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Abstract

Severe pediatric sepsis continues to be associated with high mortality rates in children. Thus, an important area of
biomedical research is to identify biomarkers that can classify sepsis severity and outcomes. The complex and
heterogeneous nature of sepsis makes the prospect of the classification of sepsis severity using a single biomarker less
likely. Instead, we employ machine learning techniques to validate the use of a multiple biomarkers scoring system to
determine the severity of sepsis in critically ill children. The study was based on clinical data and plasma samples provided
by a tertiary care center’s Pediatric Intensive Care Unit (PICU) from a group of 45 patients with varying sepsis severity at the
time of admission. Canonical Correlation Analysis with the Forward Selection and Random Forests methods identified a
particular set of biomarkers that included Angiopoietin-1 (Ang-1), Angiopoietin-2 (Ang-2), and Bicarbonate (HCO3) as having
the strongest correlations with sepsis severity. The robustness and effectiveness of these biomarkers for classifying sepsis
severity were validated by constructing a linear Support Vector Machine diagnostic classifier. We also show that the
concentrations of Ang-1, Ang-2, and HCO3 enable predictions of the time dependence of sepsis severity in children.
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Introduction

Pediatric sepsis continues to be a very significant cause of

mortality in children [1,2]. Patients who develop organ dysfunc-

tion (i.e. severe sepsis or septic shock) have worse morbidity and

mortality compared to those who do not [3,4]. Diagnosing and

classifying the severity of sepsis is a significant challenge due to the

highly variable and nonspecific nature of the signs and symptoms

of sepsis. Biomarkers that play critical roles in the disease process

show great promise in indicating the severity of sepsis. There are

many biomarkers that have been studied for potential use in the

early diagnosis and classification of sepsis [5,6]. However the

complex and heterogeneous nature of sepsis makes the prospect of

single biomarker classification less likely.

No single biomarker has sufficient specificity or sensitivity to be

routinely employed in clinical practice. A combination of several

sepsis biomarkers may be more effective, as has been suggested by

other investigators [7–9]. Multivariate methods have the advan-

tage of selecting an optimal subset of variables from a large

number of variables and taking into account the relationship

among the selected variables based on a specific outcome.

In this manuscript, we employ a discovery-oriented approach to

identify a panel of diagnostic biomarkers. We systematically

evaluate many commonly obtained clinical parameters and

laboratory values using the multivariate diagnostic capacity of a

scoring system that incorporates 17 potential variables to classify

patients admitted to a tertiary care center’s Pediatric Intensive

Care Unit (PICU) with or without sepsis (PICU/sepsis group)

versus those with severe sepsis (PICU severe sepsis group).

Materials

Study population
This study was approved by the Pediatric Protocol Review

Committee and the Human Investigation Committee at Yale

University School of Medicine. Patient records were anonymized

and de-identified prior to analysis. The biological specimens and

clinical data sets were obtained from a prospective observational

study of critically ill pediatric patients with varying degrees of

sepsis severity conducted at a tertiary care center PICU during the

time period 9/2009–12/2011 [10].
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All patients admitted to the PICU were evaluated for eligibility.

Forty-five patients met the eligibility criteria and consented to

participate in the study. Using the 2005 pediatric sepsis and organ

dysfunction definitions [11], patients were divided into one of five

categories based on clinical exam findings in the first 24-hours of

PICU admission. The categories included systemic inflammatory

response syndrome (SIRS), non-SIRS, sepsis, severe sepsis and

septic shock. Briefly, SIRS required the presence of at least two of

the following four criteria with one being abnormal temperature

or leukocyte cout: abnormal core temperature, mean respiratory

rate, leukocyte count, or tachycardia. Non-SIRS patients were

admitted to the PICU but did not meet SIRS criteria. Patients

with sepsis fulfilled SIRS criteria with suspected or proven

infection. Patients with severe sepsis met the criteria for sepsis

with organ failure, and septic shock patients were a subset of the

severe sepsis group with cardiovascular organ failure [11]. Blood

samples were collected every 12 hours for the first 3 days and then

once a day for the last 4 days. Data collection was discontinued

when the patient was discharged from the PICU. A maximum of

10 samples for 7 days were obtained from each patient. As a result

of PICU discharge and line removal, the total number of samples

available for analysis decreased with time for all patient groups.

The number of samples for each time point is shown in Figure S1.

Commercial enzyme-linked immunosorbent assay (ELISA) kits

were used to measure plasma levels of Ang-1 and Ang-2.

Descriptive data consisting of demographics and clinical data for

all patients included in the clinical studies are provided in Tables

S1 and S2 in File S1. Additional details can be found in Text S1 in

File S1 and Ref. [10].

Biomarkers
To create a robust model of a specific combination of

biomarkers for predicting the severity of sepsis in children in an

unbiased manner, we selected multiple clinical and laboratory

variables from the database of our study [10]. These 17 variables

are as follows: (1) Age, (2) Weight (Wgt), (3) admission Pediatric

Index of Mortality 2 (PIM-2) [12], (4) White Blood Cell count

(WBC), (5) Hemoglobin count (Hgb), (6) Hematocrit (Hct), (7)

Platelet count (Plt), and the levels of (8) Sodium (Na), (9) Potassium

(K), (10) Chloride (Cl), (11) HCO3, (12) Blood Urea Nitrogen

(BUN), (13) Creatinine (Cr), (14) Ang-1, (15) Ang-2, (16) Ang-2/

Ang-1 ratio, and (17) Vascular Endothelial Growth Factor

(VEGF). To validate the data analysis, we augmented this data

set to include (18) Gaussian distributed noise (g-Noise) and (19)

uniformly distributed noise (u-Noise). These 19 variables were

then used to develop sepsis severity prediction models.

Statistical analysis
Patients were classified within the first 24 hours of PICU

admission into the five categories listed above based on the 2005

pediatric sepsis and organ dysfunction definitions [11]. We further

consolidated these into the following two categories: 1) the PICU/

sepsis group (n~28) included those not meeting SIRS criteria but

were admitted to the PICU (non-SIRS) (n~9), SIRS (n~8), and

sepsis (n~11); and 2) the PICU severe sepsis group (n~17)

included those with severe sepsis (n~3), and septic shock (n~14).

For the original study listed in Ref. [10], a two-sided Mann-

Whitney test estimated a sample size of 50 (10 patients per group)

to detect 1.5–1.8 standard deviations in the level of Ang-2 between

comparison groups, assuming a standard deviation of 1,500

pg/mL, power of 80%, and a significance level (alpha) of 0.05.

Methods

Data Preprocessing
Our dataset (input), a n|p real-valued matrix x, contains

n~45 attributes and p~19 biomarkers. Since the range of values

of the biomarkers varies widely, it should be normalized so that

each biomarker contributes approximately proportionately. We

normalized x to have zero mean and unit standard deviation for

each biomarker [13]:

xnorm~
x{�xx

s(x)
, ð1Þ

where xnorm is a n|p matrix, �xx and s(x) are the mean value and

standard deviation of x for each biomarker. We also assigned each

attribute i~1, . . . ,n, a sepsis severity score, yi. yi~{1 is given to

each in the PICU/sepsis group and yi~z1 for the PICU severe

sepsis group.

Canonical correlation analysis
CCA finds linear combinations of variables between two sets of

data, x and y in our study, which have maximum correlation with

each other [14,15]. Here we selected the optimal subset of

biomarkers x that has the maximum correlation with y for

k~1, . . . ,p, by calculating the correlations between all possible

k-combinations of x and y. The results are displayed in Table 1.

Linear support vector machines
In machine learning, a linear support vector machine (SVM) is

a learning model used for classfication and regression analysis [16].

A SVM model separates two categories by a hyper-plane that has

maximum margin for a given training dataset. New attributes are

predicted to belong to a category based on which side of the hyper-

plane they fall on.

The hyper-plane can be described by the equation:

f (xi)~wT xi{b, ð2Þ

where w is the normal vector to the hyper-plane, b is the offset of

the hyper-plane from the origin, and xi is a p-dimensional vector

of normalized biomarker values for attribute i in our study. The

search of this hyper-plane can be translated into the following

optimization problem:

Minimize EwE1zCz

P

i:yi~z1

jizC{

P

j:yj~{1

jj

subject    to

wT xizbzji§1, yi~z1,

wT xjzb{jjƒ{1, yj~{1, and

j§0,

ð3Þ

where EwE1~
P

i Dwi D is the 1-norm of a vector, which induces the

sparsity in the weight vector w [17]. The slack variable, ji,

measures the degree of misclassification of xi. The parameters Cz

and C{, which determine the penalty assigned to the total error

from misclassified samples, are chosen so that Cz=C{ is given by

the ratio of the number of negative and positive training

evaluations with C{ = 1.0.

Ensemble method
Due to the limited size and noise of our data, we follow the

training procedure in Ref. [18]. A random one-third of the data is
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selected as test set, T . The remaining data is used as training set,

L. Bagging is used to construct the classifiers ensemble. Each new

training set, Li, is drawn, with replacement, from the original

training set, L. Then a classifier, SVM or tree, is constructed on

this new training set, Li. In this study, we construct a classifiers

ensemble 50 times, i[f1, . . . ,50g. The final classification is

obtained by calculating the mean of the ensemble of 50 classifiers.

This procedure is repeated 100 times and statistical measures on T
are averaged.

Calculation of statistical measures
TPR, TNR, NPV, and PPV are statistical measures of the

predictive performance of a binary classification test. TPR (or

sensitivity) measures the proportion of actual positives that are

correctly identified. TNR (or specificity) measures the proportion

of actual negatives that are correctly identified. PPV (or precision)

measures the proportion of positives that are true positive. NPV

measures the proportion of negatives that are true negatives.

These statistical measures are calculated for each one of the 100
random divisions of test sets T by the classifier built on the

bootstrap aggregation method. Their mean and standard error are

calculated from the groups obtained from the 100 random

divisions.

Results

Biomarkers selection
Feature selection is an important part of the data analysis given

the fact that the data contains many redundant or irrelevant

features. Redundant features provide no additional information

than the selected features, and irrelevant features provide no useful

information. Feature selection is widely used in data sets with

abundant features but comparatively few samples. In machine

learning and statistics, the goal of a feature selection method is to

select an optimal subset of relevant features for model construc-

tion.

In this study, there are 17 variables (features) augmented by 2

variables consisting of Gaussian and uniform noise to provide a

baseline check for the data analysis. From the univariate

correlation analysis, we found that this data set contained several

possible redundant biomarkers and, not surprisingly, at least two

irrelevant features (g-Noise and u-Noise). To extract an optimal

subset of biomarkers, we analyzed the multivariate correlation

between the outcome, sepsis severity score (0 for PICU/sepsis and

1 for PICU severe sepsis), and the input, which is a subset of

variables.

A comparison of the univariate correlations for these two groups

is shown in Fig. 1. The univariate analysis revealed that Na, K, Cl,

HCO3 form a group of highly correlated biomarkers (with

correlations that range from 0.937 to 0.998) for the PICU/sepsis

group. However, these variables are not strongly correlated for the

PICU severe sepsis group (with correlations that range from 0.001

to 0.608). This notable difference between the PICU/sepsis and

PICU severe sepsis groups indicates that these biomarkers may not

independently provide information about the sepsis severity

diagnosis. We also note that Ang-1 and Ang-2 are highly

correlated with each other in the PICU severe sepsis group

(0.76), but this correlation is significantly reduced for the PICU/

sepsis group (0.21). Meanwhile, Ang-2/Ang-1 does not correlate

very strongly with either Ang-1 (0.21 in PICU/sepsis, 0.24 in

Table 1. Stepwise Biomarker Selection using Canonical Correlation Analysis, Forward Selection and Random Forests.

Dim Corr Entering Leave Forward Selection Random Forests

1 0.3811 Ang-2 Ang-2 Ang-2/Ang-1

2 0.4772 Ang-1 Ang-1 HCO3

3 0.5501 HCO3 HCO3 Ang-2

4 0.5842 Plt Plt Ang-1

5 0.6079 Age Age Cl

6 0.6183 Cl WBC PIM-2

7 0.6221 BUN, Hct, WBC Cl, HCO3 Hct Age

8 0.6286 VEGF BUN K

9 0.6311 PIM-2 VEGF Hgb

10 0.6359 Cl, HCO3 PIM-2 PIM-2 VEGF

11 0.6395 Cr, Wgt Age g-Noise Wgt

12 0.6409 Hgb, Na, Age Cl, Wgt Cl Na

13 0.6414 Ang-2/Ang-1 Cr g-Noise

14 0.6419 Wgt u-Noise Plt

15 0.6424 PIM-2 Ang-2/Ang-1 WBC

16 0.6427 Cl, u-Noise Na Hgb u-Noise

17 0.6429 K Wgt Cr

18 0.6429 Na, g-Noise K K BUN

19 0.6430 K Na Hct

We apply Canonical Correlation Analysis for all possible k-combinations (k~1, . . . ,19) to determine the subset of k biomarkers with the highest correlation with the
sepsis severity score. The ‘Enter’ column indicates the biomarker that is added to achieve the highest correlation at each k. The ‘Leave’ column indicates the biomarker
that is eliminated from the combination at each k. A biomarker will stay in the combination until it occurs in ‘Leave’ column. The ‘Forward Selection’ column gives the
biomarker selected by the Forward Selection method when applied one biomarker at a time. The ‘Random Forests’ column gives the biomarker ranked by the mean
decrease in accuracy measured by the Random Forests method.
doi:10.1371/journal.pone.0108461.t001
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PICU severe sepsis) or Ang-2 (0.48 in PICU/sepsis, 0.17 in PICU

severe sepsis). Based on these observations, we seek to identify an

optimal set of non-redundant variables and biomarkers to predict

the severity of sepsis.

In our recent study [19], we found that canonical correlation

analysis (CCA) [14,15,20] can be applied effectively to identify an

optimal subset of biomarkers with the maximum correlation with

the outcome. As shown in Table 1, we found that the subset of

Ang-2, Ang-1, and HCO3 maximizes the correlation with the

sepsis severity score. As expected, the two forms of random noise

are selected near the end of the process when the correlation

saturates for large subsets. We also applied the forward selection

(FS) method to identify the optimal subset of biomarkers. FS is a

greedy algorithm that adds the best feature at each step [21,22].

We found that the performance of the subset of biomarkers

selected by FS was similar to that selected by CCA on this data set.

The optimal subset
In this study, we built a diagnostic classifier by selecting the

subset of k biomarkers with the best diagnostic performance for

each value of k. For each k, we applied the ensemble method

[18,23] to construct a linear support vector machine (SVM)

classifier [24] for the CCA-selected subset of biomarkers. SVM

[17] finds a decision function that separates the high-dimensional

data with the maximum margin. To quantify the classifier

performance, we calculated the true positive rate (TPR), true

negative rate (TNR), positive predictive value (PPV), and negative

predictive value (NPV). See the Methods section for details.

In Figure 2, we find that all statistical measures reach a peak or

saturate near k~3 using the CCA-selected biomarkers, Ang-2,

Ang-1, and HCO3, which suggests that these three biomarkers are

the optimal subset for our data set (TPR~0:69, TNR
~0:87, PPV~0:79, and NPV~0:83 at k~3). By adding HCO3

to the optimal subset from k~2 to k~3, the combination has

higher TPR (0.60 at k~2 versus 0.69 at k~3) and PPV (0.69 at

k~2 versus 0.79 at k~3) when compared to the combination of

Ang-2 and Ang-1. TNR (0.84 at k~6 versus 0.80 at k~7) and

PPV (0.75 at k~6 versus 0.69 at k~7) begin to decrease from

their plateau values when HCO3 leaves the subset at k~7. The

improvement at k~3 and decrease at k~7 indicate the diagnostic

importance of HCO3.

Redundant biomarkers
Recent studies [10,25–27] suggest that plasma levels of Ang-2

and Ang-1 can serve as clinically informative biomarkers of sepsis

severity. Further, the Ang-2/Ang1 ratio is considered to be a more

relevant sepsis severity biomarker than isolated levels of each

biomarker because of their antagonistic roles in regulating the

tyrosine kinase receptor, Tie-2 [27]. However, both of our

biomarker selection methods, CCA and FS, select Ang-2/Ang-1

to the optimal subset relatively late, i.e., at large k (k~13 and

k~15) as shown in Table 1. This suggests that a combination of

Ang-2, Ang-1, and HCO3, is potentially more effective than using

the ratio of Ang-1 and Ang-2 with other biomarkers.

It is also interesting to consider the univariate and bivariate

performance of these biomarkers. This analysis provides additional

insight into the relative performance of different subsets of

biomarkers and how they work together to provide inferences.

In Fig. 3(A), the relative performance of the univariate

biomarkers performance is shown: 1) Ang-1 has consistent

performance for all statistical measures compared to other

biomarkers (see Table 2), 2) Ang-2 has a high TNR (0.85) and

PPV (0.63) but relatively low TPR (0.38), and 3) HCO3 has the

highest TPR (0.87) and NPV (0.86) but relatively low TNR (0.42)

and PPV (0.48). These observations indicate that the performances

of these biomarkers did not correlate with each other. This

supports the observation that the best subset of biomarkers

includes both Ang-1 and Ang-2 since they provide distinct

information. We also show that the combination of Ang-2, Ang-

1 and HCO3 improves the predictive capability by reducing

overfitting in Fig. 2. The performance for the CCA-selected

subsets decreases when kw3.

These results suggest, when examining groups of three, Ang-2/

Ang-1 may be a redundant biomarker, i.e., no additional

information is gained when Ang-1 and Ang-2 data is known.

We explore here how this ratio performs in isolation, i.e., as a

derived univariate statistic. We applied the same procedure as

above to construct a SVM classifier for each single biomarker and

Figure 1. Heatmaps of pairwise correlations. Heatmaps of all pairwise correlations between the 17 variables (plus two noise samples) for
patients in the (A) PICU/sepsis and (B) PICU severe sepsis groups. The color scale from blue to red indicates increasing correlations between the pair
of biomarkers at the corresponding locations on the horizontal and vertical axes.
doi:10.1371/journal.pone.0108461.g001
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show the statistical measures in Fig. 3(A). Overall, we find that

Ang-2 and Ang-2/Ang-1 have comparable prediction perfor-

mance (Fig. 3(A)). However, Ang-2/Ang-1 outperforms Ang-2 for

PPV (0.76 for Ang-2/Ang-1, 0.63 for Ang-2), which suggests that

Ang-2/Ang-1 alone may be a predictive biomarker. The similar

performance of Ang-2 and Ang-2/Ang-1 suggest that these two

biomarkers capture very similar information.

Of course it is not necessarily a fair assessment to compare true

univariate biomarkers such as Ang-1 and Ang-2 to their ratio since

this contains information from two measurements. Thus, we also

compared the performance of combinations of Ang-1, Ang-2,

HCO3, and Ang-2/Ang-1 in Fig. 3(B). The combination of Ang-2

and Ang-2/Ang-1 does not notably improve each predictive

measure compared to these biomarkers alone, which also indicates

that these two biomarkers are redundant. In contrast, the

combination of Ang-1 and Ang-2 has notably higher NPV (0.78)

and TPR (0.60) and comparable values for the other prediction

measures compared to each single biomarker (NPV~0:69 and

TPR~0:38 for Ang-2, NPV~0:57 and TPR~0:48 for Ang-1)

and Ang-2/Ang-1 (NPV~0:67 and TPR~0:35). This suggests

that the ratio Ang-2/Ang-1 is less effective than using Ang-1 and

Ang-2 separately.

For completeness, we also show the performance for the CCA-

selected optimal subset of three biomarkers HCO3, Ang-1 and

Ang-2 on the far right of Fig. 3(B). This optimal subset notably

improves the predictive capability as indicated by the small spread

of values in the predictive measures.

The diagnostic classifier
We applied the linear SVM ensemble method [23,24] to

construct a decision function using the CCA-selected optimal

subset of biomarkers at k~3: Ang-2, Ang-1, and HCO3. The

optimal decision function is

Figure 2. Prediction measures obtained from the Support Vector Machine (SVM) using the k-combinations selected by the
Canonical Correlation Analysis (CCA) and Random Forests (RF) methods. The prediction measures (A) true positive rate (TPR), (B) true
negative rate (TNR), (C) positive predictive value (PPV), and (D) negative predictive value (NPV) are shown for each step k. For each k, a SVM ensemble
with bagging is constructed based on the CCA- and RF-selected subset of biomarkers.
doi:10.1371/journal.pone.0108461.g002

Figure 3. Prediction measures for single and pairs of biomark-
ers from the Support Vector Machine (SVM). True positive rate
(TPR), true negative rate (TNR), positive predictive value (PPV), and
negative predictive value (NPV) are shown for (A) each single biomarker
and (B) all pairwise combinations of Ang-1, Ang-2, HCO3 and Ang-2/
Ang-1. The prediction measures for the CCA-selected optimal subset of
biomarkers at k~3 (Ang-2, Ang-1, and HCO3) are also shown in (B) for
comparison.
doi:10.1371/journal.pone.0108461.g003
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Score~w1 Ang-2zw2 Ang-1zw3 HCO3 {b: ð4Þ

Table 3 provides the weights wi, errors ei, means xi and

standard deviations si of the biomarkers. Since the range of values

of the biomarkers varies widely, all values of the biomarkers are

normalized by subtracting the mean and then dividing by the

standard deviation in Eq. 4. See the Methods section for details.

With this decision function, if the sepsis severity score (Score) is

greater than or equal to zero, the severity diagnosis is 1, otherwise

it is 0. The magnitudes of weights wi indicate the importance of

the corresponding biomarker [28]. We find that Ang-2 has a larger

weight than Ang-1 and HCO3, which is consistent with the results

for the single biomarker classification in Fig. 3(A), where the TNR,

and PPV are larger for Ang-2 than Ang-1 and HCO3. However,

the TPR and NPV are larger for HCO3 compared to that for Ang-

2. The sign of each weight wi indicates the sign of the correlation

of the biomarker with the sepsis severity score. Thus, the sepsis

severity score for a patient with a relatively high Ang-2 level and

low Ang-1 and HCO3 levels is most likely positive. This relation

between biomarkers and sepsis severity score has been observed in

clinical studies [25,29,30].

Longitudinal measurements of the predictor
A linear SVM finds the hyper-plane that separates data with

maximum margin by categories. In our study, the sign of the sepsis

severity score (Score) in Eq. 4 can predict the category for a

patient. The magnitude of the Score represents the distance from

the decision boundary and indicates the severity of sepsis. A large

positive Score indicates critical severity.

Based on the fact that patients were hospitalized during the

study, the longitudinal measurements should show a decrease in

the number of patients in the PICU severe sepsis group. Fig. 4

shows that Scores in the PICU severe sepsis group are notably

separated from the PICU/sepsis group for the first two days after

admission. After two days, the Scores in the PICU severe sepsis

group decrease and collapse with those from the PICU/sepsis

group indicating the effectiveness of the treatment. Additionally,

the sepsis severity score (Eq. 4) measured on the first 2 days after

admission may allow for the early identification of patients with

severe sepsis, which is important for the initiation of early goal-

directed therapies.

Comparison with the random forests learning method
Random forests (RF) [31] is an ensemble method [18,23], which

grows multiple classification and regression trees (CART) [32] for

prediction. Every tree in the forests is constructed by a random

selected bootstrap training set with replacement [18]. The splitting

criteria for every decision node in a tree are also chosen from a

random subset of the features without replacement. With the

replacement from the original data, about two-thirds of the

samples are used to construct a tree [18]. The out-of-bag (OOB)

data, which are not chosen in the construction, are then used to

estimate the prediction accuracy and the importance of the

features [31,33]. Unlike a linear SVM, which constructs a hyper-

plane to classify the data, a tree is a hierarchical classification

procedure, which recursively partitions the data to increase the

purity of the nodes with respect to the outcome [32].

RF provides two measures, the mean decrease in accuracy

(MDA) and mean decrease in the Gini index [31,33], to estimate

the importance of the features. In our study, the MDA is chosen to

estimate the feature importance since the decrease in the Gini

index is not as reliable as MDA [33,34]. By randomly permuting

the values of a given feature in the OOB data for each tree, RF

measures the accuracy difference between untouched and

Table 2. Prediction measures for single biomarker from Support Vector Machine.

Variable TPR TNR PPV NPV

Age 0.666 0.555 0.490 0.728

Wgt 0.496 0.636 0.466 0.671

PIM-2 0.276 0.611 0.407 0.524

WBC 0.298 0.192 0.183 0.255

Hgb 0.249 0.076 0.121 0.195

Hct 0.248 0.104 0.126 0.184

Plt 0.636 0.501 0.451 0.697

Na 0.710 0.105 0.297 0.710

K 0.737 0.112 0.309 0.735

Cl 0.570 0.073 0.236 0.570

HCO3 0.868 0.415 0.480 0.865

BUN 0.343 0.358 0.197 0.411

Cr 0.430 0.065 0.177 0.440

Ang-1 0.477 0.457 0.384 0.566

Ang-2 0.378 0.846 0.625 0.690

Ang-2/Ang-1 0.353 0.881 0.760 0.675

VEGF 0.773 0.370 0.424 0.764

g-Noise 0.481 0.251 0.266 0.496

u-Noise 0.461 0.442 0.340 0.564

True positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), and negative predictive value (NPV) are shown for each single variable.
doi:10.1371/journal.pone.0108461.t002
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permuted OOB data. The average of this accuracy difference over

all trees in the forest is the MDA for the given feature. The MDA

is the average increase in misclassification rate due to the

permutations. The larger the MDA the more important the

corresponding feature is with respect to the outcome.

Following Ref. [31], we construct a forest with 1,000 trees to

estimate the MDA for the biomarkers. We generated two RF: one

for which Ang-2/Ang-1 is excluded (Fig. 5(A)) or included

(Fig. 5(B)). Because of the interaction of Ang-2, Ang-1, and Ang-

2/Ang-1, the existence of Ang-2/Ang-1 suppresses the importance

of Ang-2 and Ang-1. However, both CCA and FS methods tend to

select the combination of Ang-2 and Ang-1 as the most predictive

feature. We notice that HCO3 is considered important for all three

methods, which suggests HCO3 is also an important biomarker.

The RF ranked biomarkers based on the importance are also

shown in Table 1.

We also constructed a SVM ensemble using the RF-selected

subset for each step k in Fig. 2 for comparison. Similar to the

CCA-selected subset in Fig. 2, all prediction measures saturate at

k~4 and decrease for kw4. We find that the RF-selected optimal

subset, Ang-2/Ang-1, HCO3, Ang-2, Ang-1 at k~4, have

comparable prediction performance with the CCA-selected

optimal subset at k~3.

Discussion

In this study, we employed machine learning approaches to

analyze the clinical data of children with severe sepsis using feature

selection methods, such as CCA, SVM, FS and RF. Feature

selection methods are helpful in identifying biomarkers with

minimum redundancy that can be useful in clinical diagnosis. Our

multivariate feature selection methods select the combination of

Ang-1, Ang-2, and HCO3 as the optimal biomarkers for our data

set. We demonstrated that this optimal combination of biomarkers

significantly outperformed each single biomarker and all other

combinations with redundant or irrelevant biomarkers for all

statistical measures.

Our work [10,27], and that of others, has shown the biological

plausibility and clinical relevance of Ang-2 and Ang-1 levels in

PICU patients with severe sepsis. It is interesting to note that

combining Ang-2 and Ang-1 with a well-established (and routinely

measured) indicator of an imbalance in the acid-base levels

performs much better than other scoring systems that are more

complex (for example, PIM-2 [12]).

Our data driven approach indicates that there is an optimal set

of biomarkers for diagnosing severe sepsis. We have demonstrated

that the use of additional biomarkers actually reduces the quality

of the diagnostic scoring system. This is a potentially important

observation in the sense that it suggests that more feature rich data

may not be helpful, but actually harmful to patient care.

In addition, a sepsis severity score function (Eq. 4) using this

optimal combination of biomarkers was constructed by the SVM

Table 3. Parameters for the decision function that includes the CCA-selected optimal subset of biomarkers at k~3.

i Biomarker Mean Standard Deviation Weight Standard Error of Weight

xi si wi (b~0:313) ei

1 Ang-2 8518.1 13264 1.994 0.065

2 Ang-1 2649.2 4008.9 21.396 0.050

3 HCO3 27.270 24.361 21.340 0.072

The values of the weights wi , errors ei , means xi , and standard deviations si for the biomarkers in Eq. (4).
doi:10.1371/journal.pone.0108461.t003

Figure 4. Longitudinal measurements of the sepsis severity
score. The sepsis severity scores (Score) for patients from the PICU/
sepsis group and the PICU severe sepsis during the 7 days of illness.
Both the mean and individual severity scores are plotted.
doi:10.1371/journal.pone.0108461.g004

Figure 5. Measures of the biomarker importance obtained
from the Random Forests method. Mean Decrease in Accuracy
(MDA) are shown for biomarkers in (A) without Ang-2/Ang-1 and (B)
with Ang-2/Ang-1 using the Random Forests method with 1,000 trees
for each.
doi:10.1371/journal.pone.0108461.g005
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ensemble method. With this function, we can interpret the relation

between these three biomarkers and the sepsis severity from the

associate weights, wi [28]. Even though these relations have been

observed in clinical studies [10,25,26], we assert that our

methodology is useful since it obtains similar results to those of

the clinical studies using unbiased, rigorous statistical analyses. It

also holds promise for the discovery of novel biomarkers.

The proposed sepsis severity score for each sample is also

evaluated during the treatment. The patients in the PICU severe

sepsis group have significantly high severity scores after admission.

The sepsis severity scores measured on the first 2 days after

admission may allow for the early identification of patients with

severe sepsis. After two days treatment, the severity scores for each

patient decline and collapse to match patients without severe

sepsis. Based on the fact that all patients survived hospitalization,

the change in the longitudinal measurements of this score function

validates the robustness and effectiveness of this function as

regards its potential utility at different stages of treatment.

It has been observed that single biomarkers, in isolation, have

limited diagnostic capacity [5]. This study supports this conclu-

sion. Our analysis strongly supports the conclusion that a

combination of different biomarkers is more effective, i.e., using

multiple biomarkers for diagnosis is superior to drawing conclu-

sions from single biomarkers. The rationale for this observation

may be that the biomarkers are not independent of each other but,

as we have shown with our canonical correlation analysis, are

correlated in groups. The identification of an optimal combination

of biomarkers allows clinicians to focus on a small subset of

indicators, which simplifies the diagnosis of sepsis in children with

a spectrum of severities.

Despite the success in the classification of sepsis severity for this

patient group, our study has several limitations. First, the data set

was obtained from a single institution making generalizability

difficult. Second, the biomarkers used to construct our models

were based on clinical availability for most patients. It is possible

that additional biomarkers, such as cytokines, would have

improved the statistical measures for our models. Finally, since

we have shown that measures of acid-base status are predictive

biomarkers, it is likely that other acid-base determinants from

blood gas analyses will also be predictive biomarkers. However,

blood gas results were only available for the severe sepsis group

(not other groups), and thus including blood gas measurements

would have biased our findings. We advocate new clinical studies

that include additional clinical variables, such as blood gas panels,

to address the question of finding the most predictive set of

biomarkers for severe sepsis.

In conclusion, we have shown that a linear additive combina-

tion of 3 biomarkers, namely Ang-2, Ang-1 and HCO3 provides a

robust prediction of sepsis severity in patients admitted to the

PICU. Additional independent studies are needed to confirm or

refute the clinical utility of our biomarker combination for sepsis

severity prediction. The collection of data sets with larger sample

sizes would also be very useful for validating our statistical study.

Supporting Information

Figure S1 Sample size by study day. Samples were obtained

twice per day for the first 3 days and then once per day for the last

4 days, for a maximum of 7 days and 10 samples. Sample

collection was discontinued when the patient was discharged from

the PICU, after the 7-day study completion, or when the clinical

team deemed it unnecessary to draw further labs for patient care.

(TIF)

File S1 Contains Table S1, Infectious organisms: Causative

organisms isolated in patients. N gives the number of patients with

a given proven infection. Table S2, Baseline patient characteris-

tics: Statistical analysis of the baseline patient characteristics based

on the evaluation distributions of the PICU/sepsis group and

PICU severe sepsis group. Categorical variables, presented as

count (percentage), were analyzed using Fisher exact test.

Continuous variables, presented as mean (standard deviation),

were analyzed using the two-tailed t test. P values are comparisons

between two groups. Any significance level of P less than 0.05 is

associated with the diagnosis. Text S1, Supplementary Text.

(PDF)
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