by enzymatic cleavage with 200 µL trypsin
solution (10 µg/mL PBS) and an incubation period of 30 min at 37 ◦C. Ten microliters were
added to 1 mL previously prepared log phase E. coli HB2151, while the remaining solution
was used to infect 10 mL log phase E. coli TG1. The cells were streaked on 2 × TYG-A
plates and incubated at 30 ◦C overnight. Phage input and output titers were calculated for
each panning round as colony-forming units. Following each panning round, 176 E. coli
HB2151 clones were precultured in 150 µL 2 × TYG-A in a Multiple Well Plate 96-Well
(Sarstedt, Nümbrecht, Germany).

2.6. Screening of Randomly Selected scFv-Producing HB2151 Clones in Indirect ELISAs

In order to produce antibody fragments without pIII fusion, 0.5 µL of the E. coli HB2151
precultures were transferred into 100 µL 2 × TYG (0.1%)-A and incubated at 30 ◦C for
4 h. The expression was induced by the addition of IPTG to a final concentration of 2 mM
dissolved in 50 µL 2 × TY-A by gentle shaking at 30 ◦C overnight (Sartorius Certomat®

BS-1, Göttingen, Germany). The cells were pelleted (137,000× g/4 ◦C/20 min) and the
supernatants were applied in an ELISA for prescreening. Wells of two Maxisorb microtiter
plates were coated either with 100 µL of 2 µg/mL VACV Elstree or BSA as a negative
control. All subsequent steps were performed at room temperature. The plates were
washed three times and blocked for 2 h with 300 µL/well PBS/2% SMP/0.1% Tween 20.
The blocking solution was renewed with 50 µL. On each plate, 50 µL scFv supernatant
was added. The monoclonal antibody (mAb) 5B4/2F2 binding to epitope 1A [31,35] of
VACV A27 was used as a positive control, whereas the parapoxvirus orf-specific mAb
3C5 [51] was applied as a negative control for the coated virus. The wells were washed
five times with PBS/0.1% Tween after 2 h of incubation. Bound scFvs were detected
with an HRP-conjugated anti-E tag polyclonal antibody (Abcam, Cambridge, UK) diluted
1:5000, while the mAbs were detected with a polyclonal goat anti-mouse antibody (Dako,
Hamburg, Germany) diluted 1:5000. After 10 times washing, 100 µL/well of 3, 3′, 5, 5′-
tetramethylbenzidine (TMB) substrate was added and the covered plates were incubated
for 20 min. The reaction was stopped with 50 µL/well of 1 M HCl and the absorbance was
measured at 450 nm.

Plasmids of ELISA positive colonies were isolated from 5 mL media using the MiniPrep
Kit (Qiagen, Hilden, Germany). The genes encoding the variable regions of the heavy (VH)
and light (VL) chains were sequenced using vector-specific forward primers S1 (5′-CAA
CGT GAA AAA ATT ATT ATT CGC-3′) and R1 (5′-CCA TGA TTA CGC CAA GCT TTG
GAG CC-3′), and reverse primers S6 (5′-GTA AAT GAA TTT TCT GTA TGA GG-3′) and
R2 (5′-CGA TCT AAA GTT TTG TCG TCT TTC C-3′). The sequences were analyzed with
the DNAStar program (SeqMan Pro and MegAlign. Version 12.0. DNASTAR. Madison,
WI, USA). The deduced amino acid sequences were used to classify the presumed family
and germline origin by search of IMGT/V-QUEST [52,53].

2.7. Purification of Selected scFvs

Two monoclonal scFvs with high ELISA values were produced in one liter. The culture
was centrifuged at 1500× g at 4 ◦C for 15 min. The supernatant was precipitated on ice
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on a tumbler with the same volume of saturated solution of ammonium sulfate for 1 h.
Thereafter, the resuspension was centrifuged with 1500× g at 4 ◦C for 10 min. The pellet
was resuspended in 5 mL 1 M Tris-HCl, pH 8.0. The periplasmatic fraction was collected by
addition of 20 mL ice-cold 1 × TES (200 mM Tris-HCl, 500 mM ethylenediaminetetraacetic
acid, 500 mM sucrose, pH 8.0) to the bacterial pellet. A total of 33 mL of 1/5 × TES was
added. The suspension was incubated on ice while shaking for at least 30 min. MgSO4 was
added to a final concentration of 5 mM. Centrifugation was conducted with 1500× g at
4 ◦C for 10 min. The supernatant contained the periplasmatic fraction of the scFv.

Both filter-sterilized and pH 7.0 to 8.0 adjusted fractions were purified with an anti-
E tag column (GE-Healthcare, Freiburg, Germany). The column was equilibrated with
binding buffer (20 mM phosphate buffer, 0.005% NaN3, pH 7.0). The samples were applied
and washed with binding buffer. After removing all unbound proteins, the scFv was eluted
with 0.1 M glycine buffer, pH 3.0, into neutralization buffer (0.1 M Tris, 0.005% NaN3,
pH 8.2) (10:1). The protein concentration was determined after dialyzing against PBS [50].

2.8. Competitive ELISA for Epitope Detection

An inhibition ELISA with murine monoclonal antibodies should reveal the epitope
recognized by specific binding of scFv. The associated epitopes of the mAbs on the VACV
proteins are described in Table 1. Flat-bottom 96-well microtiter plates (Nunc MaxiSorp)
were coated with 2 µg/mL VACV in carbonate/bicarbonate buffer (pH 9.6; 100 µL/well).
After blocking with 2% skimmed milk and 10% fetal calf serum in PBS, purified scFv or
mAb (Ab 1) adjusted to a starting concentration of 100 µg/mL was added in twofold serial
dilutions (100 µL/well). The maximum extinction with 100 µg/mL was monitored in one
well. Incubation was performed at room temperature for 2 h. After five washing steps with
PBS, purified challenge scFv/mAb (Ab 2) was incubated under the same conditions. The
concentrations of Ab 2 were determined empirically to ensure sufficient saturation of all free
epitopes. The maximal extinction of Ab 2 was measured in an additional well coated with
virus and not incubated with an inhibitory antibody. The detection of the Ab 2 occurred
either with goat pAb to E tag (HRP) (1:2000) or goat anti-mouse IgG peroxidase conjugate
developed in goat (1:2000) (whole molecule; Sigma Aldrich, Taufkirchen, Germany) at
room temperature for 1 h. After washing five times with PBS, the developing solution (3, 3′,
5, 5′ tetramethylbenzidine; Abcam, Cambridge, UK) was added. The reaction was stopped
by 1 N hydrochloric acid. The OD values were measured by a photometric plate reader
(TECAN, Männedorf, Switzerland) at a wavelength of 450 nm. Reduction in the photometer
extinction of detected challenge antibodies by competing antibodies was calculated as:

%(inhibition) = 1− OD450nm(Ab1Ab2)
OD450nm(Ab2)

× 100

An inhibition of at least 50% was regarded as a significant blocking effect.

Table 1. Monoclonal antibodies (mAb) [35] used in an inhibition ELISA for the identification of the
target of scFv 1.2.2.H9.

Epitope ID MAb Isotype Virus Strain Used for mAb Production Isotype

2A 1B3/1A11 IgG2a VACV M1 IgG2a
2B 1F7/2F9 IgG2b ECTV M1 IgG2b
2D 3D11/2G7 IgG2a CPXV KR2 Brighton IgG1
2G 4C4/2B6 IgG2a CPXV KR2 Brighton IgG1

2.9. Engineering of Specific Binding scFv to Human scFv-Fc and IgG1 Molecules

Specific binding scFv were converted into scFv-Fc and IgG formats. The addition of
the second and third constant region of a human IgG1 enables studies on further effector
mechanisms within the immune system. The binding affinities to VACV and neutralization
abilities were compared.
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The pCANTAB5E, possessing the genetic information of the selected scFvs, and the
vector pCMX2.5 were cleaved using the restriction enzymes NcoI and NotI. In total, 1 µg
of each plasmid was first incubated at 37 ◦C for 1 h with NcoI and, after heat inactiva-
tion, incubated with NotI under the respective buffer conditions. The vector pCMX2.5
was dephosphorylated, while the scFv was gel-extracted. Ligation occurred at 16 ◦C
overnight, followed by transformation into E. coli DH5α. Colonies were randomly se-
lected. The successful ligation was confirmed by the sequencing of isolated plasmids.
HEK293T cells (approximately 7.5 × 105 cells) were seeded in growth medium (Dulbecco’s
modified Eagle’s medium (DMEM) containing 5% (v/v) fetal calf serum (FCS) and 1% peni-
cillin/streptomycin (PS)) into 6-well culture plates (Sarstedt, Germany) and were grown to
reach a confluence of 75 to 80% for transfection after 24 h. A total of 20 µL of a 1 mg/mL
polyethylenimine (PEI, linear, 25 kDa, Polysciences) solution was diluted in 125 µL DMEM.
In parallel, 2 µg of purified pCMX2.5-scFv-Fc was diluted in 150 µL DMEM. PEI and DNA
dilutions were combined and incubated for 15–30 min at RT to allow formation of PEI-DNA
complexes. This suspension was dispersed over the cells and incubated overnight. The
medium was changed to DMEM/4% FCS/1% PS for primary production of scFv-Fc into
the culture supernatant. Immunoaffinity purification of the fragments occurred by Protein
G column.

For expression of IgG1, Fv fragments were cloned into IgG expression vectors pCSL3k
(light chain) and pCSH1c (heavy chain). The VH and VL were PCR-amplified using
primers TS_UDH9VH_BssHII_f (5′-CACAGGCGCGCACTCCCAGGTGCAGCTGGTACA-
3′) and TS_UDH9VH_NheI_r (5′-TGGTGCTAGCTGAGGAGACGGTGACCGT-3’) for the
VH, and TS_UDH9VL_AgeI_f (5’-AAGCACCGGTGAAATTGTGATGACGCAG- 3′) and
TS_UDH9VL_BsiWI_r (5′-CCACCGTACGTTTGATTTCCACCT-3′) for the VL. Cloning of
VH and VL was carried out as described previously [54].

Monocistronic heavy- and light-chain vectors were co-transfected into HEK293-6E
cells for transient expression [55]. In brief, heavy- and light-chain vectors were mixed with
a molar ration of 1:1 and HEK293-6E cells at densities of 1.8–2 × 106 cells/mL, transfected
using PEI as described previously [56]. Forty-eight h after transfection, one volume of
medium including 1% Tryptone N1 (TekniScience) was added for feeding. Supernatant
was harvested 5 days after transfection. Immunoglobulins were purified by protein A affin-
ity chromatography using the ProfiniaTM Affinity Chromatography Protein Purification
System (Bio-Rad, Munich, Germany) according to the manufacturer’s description.

2.10. SDS-PAGE and Western Blotting for the Detection of the Target Virus Protein

For Western blot analyses, 5 µg of gradient-purified VACV Elstree and 5 µg of the
purified recombinant D8 protein were fractionated by vertical 12% sodium dodecyl sulfate
(SDS)-polyacrylamid gel electrophoresis [57], and subsequently transferred to nitrocellulose
membranes. Immunodetection was performed by standard techniques using 10 µg scFv,
after a blocking step in PBS/2% SMP/10% FCS at room temperature for 2 h. Goat pAb to E
tag (HRP) (1:500, Abcam, UK) and HRP color-developing reagent (Bio-Rad, Heidelberg,
Germany) were used for visualization. For the verification of the virus gradient integrity an
anti-MVA-polyclonal rabbit antibody (1:500) was used and visualized with polyclonal goat
anti-rabbit IgG conjugated with HRP (Sigma-Aldrich, Taufkirchen, Germany). The protein
sizes were estimated with a concurrent protein standard (Bio-Rad, München, Germany).
The parapoxvirus orf D1701 was chosen as virus negative control and an anti-orf-polyclonal
sheep Ab (1:500) was used for its verification.

2.11. Enzyme-Linked Immunosorbent Assay (ELISA)

For quantification of the binding affinities, we modified the protocol according to
Czerny and Mahnel [49]. The purified scFv, scFv-Fc, and IgG1 were titrated in triplicates
in twofold serial dilutions, starting with 100 µM in an ELISA. Plates were coated with
2 µg/mL gradient-purified VACV Elstree. The background was determined with BSA
and subtracted from the respective dilution measured on VACV Elstree. The affinity
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was calculated from the average adsorption of the triplicates using the Michaelis-Menten
kinetics [58] and GraphPad Prism 6 for Mac (La Jolla, CA, USA).

The capture abilities of the scFv were tested in a sandwich ELISA. Plates were coated
with 100 µL of 25 µg/mL scFv at 37 ◦C for 4 h, followed by 4 ◦C overnight. Blocking was
performed after eight washings with PBS/0.1% Tween. The blocking solution was removed
by washing eight times. The chosen virus samples, composed of cell culture supernatants,
were titrated in twofold serial dilutions and incubated at 37 ◦C for 1 h. The tested viruses
were reovirus (5 × 105.625 CID50/mL), Newcastle disease virus (5 × 105.25 CID50/mL), orf
D1701 (104 pfu/mL), enterocytopathogenic bovine orphan virus (5 × 105.25 CID50/mL),
bovine coronavirus V270 (5 × 105.25 CID50/mL), and VACV Elstree (104 pfu/mL) (virus
strains obtained from A. Mayr and C.-P. Czerny, Munich, Germany). Negative controls
were DMEM and the MA104 cell line in DMEM. After washing 10 times, the detection
occurred with anti-MVA-polyclonal rabbit sera in a prior determined dilution of 1:5000.
Binding of the detector was visualized with anti-rabbit IgG (whole molecule) peroxidase
conjugate (Sigma-Aldrich, Taufkirchen, Germany) prediluted at 1:2000 and TMB substrate.

2.12. In Vitro Plaque Reduction Neutralization Test (PRNT)

To assess the neutralization abilities of scFv, scFv-Fc, and IgG1, a confluent monolayer
of Vero cells was grown in 24-well culture plates. Antibodies were adjusted to 10 µM and
titrated in triplicates in 2-fold serial dilution against approximately 50 pfu of VACV Elstree
in MEM (PAN-BIOTECH GmbH, Aidenbach, Germany) and incubated at 37 ◦C for 1 h,
with or without 1% human complement (Sigma Aldrich, Taufenkirchen, Germany). The
virus-antibody (complement) mixture was then added to the cells and again incubated at
37 ◦C for 1 h under 5% CO2. The supernatant was removed and replaced with 0.5 mL of
2.5% FCS-0.5% methylcellulose in MEM, ensuring plaque formation within 48 h. Virus-
positive control and an equal volume of MEM, with or without complement, was added
to 50 pfu VACV Elstree. The neutralization positive control was anti-MVA-polyclonal
rabbit sera. Fixation and staining of cells were carried out using 1.5% crystal violet in
8.5% ethanol/25% formaldehyde. Plaques were counted visually and a reduction in plaque
number of ≥50% (half maximal inhibitory concentration, IC50) compared to the virus
control was considered as significant virus neutralization.

2.13. In Vivo Neutralization

The mouse model was modified according to Czerny et al. [59]. To examine the
neutralization abilities of scFv, scFv-Fc, and IgG1, seven groups containing six female
NMRI mice aged 7 weeks were passively immunized intraperitoneally (i.p.) with 300 µL
containing 100 µg of the corresponding antibody in PBS. Two groups of mice served as
the negative control, receiving either PBS or an anti-equine-herpesvirus mAb. One group
served as an antibody-positive control group, receiving a polyclonal anti-MVA antibody.
Animals were challenged i.p. with 4 LD50 VACV Munich 1 24 h later. Mice were monitored
for survival and signs of illness as the primary read-out. If ≥50% (IC50) of the mice
were protected, a passive protection of the mice was demonstrated. Moreover, the body
weight of each mouse was measured daily. Mice with a body weight loss of >30% were
euthanized. The impact of weight was analyzed using the mixed procedure of SAS with
the following model:

yijklm = µ+ αi + βj + λk + αβij + αβλijk + b
(

Gijk

)
+ γl + εijklm

where yijklm is the observation for weight, µ is the general mean, αi is the effect of treatment,
βj is the fixed effect of survival ability, λk is the fixed effect of time, αβij is the fixed effects of
interactions between treatment and survival ability, αβλijk is the fixed effects of interactions
between treatment, survival ability and time, Gijk is the starting individual weights, b
is the regression coefficient, γl is the random effect of repeated measurement, and εijklm
represents the random error.
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Statistical analysis of the surviving mice was carried out by the Kaplan-Meier method
using the LIFETEST procedure of SAS System 9.3 (SAS Institute Inc., Cary, NC, USA) and
applying the following model:

Ŝ(t) = ∏
j:tj≤t

[
1−

dj

nj

]
f or t1 ≤ t ≤ tk

where Ŝ(t) is the survivor function and t is the lifetime of mice. For each j: tj ≥ t, let t1 < t2
< . . . < tk represent the different event times. nj is the number of individuals at risk just
prior to ti, and dj is the number of individuals that die at time tj.

Tests of equality across strata were used to explore whether significant differences
between different antibody treatment groups existed. Hazard rates were derived from the
nonparametric survival function estimated with the Kaplan-Meier method.

At the end of the experiment (day 28 after challenge), heart, liver, spleen, lung,
brain, and kidney were harvested. The viral load was quantitated by real-time PCR
according to Czerny et al. [60]. Organ samples were weighed, and DNA was purified
using QIAamp DNA Blood Mini Kit and QIAamp DNA Mini Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s instructions. Real-time PCR was performed
on a LightCycler 480 (Roche, Mannheim, Germany) using the LightCycler 480 Probes
Master Kit (Roche, Mannheim, Germany) to amplify the D8 fragment of VACV. The
reaction volume contained 10 µL Light Cycler 480 Probes Master mix, 1 µL of each
5 pmol/µL D8L_forward: 5′-CATATTCATTGGGGAGAAACC-3′ and D8L_reverse: 5′-
GCGATTGAAGACGTTAGACTAA-3′, 1 µL of 4 pmol/µL D8L_probe: 5′-TTCTGGATAGT
GGTTGGTTTCGACTCA-3′, and 2 µL HPLC water, as well as 5 µL of the DNA template.
The LightCycler was programed as follow: first, 10 min preincubation at 95 ◦C, then 40 cy-
cles of 95 ◦C/30 s, 58 ◦C/45 s, and 72 ◦C/60 s, followed by a final cooling step at 40 ◦C for
10 min. Samples were amplified in duplicates. A log10 standard curve was established
using DNA from gradient-purified VACV Elstree. Genome copies were calculated based
on the standard curve and the sample weight. Following this, mean values per tissue of
sacrificed and surviving animals were compared, as well as mean values over all animals
per tissue.

3. Results
3.1. Immunization, Library Construction, and Characterization

Post-vaccination, volunteers developed pox-like lesions at the side of scarification. The
size and degree of the reaction was about 0.5× 0.7 cm in Volunteer 2 and only a reddish area
of about 0.5 cm in diameter was visible for Volunteer 1. Lymphadenopathy of a few days
was the major reaction. Volunteer 2 reported one day with fever. The titer of circulating
anti-VACV IgG in the peripheral blood of four volunteers was measured by ELISA. The
determined titers ranged between 1.024 × 104 and 4.096 × 104/mL serum. Volunteer 2,
previously unvaccinated, revealed the lowest titer, whereas Volunteer 1, vaccinated several
times, showed the highest anti-VACV titer (Figure 1).

Neutralizing antibodies in the sera of the immunized individuals were determined
through plaque reduction neutralization test using VACV Elstree. The sera showed neu-
tralizing titers of 1.6 × 102 to 3.2 × 102/mL.

To construct the scFv library, RT-PCR was performed using total RNA of at least
107 cells per volunteer. It was possible to amplify a specific product with every primer
combination for every sample (Figures S1–S3). After pooling of the related 650 bp products
and amplification of the variable regions with linker overhangs (Figure S4), the scFvs were
joined by SOE-PCR (Figure S5). Subsequent to the ligation of scFv into pCANTAB5E,
40 transformations yielded in ≥4 × 108 independent colonies. The unselected phage pool
was tested in a Western blotting assay for binding to VACV proteins and revealed a broad
range of proteins detected by the phages. The pattern of the detectable proteins showed



Vaccines 2021, 9, 1308 10 of 27

similarities to the tested human sera of the four volunteers and the anti-MVA-polyclonal
rabbit sera, but with different strengths of the bands (Figure 2).
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Figure 2. Western blot on 5 µg VACV Elstree gradient. Anti-MVA-polyclonal rabbit Ab (1) served
as a positive control for VACV. Lanes 2 to 5 represent the proteins detectable by the volunteer sera
(2 = Volunteer 1, 3 = Volunteer 2, 4 = Volunteer 3, 5 = Volunteer 4). With the polyclonal hyperphage
preparation (6), a broad range of VACV proteins was verified. The used conjugates were anti-
rabbit IgG (whole molecule) peroxidase conjugate developed in goat, anti-human IgG (Fc specific)
peroxidase conjugate developed in goat, and anti-M13-HRP, respectively. M marks the protein ladder
for each sample.
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3.2. Selection of Vaccinia-Virus-Specific scFv

Specific antibodies were selected in four rounds of enrichment. After each round,
176 individual E. coli HB2151 colonies were isolated for the production of soluble antibodies
in a microtiter plate format. Specific binding to VACV Elstree was tested in an ELISA. The
background was determined on BSA. No specifically binding scFvs were observed after
the first selection round. The second selection round revealed one clone with a 25 times
higher absorbance over the background. The clone was designated as 1.2.2.H9. Two clones,
both from the third and fourth round of selection, had absorbance at least four times
over the background. In addition, the fourth round revealed one scFv, 1.4.1.C4, with an
absorbance of around 33 times over the background. ScFv-1.2.2.H9 (Acc. No.: MW520863)
and 1.4.1.C4 (Acc. No.: MW520864) were sequenced and, according to their deduced amino
acid residues, classified to the human VH3/D3/JH6-VKIII/JK3 (1.2.2.H9) (Figure 3A) and
VH1/D2/JH6-VKIII/JK2 (1.4.1.C4) V(D)J families (Figure 3B).

Vaccines 2021, 9, x FOR PEER REVIEW 12 of 28 
 

 

 

|FR1H                                                      
5’ CAGGTGCAGCTGGTACAATCAGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTC   60

NH4+  Q  V  Q  L  V  Q  S  G  G  G  L  V  Q  P  G  G  S  L  R  L    20

||CDR1H                 ||FR2H               
61 TCCTGTGCAGCCTCTGGATTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCT  120
21  S  C  A  A  S  G  F  T  V  S  S  N  Y  M  S  W  V  R  Q  A    40

||CDR2H              ||FR3H   
121 CCAGGGAAGGGGCTGGAGTGGGTCTCAATTATTTATAGCGGTGGTAGCACATACTACGCA  180
41  P  G  K  G  L  E  W  V  S  I  I  Y  S  G  G  S  T  Y  Y  A    60

181 GACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTT  240
61  D  S  V  K  G  R  F  T  I  S  R  D  N  S  K  N  T  L  Y  L    80

||CDR3H        
241 CAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGATCGAAGG  300
81  Q  M  N  S  L  R  A  E  D  T  A  V  Y  Y  C  A  R  D  R  R   100

||FR4H                  
301 CTCTACGATATTTTCAGCAGCTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACC  360
101  L  Y  D  I  F  S  S  Y  G  M  D  V  W  G  Q  G  T  T  V  T   120

||Linker                                     ||FR1K          
361 GTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGAAATT  420
121  V  S  S  G  G  G  G  S  G  G  G  G  S  G  G  G  G  S  E  I   140

421 GTGATGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCC  480
141  V  M  T  Q  S  P  G  T  L  S  L  S  P  G  E  R  A  T  L  S   160

||CDR1K              ||FR2K                     
481 TGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGC  540
161  C  R  A  S  Q  S  V  S  S  S  Y  L  A  W  Y  Q  Q  K  P  G   180

||CDR2K  ||FR3K                     
541 CAGGCTCCCAGGCTCCTCATCTATGGTGCTTCCACCAGGGCCACTGGCATCCCAGCCAGG  600
181  Q  A  P  R  L  L  I  Y  G  A  S  T  R  A  T  G  I  P  A  R   200

601 TTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGGAACCTAGAGCCTGAA  660
201  F  S  G  S  G  S  G  T  D  F  T  L  T  I  R  N  L  E  P  E   220

||CDR3K                    ||FR4K      
661 GATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCATTCACTTTCGGCCCCGGG  720
221  D  F  A  V  Y  Y  C  Q  Q  R  S  N  W  P  F  T  F  G  P  G   240

|  |Tryp.    |E tag                       
721 ACCAAGGTGGAAATCAAACGTGCGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTG  780
241  T  K  V  E  I  K  R  A  A  A  G  A  P  V  P  Y  P  D  P  L   260

|Tryp.||Amber Stop Codon                           
781 GAACCGCGTGCCGCATAG                                             3’
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A

Figure 3. Cont.
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Figure 3. Deduced amino acid sequence of variable domains of heavy and light chains of the anti-VACV 1.2.2.H9 (A) and
1.4.1.C4 (B).

Large-scale production and immune affinity purification were successful only for the
scFv-1.2.2.H9, as the concentration of scFv-1.4.1.C4 was always very low.

3.3. Binding Characteristics of scFv-1.2.2.H9, scFv-Fc-1.2.2.H9, and IgG1-1.2.2.H9 in ELISA

Correct insertion of the variable regions of scFv-1.2.2.H9 into the larger formats
scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 was confirmed by sequencing. ScFv-Fc fragments
are bivalent, with an Fc part mediating effector functions. IgG1 represents a complete
full-size antibody. Here, only the variable regions of scFv-1.2.2.H9 were cloned. Unlike in
an scFv-Fc molecule, no linker fragment is required. The binding kinetics of all molecules
were measured using an indirect ELISA with twofold serial dilutions in triplicate, starting
with 10 µM of the respective antibody format (Figure 4), and calculated according to
Michaelis-Menten [58].
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Figure 4. Indirect ELISAs with scFv-1.2.2.H9, scFv-Fc-1.2.2.H9, and IgG1-1.2.2. H9 on 2 µg/mL
VACV Elstree in triplicates. The titration was performed in twofold serial dilutions. The starting
concentrations were 10 µM of purified antibodies. The solid lines represent the interpolated curves
used to calculate the binding kinetics according to Michaelis-Menten.

The Km of the scFv-1.2.2.H9 to VACV Elstree was 1.61 nM (0.045 µg/mL), with a
corresponding vmax of 2.8 OD450 nm. The kinetic of the scFv-Fc-1.2.2.H9 was determined
with 7.685 nM (0.402 µg/mL) and vmax = 3.319 OD450 nm. The lowest Km of 43.8 pM
(0.006 µg/mL) was calculated for the IgG1-1.2.2.H9 format. Vmax was 2.617 OD450 nm.

Distinct capture abilities were observed with the scFv-1.2.2.H9 for≥1.5625× 103 pfu/mL
VACV Elstree. No specific binding to scFv-1.2.2.H9 and the used detector anti-MVA-polyclonal
rabbit Ab were seen with the other viruses tested (Figure 5).
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Figure 5. Capture ELISA with 25 µg/mL 1.2.2.H9 coated onto a 96-well microtiter plate. Dif-
ferent virus strains received from cell-cultured material were tested: 106 pfu/mL vaccinia virus
Elstree (VACV), 106 pfu parapoxvirus orf D1701 (Orf), 106.75 CID50/mL bovine coronavirus V270
(BCV), 107.625 CID50/mL reovirus (Reo), 107.25 CID50/mL Newcastle disease virus (NDV), and
107.25 CID50/mL enterocytopathogenic bovine orphan virus (ECBO). Negative controls were MA104
cell line and DMEM. The titrations were conducted in twofold serial dilutions. Specific binding was
detected using anti-MVA-polyclonal rabbit Ab (1:5000).
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3.4. Epitope Mapping

Western blot analysis revealed an epitope on the 32 k protein D8 of VACV Elstree
(Figure 6A). No detection occurred on the parapoxvirus orf D1701 (Figure 6B).
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The D8 protein harbors conformational epitopes. To define the amino acid residues
of the 1.2.2.H9 epitope, typified monoclonal murine antibodies were used as competitors
in an inhibition ELISA [35]. The scFv 1.2.2.H9 was able to block the mAb 1F7 up to 58%,
whereas the scFv was blocked by the mAbs 1F7, 1B3/1A11, 3D11, and 4C4 in different
concentrations (Figure 7).
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Figure 7. Inhibition of mAb in binding to their epitopes by scFv1.2.2.H9 with a starting concentration
of 100 µg/mL scFv-1.2.2.H9 (A) and vice versa mAbs 1F7, 1B3/1A11, 3D11, 4C4, 5B4 (B). Microtiter
plates were coated with 2 µg/mL VACV Elstree and the first scFv/mAbs were titrated. The results
demonstrate the average from three independent assays. A reduction in the photometer adsorption
(OD450 nm) of ≥50% indicated that two tested mAbs bind to identical or closely related antigenic
sites. (A) Inhibition (≥50%) of mAb 1F7 was achieved with about 6.25 µg/mL scFv-1.2.2.H9. (B) The
mAb 1F7 with at least 0.1953 µg/mL. More than 12.5 and 6.25 µg/mL of mAbs 1B3/1A11 and 3D11
is required to block the scFv-1.2.2.H9, respectively. A total of 0.7813 µg/mL of mAb 4C4 blocks the
binding of scFv-1.2.2.H9.

The mAb 1F7 inhibited ≥50% of the scFv-1.2.2.H9 with at least 0.1953 µg/mL and a
maximum of 94%. A concentration of at least 0.7813 µg/mL mAb 4C4 was sufficient in the
same assay. However, the curve did not exhibit a clear sigmoidal development. Here, we
assume that the small molecule scFv-1.2.2.H9 can still pass to its epitope on D8. The highest
concentrations of 6.25 µg/mL and 12.5 µg/mL, respectively, were needed to block the
scFv-1.2.2.H9 by mAbs 3D11 and 1B3/1A11. The epitope of scFv-1.2.2.H9 can be assigned
to 2B.

3.5. In Vitro Neutralization

The classical plaque reduction neutralization test (PRNT) was performed in triplicates,
with a starting concentration of 10 µM of the respective 1.2.2.H9 molecule. A reduction
in plaque numbers of ≥50% was regarded as neutralization. The scFv-1.2.2.H9 with
and without complement, as well as the scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 without the
addition of human complement, showed no neutralization. However, after the addition
of 1% human complement, both molecules with an Fc part neutralized with 0.0776 µM
and 0.01324 µM, respectively. Maximum neutralization was up to 75% for both molecules
(Figure 8).
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Figure 8. The PRNT was performed in triplicates with a starting concentration of 10 µM of the respective 1.2.2.H9 molecule.
The scFv-1.2.2.H9 with (filled square) and without (unfilled square) complement, as well as the scFv-Fc-1.2.2.H9 and
IgG1-1.2.2.H9 without (unfilled circle and diamond) human complement, showed no neutralization. Neutralization was
observed after the addition of 1% human complement for both molecules with an Fc part (filled circle and diamond).

3.6. In Vivo Passive Protection

The in vivo passive protection of the three antibody formats against a VACV infection
was investigated in NMRI mice. First, each of the three antibody formats and three control
preparations were inoculated intraperitoneally into six mice per group. Negative control
group mice were injected with either PBS or anti-EHV1 6B11 mAb (kindly provided by
Hermann Meyer, Bundeswehr Institute of Microbiology, Munich, Germany). The positive
control was anti-MVA-polyclonal rabbit Ab. Twenty-four hours after passive immunization,
all mice were challenged with 4 LD50 VACV Munich 1.

The weight development showed a drop in all groups, except group 4 (pAb anti-MVA),
until about day 12 (group 1 scFv-1.2.2.H9) (Figure 9A). The Ls means of the weight of the
surviving and sacrificed animals were significantly different in all groups, except for group
4 (Figure 9B).

Compared to the surviving animals, all of the sacrificed animals showed a significant
decrease in weight development during the post-challenge time period, with the exception
of the animals of the pAb anti-MVA group (group 4). This was characterized by the
fact that this group exhibited an initial weight gain at the beginning of the experiment,
followed by a significant decrease in weight development. This infection-related weight
loss development was also reflected in the survival rate of the animals in the different
treatment groups, as shown by the Kaplan-Meier survival analysis in Figures 10 and 11.
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Figure 9. (A) Weight development and standard deviations per treatment group postvaccination on
study day 0 and post-challenge on study day 1. The weight is plotted in proportion to the starting
weight on study day 0. (B) Least square means for weight (in g) for the effect of survival ability of
different treatment groups. Different letters illustrate the significant differences between the least
square means of different factor levels (p < 0.05).



Vaccines 2021, 9, 1308 18 of 27

Vaccines 2021, 9, x FOR PEER REVIEW 19 of 28 
 

 

Compared to the surviving animals, all of the sacrificed animals showed a significant 
decrease in weight development during the post-challenge time period, with the 
exception of the animals of the pAb anti-MVA group (group 4). This was characterized by 
the fact that this group exhibited an initial weight gain at the beginning of the experiment, 
followed by a significant decrease in weight development. This infection-related weight 
loss development was also reflected in the survival rate of the animals in the different 
treatment groups, as shown by the Kaplan-Meier survival analysis in Figures 10 and 11.  

 
Figure 10. Survival rate in % of mice during the in vivo passive immunization. 

 
Figure 11. Hazard function for different treatment groups during the in vivo passive immunization. 

Of the mice receiving the scFv-1.2.2.H9 (group 1), three were protected and three 
were sacrificed at day 7, 10, and 11 post-challenge. Five out of six mice receiving scFv-Fc-

Figure 10. Survival rate in % of mice during the in vivo passive immunization.

Vaccines 2021, 9, x FOR PEER REVIEW 19 of 28 
 

 

Compared to the surviving animals, all of the sacrificed animals showed a significant 
decrease in weight development during the post-challenge time period, with the 
exception of the animals of the pAb anti-MVA group (group 4). This was characterized by 
the fact that this group exhibited an initial weight gain at the beginning of the experiment, 
followed by a significant decrease in weight development. This infection-related weight 
loss development was also reflected in the survival rate of the animals in the different 
treatment groups, as shown by the Kaplan-Meier survival analysis in Figures 10 and 11.  

 
Figure 10. Survival rate in % of mice during the in vivo passive immunization. 

 
Figure 11. Hazard function for different treatment groups during the in vivo passive immunization. 

Of the mice receiving the scFv-1.2.2.H9 (group 1), three were protected and three 
were sacrificed at day 7, 10, and 11 post-challenge. Five out of six mice receiving scFv-Fc-

Figure 11. Hazard function for different treatment groups during the in vivo passive immunization.

Of the mice receiving the scFv-1.2.2.H9 (group 1), three were protected and three
were sacrificed at day 7, 10, and 11 post-challenge. Five out of six mice receiving scFv-
Fc-1.2.2.H9 (group 2) were sacrificed between 8 and 11 days post-challenge. Three mice
of the IgG1-1.2.2.H9 group (group 3) were sacrificed on days 10 and 11. One animal was
sacrificed in the pAb anti-MVA positive control group (group 4) on day 9; the remaining
animals survived the challenge until termination of the experiment on day 28. All animals
of the two negative control groups (anti-EHV1 6B11 mAb and PBS, groups 5 and 6) were
sacrificed between day 6 and 11. The higher survival rate resulted in a lower hazard
rate at certain time points. The group treated with mAb 6B11 has a lower survival rate
at a very early stage of infection, which is reflected in a high hazard rate in the period
between 6 and 8 days post-infection. The same is more or less true for the PBS group.
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The lower survivability in the early phase post-infection also holds true for the animals
in this treatment group, which also leads to a high hazard rate between 7 and 11 days
post-infection. Likewise, the scFv-Fc-1.2.2.H9 treatment group exhibits lower survivability
at these time windows, and thus a higher hazard rate. Compared to the previous two
groups, the scFv-1.2.2.H9 treatment group has an extended time window for mortality
with a lower intensity, so that hazard rates are manifested intermittently from 7 to 13 days
after infection. The onset of later mortality in the IgG1-1.2.2.H9 group leads to a later onset
of hazard in this group. The low mortality rate on day 10 post-infection in this group leads
to a low hazard rate.

Comparison of the survival curves revealed a significant effect on group 1 to group
6 (p = 0.0087). The survival curve of group 2 was significantly different (p = 0.0387) to
group 4. In addition, group 4 was significantly different to group 5 (p = 0.0167) and group 6
(p = 0.0003). Survival of group 3 was significantly different (p = 0.0069) to group 6. Table 2
summarizes the statistical findings for the survival. The threshold of ≥50% survival was
only achieved by treatments with scFv-1.2.2.H9 and IgG1-1.2.2.H9, as well as the positive
control pAb αMVA.

Table 2. Statistical comparison of the survival curves using a log-rank test. Group 1 was immunized
with scFv-1.2.2.H9, group 2 received scFv-Fc-1.2.2.H9. Group 3 was immunized with IgG1-1.2.2.H9.
The positive group 4 was treated with pAb anti-MVA. The negative controls, group 5 and 6, received
anti-EHV1 6B11 mAb and PBS, respectively.

Equality Test over Levels

Test Chi-Quadrat DF Pr > Chi-Quadrat

Log-Rank 20.8477 5 0.0009

Adjustment for Multiple Comparisons for the Log-Rank Test

Strata Comparison
Chi-Quadrat

p-Values

Group Group Raw Sidak Adjustment

1 2 1.2919 0.2557 0.9881
1 3 0.00968 0.9216 1.0000
1 4 0.8085 0.3686 0.9990
1 5 2.1580 0.1418 0.8992
1 6 6.8927 0.0087 0.1222
2 3 1.4918 0.2219 0.9768
2 4 4.2725 0.0387 0.4471
2 5 0.1233 0.7255 1.0000
2 6 1.9182 0.1661 0.9344
3 4 0.6326 0.4264 0.9998
3 5 2.3846 0.1225 0.8593
3 6 7.3013 0.0069 0.0985
4 5 5.7236 0.0167 0.2237
4 6 13.4020 0.0003 0.0038
5 6 0.9339 0.3339 0.9977

At the end of the experiment (day 28 post-challenge), heart, liver, spleen, lung, brain,
and kidney of all animals were harvested and examined for viral loads by real-time PCR
(Figure 12).
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Figure 12. Concentration of the VACV DNA in different organs of mice after the challenge of
VACV Munich 1. The mean of the viral load of sacrificed vs. surviving mice is shown for each
treatment group.

The highest viral load of the scFv-1.2.2.H9-inoculated mice (group 1) was found
in the spleen, followed by the heart, lungs, and kidneys, while lower viral loads were
identified in the brain and liver on average. The spleen of surviving mice also showed
a high viral load until day 28, whereas the viral load dropped but was still detectable in
other organs of surviving mice. The scFv-Fc-1.2.2.H9-inoculated mice (group 2) showed a
higher viral load in the spleen and kidney, followed by heart, liver, and lung, while the
IgG1-1.2.2.H9-inoculated mice (group 3) showed viral loads only in the kidney and spleen.
Group 2 surviving animals also had detectable viral replication in the kidney on day 28.
No virus was found in the organs of the mice inoculated with the pAb anti-MVA (group 4).
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One deceased animal also did not drop significantly in weight and might have died due to
reasons other than the poxvirus infection. In the case of anti-EHV1 mAb 6B11 (group 5)
and PBS (group 6), the highest viral load was found in the spleen, followed by the kidney,
lung, heart, liver, and brain. The PBS group had the highest titers in all organs.

The mean viral load in genome copies per g tissue of the different treatments including
all animals is shown in a radar chart (Figure 13).

Vaccines 2021, 9, x FOR PEER REVIEW 23 of 28 
 

 

Figure 13. The radar plots show the mean viral loads of the respective treatment groups in genome 
copies/g tissue. 

4. Discussion 
For the development of OPXV-specific recombinant human scFv antibodies, the IgG 

repertoire of four donors vaccinated intracutaneously with live vaccinia virus (VACV) 
vaccine was amplified, cloned, and displayed onto M13K07 phage. In this study, the target 
of the scFv-1.2.2.H9 was assigned to the 32 kDa D8 protein of VACV, which is part of the 

Figure 13. The radar plots show the mean viral loads of the respective treatment groups in genome
copies/g tissue.



Vaccines 2021, 9, 1308 22 of 27

The highest virus load was observed in the spleen for treatment with scFv-1.2.2.H9,
followed by treatments with mAb 6B11, PBS, and scFv-Fc-1.2.2.H9, while no or low viral
load was observed for treatments with pAb anti-MVA and IgG1-1.2.2.H9. Overall, the
spleen appears to be the organ most affected with viral load across all treatments, except for
the group which received IgG1-1.2.2.H9. In this case, the kidney was primarily affected. The
viral load in the different organs is partly reflected in the survival probability. Treatment
with PBS, mAb 6B11, and scFv-Fc-1.2.2.H9 leads to a significant decrease in survival
probability, while treatment with pAb anti-MVA, where no viral load was detected, shows
the highest survival probability. The relatively high viral load in the scFv-1.2.2.H9 group is
associated to an intermediate survival probability.

4. Discussion

For the development of OPXV-specific recombinant human scFv antibodies, the IgG
repertoire of four donors vaccinated intracutaneously with live vaccinia virus (VACV)
vaccine was amplified, cloned, and displayed onto M13K07 phage. In this study, the
target of the scFv-1.2.2.H9 was assigned to the 32 kDa D8 protein of VACV, which is
part of the MV, the most common infectious form [61]. The function of the conserved
OPXV D8 protein is the adsorption of virus to the host cell surface due to its binding to
chondroitin sulfate [22,38]. The reciprocal blocking effect of scFv-1.2.2.H9 and the mAb
1F7/2F9 led to the conclusion that the target of scFv-1.2.2.H9 is the same or part of the
epitope #2B recognized by mAb 1F7/2F9 [35]. Moreover, this study demonstrates the
partial neutralizing activity against VACV using only one monoclonal scFv, as the smallest
antibody-derived molecule. The scFv-1.2.2.H9 was sufficient to protect 50% of mice from
a lethal challenge with VACV Munich 1. Comparison of the hazard rates of all groups
shows that the time window between 6 and 13 days post-infection is a critical phase
for survival of the different groups. The negative controls, PBS and mAb 6B11, have
very high hazard rates very early post-infection due to early and high mortality in these
groups. Viral genome copies were still detected on day 28 in surviving mice, suggesting
either a decreased or delayed replication in survivors. Several studies confirmed the
feasibility of protection against orthopoxvirus infections using monoclonal antibodies
targeting neutralizing epitopes of the EEV and IMV [49,62–64]. The obtained scFv-1.2.2.H9
was engineered to a full-size antibody to improve the binding affinity and effector function.
The IgG1-1.2.2.H9 was also sufficient to protect 50% of mice after challenging with VACV
Munich 1, whereas the scFv-Fc-1.2.2.H9 was only able to protect 16.7%. Steric effects
or secondary modifications of the molecule leading to different pharmacokinetics might
explain this phenomenon, because the viral load seemed to decrease with increasing
molecule sizes. The difference of the in vivo results to the in vitro complement-dependent
neutralization can also not be explained by a lack of complement binding. The residues
Glu 318, Lys 320, and Lys 322, which are responsible for complement binding, are relatively
conserved in other antibody isotypes, such as all human IgGs and in mouse IgG2a, IgG2b,
and IgG3 [65]. Moreover, the Fc part of the scFv-Fc is the same as for the IgG1 molecule.
The protection of mice in vivo was, in general, associated with a reduction in viral loads in
liver, lung, kidney, heart, spleen, and brain compared to the negative control with PBS. The
scFv, scFv-Fc, as well as the IgG1-1.2.2.H9 reduced viral dissemination to internal organs;
however, they did not fully protect mice from death. The reduction in the viral loads to the
organs depended on the size of the antibody. In contrast to the scFv-1.2.2.H9, which also
reduced the dissemination to some degree, the IgG1-1.2.2.-H9 almost completely inhibited
the spread. This is related to the effector functions mentioned above and a putative longer
half-life. In in vitro studies, the VACV-neutralizing abilities of the scFv-Fc-1.2.2.H9 and the
IgG1-1.2.2.H9 were improved by the addition of 1% human complement, while the addition
of complement had no effect on the scFv-1.2.2.H9 because of the lacking Fc region. Other
authors characterized anti-D8 mAbs with VACV-neutralizing abilities only in the presence
of complement, because complement is needed to increase the footprint of the mAbs [36].
These complement-dependent findings were also confirmed for mAbs directed to A27,
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A33, D8, H3, L1 [31,32], and B5 [63,66]. Schmaljohn et al. [46] were the first to establish a
recombinant human Fab library and select specific binding molecules to a number of VACV
proteins. Two Fabs have bound to a 35 kDa protein, while one Fab was precipitated with a
34 kDa protein. Those Fabs were able to neutralize in vitro. Three additional neutralizing
Fabs were observed after the addition of anti-Fab antibodies. While our library with higher
diversity was constructed from peripheral B-lymphocytes of four different volunteers,
others selected B5-specific recombinant Fabs from an immunized chimpanzee library [33],
where B-cells were isolated from bone marrow 11 weeks after immunization. A majority of
80–90% of antigen-specific plasma cells resides from day 45 in the bone marrow and can be
detected for at least one year after immunization [67]. To avoid an invasive intervention to
the study volunteers, we preferred to collect blood samples and isolate peripheral blood
lymphocytes. There, the amount of specific B-cells can be determined as about 20% [46].
Therefore, we expect a high amount of VACV unspecific antibodies within the library,
which can be disadvantageous in the selection procedure. Western blotting analysis of the
unselected hyperphage pool revealed the possibility of selecting scFv against other VACV
proteins, e.g., using protein directed panning methods. The goal in passive and therapeutic
protection might be the combination of EV- and MV-specific monoclonal antibodies, which
can block a poxvirus infection at different stages. This is supported by work dissecting
the neutralizing immune response in human sera from vaccinated donors [28,29]. Well-
characterized monoclonal antibodies produced in GMP-controlled cell culture systems or
plants, for example, harbor the advantage of maintaining the same quality and functionality.
Moreover, data on antigenic sites for cross-reacting or monospecific neutralizing antibodies
are of high relevance for target-directed screening of human immunoglobulin libraries
to generate specifically engineered human recombinant antibodies, which might help in
controlling any future outbreak of zoonotic orthopoxviruses.

5. Conclusions

The study demonstrated the selection of specific binding fragments out of an im-
munized human scFv library generated from peripheral B-lymphocytes. The further
characterized scFv-1.2.2.H9 was converted into larger formats by adding an Fc part to
permit effector functions. In vitro neutralization required binding of the complement. The
D8 protein was identified as the target, and the epitope was mapped by competition ELISA
using a panel of mAbs. ScFv and IgG1-1.2.2.H9 showed partial protection properties in an
in vivo mouse model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines9111308/s1. Table S1: Degenerate primer used for the amplification of variable-
and part of the constant region of the heavy IgG-chains and κ- and λ-light chains respectively. The
expected product size was 650 bp. Table S2: Degenerate primer used for the amplification of variable
regions with overlapping parts coding for the (G4S)3-linker. The expected product sizes were 420 bp
for the variable region of the heavy chains and 380 bp for the light chains. The BACK-primers
used for the PCR of the heavy chain variable region were the same shown in Supplemental Table S1.
Figure S1: Amplification of the 650 bp fragments of the IgG heavy chains from the cDNA synthesized
from four different B-lymphocyte donors (A to D). The fragments consisted of the variable and parts
of the constant regions. Primers amplifying GAPDH (11) were chosen to monitor the quality of the
cDNA. S1 and S2 were the 1 kb and 100 bp ladders respectively. The products occurred from the
combination of HuIgG1-4CH1FOR with HuVH1aBACK (1), HuVH1bBACK (2), HuVH1cBACK (3),
HuVH1d-7BACK (4), HuVH2aBACK (5), HuVH3aBACK (6), HuVH4aBACK (7), HuVH5aBACK (8),
HuVH6aBACK (9), and HuVH7aBACK (10). The no-template control as negative control is applied
in lane 12. Figure S2: Amplification of the 650 bp fragments of the κ light chains from the cDNA
synthesized from four different B-lymphocyte donors (A to D). The fragments consisted of the variable
and parts of the constant regions. Primers amplifying GAPDH (11) were chosen to monitor the
quality of the cDNA. S1 and S2 were the 1 kb and 100 bp ladders respectively. The products occurred
from the combination of HuCκFOR with HuVκ1aBACK (1), HuVκ1bBACK (2), HuVκ2aBACK (3),
HuVκ2bBACK (4), HuVκ3aBACK (5), HuVκ3cBACK (6), HuVκ4aBACK (7), HuVκ5aBACK (8),
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HuVκ6aBACK (9), and HuVκ6aBACK (10). The no-template control as negative control is applied
in lane 12. Figure S3: Amplification of the 650 bp fragments of the λ light chains from the cDNA
synthesized from four different B-lymphocyte donors (A to D). The fragments consisted of the
variable and parts of the constant regions. Primers amplifying GAPDH (12) were chosen to monitor
the quality of the cDNA. S1 and S2 were the 1 kb and 100 bp ladders respectively. The products
occurred from the combination of HuCλ2FOR and HuCλ7FOR in equal amounts with HuVλ1aBACK
(1), HuVλ1bBACK (2), HuVλ2BACK (3), HuVλ3aBACK (4), HuVλ3bBACK (5), HuVλ4a-9BACK (6),
HuVλ4bBACK (7), HuVλ5BACK (8), HuVλ6BACK (9), HuVλ7-8BACK (10), and HuVλ10BACK (11).
The no-template control as negative control is applied in lane 13. Figure S4: Amplification of the
variable regions of the heavy chains (A), κ light chains (B), and λ light chains (C) from pooled 650 bp
samples (1–10, and 11 for the λ variable regions). The fragments consisted of the variable region
and overlapping parts coding for the (G4S)3-linker. S1 and S2 were the 1 kb and 100 bp ladders
respectively. The no-template control as negative control is applied in lane 11, and 12 for the λ
variable regions respectively. The products were gel-purified and taken as template for splicing by
overlap extension-PCR. Figure S5: Amplification of full scFv including restriction sites for SfiI and
NotI. The pooled variable regions of the heavy chains were either connected with the variable regions
of κ light chains (A), or λ light chains (B). After SOE-PCR (splicing by overlap extension) the products
were divided into 10 templates (1–10) for the re-amplification and connection of restriction sites. S1
and S2 were the 1 kb and 100 bp ladders respectively. The no-template control as negative control is
applied in lane 11. The products were gel-purified and restricted before ligation into pCANTAB5E.
Figure S6: (A) Original Western blots as presented in Figure 2 and (B) Original Western blots as
presented in Figure 6 in the main manuscript. After development blot strips were dried, cut to form,
and scanned.
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