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Multi‑variant differential evolution 
algorithm for feature selection
Somaia Hassan1, Ashraf M. Hemeida2*, Salem Alkhalaf3, Al‑Attar Mohamed1 & 
Tomonobu Senjyu4

This work introduces a new population-based stochastic search technique, named multi-variant 
differential evolution (MVDE) algorithm for solving fifteen well-known real world problems from 
UCI repository and compared to four popular optimization methods. The MVDE proposes a new 
self-adaptive scaling factor based on cosine and logistic distributions as an almost factor-free 
optimization technique. For more updated chances, this factor is binary-mapped by incorporating 
an adaptive crossover operator. During the evolution, both greedy and less-greedy variants are 
managed by adjusting and incorporating the binary scaling factor and elite identification mechanism 
into a new multi-mutation crossover process through a number of sequentially evolutionary phases. 
Feature selection decreases the number of features by eliminating irrelevant or misleading, noisy 
and redundant data which can accelerate the process of classification. In this paper, a new feature 
selection algorithm based on the MVDE method and artificial neural network is presented which 
enabled MVDE to get a combination features’ set, accelerate the accuracy of the classification, 
and optimize both the structure and weights of Artificial Neural Network (ANN) simultaneously. 
The experimental results show the encouraging behavior of the proposed algorithm in terms of the 
classification accuracies and optimal number of feature selection.

Artificial Neural Network (ANN) have been widely used in scientific problems and have attracted many research-
ers as the most popular tool for pattern classification, regression, and recognition due to its nonlinearity. The 
most challenging matter in ANN models is the selection of the appropriate weights, number of layers, and 
number of nodes in each layer. The complexity of the network is affected by the number of layers and nodes, so 
the difficulty for the training process will be increased. Therefore, selecting the suitable ANN model is required 
which should not be very small network that has a limited potential to be able to characterize the real state nor a 
large network which doing complex training process and may provide noise in the training data and thus cannot 
represent superior capability1–4.

Feature selection (FS) supplies a way to reduce the number of features from a large number of available 
features to capture better classification performance than using all features by removing or reducing irrelevant 
and redundant features5,6. A dataset usually includes a large number of features in classification problems, so 
irrelevant and redundant data are not applicable for classification and they may reduce the performance of the 
classification due to the large search space. FS strategies can be divided generally into three categories: filter, wrap-
per, and hybrid techniques. Filter technique dependently operates on data itself using appointed methods such 
as Principal Component Analysis (PCA) which is a common method. On the other hand, wrapper techniques 
are beneficial in finding feature subsets that satisfy a predetermined classifier. Consequently, they are broadly 
examined for the accuracy of the class. Besides that wrapper approaches are expensive and can be collapsed with 
a very large number of features due to utilizing learning algorithms in evaluating feature subset every time. How-
ever, hybrid techniques try to gather merits of the filter and wrapper techniques by manipulating their correlative 
strengths7,8. FS plays very important role in many areas such as pattern classification, multimedia information 
retrieval, data mining, machine learning applications and so on, which can influence the classification accuracy 
rate and reducing the time required for training. Classifying any given input feature vector into pre-defined set 
of classes of patterns needs assigning this vector to one of a set of classes9,10.

Meta-heuristics have been very dependable for solving diverse optimization problems in the last two dec-
ades and overcoming the challenging problem of searching optimal subset from all the original set. A new FS 
approaches were generated based on evolutionary optimization techniques since they can lead to a faster way 
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to find optimal solutions. Moreover, by considering an effective fitness function a high dimensional data can 
be managed by limited number training samples. Whereas the complete search generates all possible solu-
tions for the problem, meta-heuristics present outstanding performance compared to other conventional search 
techniques11–13.

Background
Related works.  In recent years, several meta-heuristics have been utilized by many researchers in the field 
of optimization to search feature subset space for selecting optimal feature set. The strategy of meta-heuristic 
may determine a satisfactory solution in a reasonable time in spite of it doesn’t assure finding the best solution 
in every run. These algorithms showed superior performance in solving many practical problems which can be 
original, modified, or hybrid algorithms14–20. In21, Menghour and Meslati introduced a hybrid feature selection 
algorithm based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) algorithms. The 
algorithm was designed to solve six well-known datasets. Artificial Bee Colony optimization (ABC) and DE 
technique was proposed in22 as a new combinable method for feature selection of classification tasks for solving 
fifteen public datasets. In23, a new hybrid ACO-ABC algorithm was introduced to validate thirteen datasets’ 
problems, in which ants decide the best ant and best feature subset by exploiting the bees and adjusting as their 
sources of food. In addition, a feature selection approach was proposed based on two different implementation 
of multi-objective ABC algorithm combined with non-dominated sorting procedure and genetic operators for 
examining twelve benchmark datasets24. In25, a new method called PSO-DFS using bare-bone particle swarm 
optimization (BBPSO) for discretization and feature selection in a single stage was proposed for solving ten high-
dimensional datasets. In26, a comprehensive study to investigate the use of Genetic programming (GP) for fea-
ture construction and selection on high-dimensional classification problems was presented and tested on seven 
high-dimensional gene expression problems. Chen et al. proposed two novel Bacterial Foraging Optimization 
algorithms (BFO), which named Adaptive Chemotaxis Bacterial Foraging Optimization algorithm (ACBFO) 
and Improved Swarming and Elimination-Dispersal Bacterial Foraging Optimization algorithm (ISEDBFO) to 
create the mapping relationship between the bacterium and the feature subset and to evaluate the importance of 
features. This method dealt with feature selection problems and tested ten public datasets of UCI27. Majdi et al. 
proposed a Grasshopper Optimization Algorithm (GOA) as a search strategy to design a wrapper-based feature 
selection method in the form of four different strategies to moderate the immature convergence and stagnation 
drawbacks of the conventional GOA. These approaches were benchmarked on twenty-two public UCI datasets28.

In29, the antlion multi-objective wrapper-based feature selection method (CALO) was proposed by using 
different chaotic Maps and tested on eighteen datasets to balance between exploration and exploitation in the 
search space. The proposed method achieved better performance by converging to the optimal solution than 
PSO and GA methods and it was more effective than the original ALO method.

Li et al. introduced a new multi-objective ranking binary artificial bee colony method for the gene selection 
on eight microarray datasets. They first used the Fisher Markov Selector method to assort and choose the features 
that will be used as inputs to the binary ranking artificial bee colony. After that, the binary ranking artificial bee 
colony selected the genes subset. This method achieved the best performance compared to other methods with 
different classifiers. The results show also outperforms of that method in selecting smaller number of selected 
features30.

In spite of the advantages of the above mentioned heuristic algorithms for feature selection on classification 
problems, someone may inquire if we need another new heuristic algorithms. The theory of No-Free-Lunch 
(NFL) illustrated that all the optimization problems cannot be solved by one optimizer31. Thus, all classifica-
tion/ feature selection problems cannot be solved by only one of the heuristic feature selection methods and 
there is always a possibility to improve the current methods to solve better the current new classification/feature 
selection problems. This is our motivation for attempting to propose another optimization algorithm for feature 
selection on classification.

Cat Swarm Optimization (CSO).  Cat Swarm Optimization algorithm was proposed in 2007 by Chu and 
Tsai32. The CSO algorithm has two modes: seeking mode and tracing mode. In the beginning of the iteration, the 
number of cats is specified and cats broadcast arbitrarily in M-dimensions space. Then, applying cats to solve the 
problem, in which every cat has position, velocity for each dimension, fitness value, and a flag to determine if the 
cat in seeking or tracing mode. The one of the cats with the last solution will have the finest position. At the end 
of the iterations, the best solution will be kept33.

Whale Optimization Algorithm (WOA).  Whale Optimization Algorithm was presented by Mirjalili and 
Lewis in 201634.This algorithm comprises of two main stages; encircling prey and spiral updating position in 
the first stage (exploitation stage). In the second stage, a random searching for a prey is carried out (exploration 
stage). In the beginning, whales are allocated by arbitrary solutions and the minimum or maximum value of the 
objective function will be assumed as the best optimal value relying on the problem is solved. Then, every search 
agent of the objective function is calculated. Every search agent modifies its position relying on the best solution 
or on a random choice search agent for every iteration.

Sine Cosine Algorithm (SCA).  Sine Cosine Algorithm was proposed in 2015 by Mirjalili35.In SCA, the 
algorithm started by arbitrary solutions’ set. The objective function calculated recurrently this arbitrary set and 
rules’ set which is the core of this method was used to improve it. It consists of two phases: in the first phase 
(exploration phase), the arbitrary solutions in the solutions’ set were combined suddenly by the optimization 
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method to find the encouraging search space areas. Random solutions were changed gradually in the exploita-
tion phase. In addition, arbitrary differences were greatly fewer than those in the first phase.

Differential Evolution Algorithm (DE).  Differential Evolution (DE) algorithm was introduced by Storn 
and Price in 199636. It is one of the most popular evolutionary algorithms to solve the global optimization prob-
lems. Global optimization is necessary in fields such as engineering, statistics and finance. It is stochastic and 
population-based optimization algorithm. It is developed to optimize real valued functions and real parameter. 
A population of candidate solutions for the optimization problem to be solved is randomly initialized. By apply-
ing crossover and mutation, new individuals are created for each generation of the evolution process. Recombi-
nation of the target individual with mutant individual to create the trial individual incorporates successful solu-
tions from the previous generation. The target individual is compared with the trial individual and the one with 
the lowest function value is admitted to the next generation. Mutation, recombination and selection continue 
until some stopping criterion is reached37,38.

The mutation is performed by computing the vector differences between other two individuals in the same 
population which are selected randomly. Generating the mutant individual Vi,g by adding the weighted difference 
of two of the vectors F

(

Xr2,g + Xr3,g

)

 to the base vector Xr1, g to disorganize it. A mutant vector is generated by 
the following formula:

 where r1, r2 and r3 are indexes selected randomly over [1, N], N is the number of individuals in the population, 
g is the current generation, and F is a constant mutation factor from [0, 2].

The trial vector Ui,g is constructed through the recombination step where is developed from the elements of 
the target vector, Xi,g , and the elements of the mutant vector, Vi,g. The crossover factor CR presents the probability 
of entering elements of the mutant vector with the trial vector. The trial vector constructed formula:

where i = 1, 2. . . N; N is the population size, j = 1, 2. . . D; D is the dimension of a single vector. rand i,j is a random 
number in range [0, 1] and Jrand is a random integer from [1, 2, …,D].

Finally, the trial vector U i,g is compared to the target vector Xi,g and the one with the lowest function value 
is become a member of the next generation g + 1 using the fitness function formula:

Recently, DE has arisen as an encouraging approach in several real world challenges. Effectiveness, robustness, 
capability to deal with complex large-dimensional optimization problems, and needing few control parameters 
are some merits of DE algorithm over other meta-heuristic algorithms. Furthermore, because of the fitness of 
offspring is competed and compared one-to-one with the fitness of corresponding parent, DE has sufficiently 
fast convergence characteristics. Although this approach raises the possibility of trapping in local optimal (sub-
optimal solution) and leads to premature convergence, it may be efficient to find an optimal solution rapidly. 
The control parameters of DE are needed a fine-tuning while remain fixed over the process of optimization is 
considering another demerit of DE.

To overcome the drawbacks of DE algorithm, it has been integrated with other optimization algorithms in 
a hybridized form to improve the performance of DE. On contrast, it is an effective method on a large range 
of classic optimization problems. DE is one of the most popular heuristic algorithms to solve single-objective 
optimization problems and it has been extended to solve multi-objective optimization problems39.

A novel optimization algorithm is proposed in this work to optimize both the weights and the structure of 
ANN simultaneously by presenting a new solution representation. Two main phases are composed of the pro-
posed method: arrangement optimization and weights update. However, the proposed MVDE algorithm with 
multi variant mutation and adaptive scaling factor has been developed to choose the optimal number of features 
used for classification which has an impact on the accuracy of the classification.

However, the proposed MVDE is presented to overcome the drawbacks of DE which mentioned above. On 
this issue, different five mutation approaches incorporated with two high random scaling factors based on cosine 
and logistic distributions will be used to maintain the population diversity during the optimization process which 
leads to preventing premature convergence. Moreover, the requirements for tuning of the control parameters 
can be reduced by the proposed adaptive crossover and adaptive selection.

In addition, the experimental results are compared to the results in the literature and to another four optimi-
zation algorithms; DE, CSO32,33, WOA34, SCA35, and PSO21 for evaluating the proposed algorithm performance.

The rest of this paper is organized as follows: The methodology of the proposed approach is outlined in "Meth-
odology" section. "Results and discussion" introduces and analyses the experimental results. Finally, conclusions 
is given in "Conclusion" section.

(1)Vi,g = Xr1,g + F
(

Xr2,g + Xr3,g

)

(2)Ui,j,g =

{

Vi,j,g if rand i,j ≤ CR or J = Jrand
Xi,j,g if rand i,j > CR and J �= Jrand

(3)Xi,g+1 =

{

Ui,j,g if f
(

U i,g

)

< f
(

Xi,g

)

Xi,g otherwise
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Methodology
Proposed multi‑variant differential evolution algorithm.  Differential evolution (DE) algorithm36 is 
a promising tool that can be regarded to deal with complicated high-dimensional problems with enhanced search 
qualities. DE algorithm is selected here to use as a search engine because it has meaningful merits over other 
meta-heuristic methods in terms of robustness, effectiveness, and fast convergence characteristics in searching 
high-scale problems. On contrast, the premature convergence to local optima and fixed control parameters are 
the problems of DE37–39. Additional improvements are essential before using this method in practical prob-
lems to gain better performance. In this concern, a new algorithm named Multi-Variant Differential Evolution 
(MVDE) has been proposed as an almost parameter-free optimization method. The proposed approach was 
designed mainly to enhance the global search ability of the original DE, i.e., reducing the probability of trap-
ping in local optima and preventing the premature convergence. The proposed MVDE uses five different muta-
tion strategies integrated with two high random scaling factors (based on cosine and logistic distributions) to 
maintain the population diversity during the optimization process, thereby prevent premature convergence. 
Additionally, the proposed adaptive crossover integrated with adaptive selection to reduce the needs for tuning 
of the control parameters. The overall steps for proposed MVDE algorithm are shown in Fig. 1. The main stages 
of MVDE algorithm are listed below.

Initialization.  The proposed MVDE is designed as population-based meta-heuristic algorithm. It begins to 
solve d-dimensional optimization problem with initial solutions ( xj,i,0 , initial candidate population) produced 
randomly to overspread the restricted search space as best as possible as follows:

where, n is the population size, xmin
j  and xmax

j  are the minimum and maximum limits of the j-dimensional, and 
rand[0, 1] is a uniformly distributed random variable between 0 and 1 respectively.

In the next generation, MVDE goes in a cycle of iteration using a new single operation named multi-variant 
mutation-crossover process in order to create a new population. This process is associated with two proposed 
operators named self-adaptive scaling factor (incorporated with two different distributions and adaptive crosso-
ver operator) and adaptive parent selection. In the beginning, it is essential to explain the mutation-crossover 
process by describing its associated operators.

Self‑adaptive scaling factor.  Scaling factor F has substantial effect on the convergence speed as a favorable con-
trol parameter. With the progress of iterations, the speed of convergence can be generally enhanced by reducing 
gradually F . In40, a self-adaptive scaling factor of DE was introduced based on the elitist scheme of the learning 
rate to keep track of the fittest vector (i.e., the best individual is copied into the next generation). In spite of the 
widespread use of elitist scheme in GAs for attempting to help for fast convergence, it might be suffering from 
the problem of premature convergence. In41, biological genetic strategy has been proposed to inspire another 
adaptive scaling factor by changing (increasing or decreasing) F exponentially between pre-specified initial and 

(4)xi,j(0) = xmin
j + rand[0, 1] ·

(

xmax
j − xmin

j

)

∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}

Algorithm 1: MVDE algorithm
1:   Generate a uniformly distributed random initial population including n solutions that contain d 
variables using:
      = + [0, 1] ∙ ( ―  );

2:  Compute Xbest
3:  While termination condition is not satisfied
4:  For t=2 to g
5: Slope=t/2/g;   // mutation
6: for i < n
7: If rand > 3*Slope
8: ;  = ∙

11: End if 
12: // crossover = ( ) 

13: If CR > Slope
14: =CR ;            ∙∗  

15: Else
16: // selection = × (1 ― )

17: End if 
18: If t < 0.2*g      
19: ;  // DE/rand/2= + ( ― ) + ― )

20: Else
21: If t < 0.4*g
21:  // DE/rand/1 = + ( ― );

22: Else 
23: If t < 0.6*g
24: ;  // DE/target-to-best/1= + ( ― ) + ( ― )
25: Else
26: If t < 0.8*g
27:   // DE/best/2= + ( ― ) + ( ― );

28: Else
29: ; //DE/best/1= + ( ― )
30: End if
31: End for
32: End while
33:Return the best solution 

Figure 1.   Pseudo code of MVDE method.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17261  | https://doi.org/10.1038/s41598-020-74228-0

www.nature.com/scientificreports/

maximum scaling factors besides to two of adjustable elements. However, extra parameters have been involved 
by this adaptive scaling factor which need to be chosen or adjusted.

In this work, to enhance the adaptive and dynamic performance of MVDE, a new adaptive scaling factor is 
proposed. The values of random variables which are generated from two different probability distributions: cosine 
and logistic distributions are used to update the scale factor of each individual for each generation.

Proposed distributions.  The two parametric distributions with different thicknesses tails which can be identi-
fied completely are cosine and logistic distributions. Depending on the development of optimization operation, 
the probability of selecting each random generator is proposed.

In the first generations, F has a value with a high probability to be produced according to the cosine dis-
tribution. On the other hand, at the end of optimization, the probability of utilizing the logistic distribution is 
increased. Hence, both of these distributions are used simultaneously. Certainly, small and large values of inde-
pendent variables can be generated from each random distribution (i.e., symmetrical bell shaped distributions). 
Therefore, the control of the exploration (with large values) and the exploitation (with small values) are attempted 
to be supported by this proposed scheme for controlling the exploration– exploitation balance.

As shown in Fig. 2, the logistic distribution has a lighter tail than the cosine distribution. Therefore, sufficient 
disturbances are obtained by applying the heavy tail cosine distribution for spreading the population over the 
wide search space in the beginning of optimization operation. The cosine distribution is utilized instead of the 
normal distribution due to its qualified modeling the higher proportion of the heavy tail of the population for 
diversity conservation, which will avoid premature convergence. However, the lighter tail logistic distribution is 
used at the end of the optimization process to increase the exploitation ability. Therefore, the proposed adapta-
tions of the scale factor give the meaningful advantage for solving the exploration–exploitation problem during 
the complete optimization process. In41, the proposed two types of distributions that are used by the proposed 
MVDE have been introduced.

The cosine distribution  The cosine or half-cosine distribution is able to transact with cases where the central 
orientation is not obvious enough. In spite of that, it presents a low central orientation with a heavy tail in which 
samples appear likely nearby the limits of distribution compared to others such as normal distribution, as pre-
sented in Fig. 2. In the first iterations, the population diversity is increased by developing the scale factor which 
aims to assure those possible paths of the individuals have stretched/flattened over the search area (i.e., low central 
orientation). Indeed, the cosine distribution can achieve this objective. In addition, this distribution exhibits a 
significant abidance through range and limits and therefore is more practicable than intermittent distributions 
such as quadratic and trigonometric distributions. Hence, the use of cosine distribution is appropriate in cases 
which are restricted by finite limits and requires a low density around the center (i.e., the samples are scattered 
more equally). The probability density function (PDF) of the cosine is given by42,43:

 where ymax and ymin are maximum and minimum value of random variables, respectively, a =
(

ymax + ymin
)

/2 
is the mean (median, location, and mode), and b =

(

ymax − ymin
)

/π is scale parameter. The two parameters of 
the distribution are designed to be completely appropriate in the ambient of the problem of interest. Thus, the 
output of cosine distribution is limited in the range [−1, 1]. The variance of the proposed cosine distribution is 
about 0.19 and is calculated as 

(

ymax − ymin
)2(

π2 − 8
)

/4π2.

(5)f
(

y|a, b
)

=
1

2b
cos

(

y − a

b

)

ymin ≤ y ≤ ymax
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Figure 2.   The distributions of cosine and logistic.
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The logistic distribution  On the other hand, the logistic density curve is symmetrical, bell-shaped, and has a 
larger amplitude in the central area of distribution and lighter tails on the limits’ sides compared to the curve 
of cosine, as shown in Fig. 2. The probability density function (PDF) of the logistic distribution is given by44,45:

This stage involves increasing in exploitation strength whereas preserving some exploration for the problems 
which offer a large search space at the end of optimization. In the meantime, the location and scale parameters 
can identify the logistic distribution completely. In consequence, in this work, the scale parameter is set to 0.1 for 
achieving lighter tail with more exploitation. According to the values drawn from Gaussian distribution in the 
range [0, 1], the location parameter is shifted from zero to preserve the population diversity and offer adequate 
exploration capability till the end of the optimization process. The variance of the proposed logistic distribution 
is about 0.033 which is lesser than the cosine distribution and calculated as b^2 π^2/3.

Adaptive crossover operator integrated with scaling factor.  The use of low crossover rate or high scale factor 
produces large disturbances which are beneficial for population diversity but decrease the speed of convergence. 
The convergence will be rapid, but also premature if the contrary happens, so that, these operators can be valu-
able in case of integrating30. Hence, the crossover probability constant is chosen for linearly increasing across the 
track of iterations from nearby zero to 0.5, as follows:

where g is the generation (iteration /time) and G is the maximum generation. The available parts of the scaling 
factor is chosen by producing the binary crossover mapping matrix A with size n × d, as follows.

where Ind is a random number which is initialized for each jth element of the ith individual and is produced 
from the uniform distribution in the range [0, 1]. The above mentioned continuous scaling factor is mapped 
using the (0–1) matrix A as follows:

Observe that if Aij = 1 , then the scale factor holds its value, else its value is zero. Therefore, as the number of 
iterations increased, the number of elements that have zero value is increased in the scaling factor matrix in an 
effort for increasing the exploitation with time.

Adaptive elite selection mechanism.  Mutations schemes of the MVDE method need a suitable number of cho-
sen individuals to attend as parents in order to lead the search operation. So, the qualified parents of size Np , are 
chosen depending on the top-ranked solutions of the adaptive crossover rate as follows:

Depending on the strategy size, an acceptable number of parents is recognized among the qualified parents. 
The MVDE algorithm construction retains the ability to integrate and handle five mutation schemes.

Multi‑variant mutation‑crossover process.  The time horizon of the optimization process is divided evenly into 
five successive iterative sub-processes (phases/periods) after initialization. According to choose one of the five 
kinds of mutation schemes, the population in each phase is modified. During the first iteration, the solutions are 
updated utilizing the proposed less greedy evolution variants such as (DE/rand/k) to cover the search area and to 
recognize the encouraging areas by benefiting from their explorative capability. The less greedy variants discover 
the most encouraging area which is used to lead the search at the end of optimization operation to share more 
information among the used schemes through the greedy strategies such as (DE/best/k). To focus only on the 
optimal solution guiding to the desired rapid convergence, the low disturbances of these variants are essential.

According to previous suggestions, the chosen five mutation schemes incorporated with the updated scaling 
factor (i.e., includes crossover) are applied through mutation-crossover operation, as follows below.

Purely explorative stage.  Actually, the differences between population individuals are the basis of the distur-
bance utilized in all variants of the evolution. The “DE/rand/2” variant is the famous least greedy mutation 
scheme which has a top priority for exploration, and is applied to the first 20% of iterations, as follows:

where r1,r2,r3 , r4 , and r5 are five mutually limited random integers chosen from the range [1,Np ], and all vary 
from the mutated index i.

Two binary scaling factors are produced independently in this variant, therefore each element of the group 
member xi,j has the chance to search either through one of the parts of the previous equation, by both parts, or 
remain the same (the later chance increases during optimization progress). Several of these updated chances 
appear in the following other kinds.

(6)f
(

y|a, b
)

=
1

b
e

(

−
y−a
b

)
(

1+ e

(

−
y−a
b

)
)−2

−∞ < y < ∞

(7)CR = g/(2G)

(8)Aij = Indij ≥ CR ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}

(9)Fij = Fij · Aij ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}

(10)Np = n× (1− CR)

(11)xi,j
(

g + 1
)

= xr1,j
(

g
)

+ Fij
(

g + 1
)

.
(

xr2,j
(

g
)

− xr3,j
(

g
))

+ Fij
(

g + 1
)

.
(

xr4,j
(

g
)

− xr5,j
(

g
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More explorative stage.  The less greedy and explorative “DE/rand/1” variant is implemented in the next group 
of iterations as follows:

As a result of the existence of a single binary scaling factor, this scheme comprises only two updated chances.

Balanced stage.  The most appropriate current solution is integrated into the “DE/current-to-best/1” strategy 
for leading the search to the global optimal with more aesthetic rapid convergence (exploitative conduct). Differ-
ences between random solutions are utilized to balance such conduct for updating the robustness as explorative 
conduct. So, at the middle of the search area, this variant is applied to attain a good balance between exploration 
and exploitation as follows:

where xbest is the best individual over the whole current generation g . This scheme holds the four kinds of updated 
chances revealed in “DE/rand/2”.

More exploitative stage.  The population in the next sub-domain handled due to the greedy and exploitative 
“DE/best/2” variant where the four kinds of updated chances are available as follows:

Purely exploitative stage.  At last, the positions of the population are updated by implementing the highly 
greedy and exploitative “DE/best/1” variant during the last sub-iterations as follows:

According to the description and difficulty of the problem, the above mentioned mutation schemes can be 
redescribed or reduced, respectively. At the end of each generation, the mutated individuals compared to the 
previous population, and the best solutions permitted for surviving to the next generation. We are the original 
source and the owners of this new algorithm. The original source code is available at (https​://www.mathw​orks.
com/matla​bcent​ral/filee​xchan​ge/70997​-mvde)46.

ANN model.  In this work, the optimization of the weights and structure of ANN is regarded by applying 
MVDE algorithm where each solution in the population of the MVDE holds both weight and structure solution. 
In this strategy, a specific fitness function which is dependent on the weights and structure of ANN is the base 
to measure inputs, different weights, number of hidden-layers, and number of nodes in each hidden-layer47.

The training phase consists of two main stages: structure optimization and weight update. The network 
structure is optimized during the training process by selecting important hidden nodes that minimize the output 
error. The weights of the network are updated by maximizing the diversity of the output from hidden nodes. The 
weight update stage is proposed to enhance the performance of the structure optimization48,49.

•	 Structure optimization: finding a compact topology with the minimum number of hidden nodes is the goal 
of the structure optimization stage. This can be achieved by choosing the important nodes from the network 
while neglecting the reminder.

•	 Weight update: selecting the most important hidden nodes from the initial network is proposed to produce 
a compact structure of the network during the structure optimization.

The selected hidden node is then divided into two new hidden nodes which have the same number of weight 
connections as their parents. The new weight connections are calculated as follows:

where w is the weight of the existing node, and w1 and w2 are the weights of the two produced nodes. To avoid a 
large change in the existing network functionality, the value of θ should be within small range.

The search process can be accelerated by identifying the suitable number of hidden nodes in ANN architecture.

Solution representation.  In this work, two one-dimensional vectors are considered for solution representation. 
One vector describes the structure solution which holds binary values of 0 and 1 while another vector contains 
weights and biases with real numbers in range [−1, 1]. The first vector has three sections; two sections are for the 
number of hidden-layers and the number of nodes in each of these layers which occupy three cells each. These 
three cells also keep the binary values of the number of hidden-layers and the number of nodes in each of these 
layers47.

The feature selection section is added to the structure solution representation for classification since the val-
ues of the input nodes, and the number of input nodes is essential which its dimension is equal to the number 
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of features in the dataset. The ith feature in the complete feature set is held in the subset of a selected feature if 
the value of ith in this section is equal to 1 while the subset of selected feature does not contain this feature if 
the cell presents 0 value.

For weights and biases, the second vector contains weights and biases in real values in which the number of 
them is calculated based on the structure solution48.

Fitness function.  The use of an effective fitness function is necessary to select a solution that minimizes the 
objective function and to evaluate the quality of it in successive iterations. In this paper, the fitness function is 
used to minimize the classification error, the number of selected features, and the size of ANN with good gen-
eralization capability which is calculated by the average of the error ε, the ration of the selected features, and the 
ration of the number of weights and biases (connections). The classification error which presents the percentage 
of misclassified training samples is calculated as follows:

where np is the number of samples, and yi and yi are the target and actual output of the network respectively. The 
second part of the fitness function evaluates the ration of the selected features is as follows:

where ns is the number of the selected features and nf  is the number of the complete set of features. The third part 
is the number of connections (weights and biases) evaluated by the fitness function as follows:

where nc is the total possible number of connections that are utilized by the network, wi is the active number of 
the weights, and bi is the active number of biases connections. Thus the fitness function f (s) of the solution s is 
calculated as follows:

where a1 and a2  are user-defined constants within the range of 0 and 1 which are utilized to control the signifi-
cance of three terns of fitness calculation and they are set to 0.1 in this work.

Results and discussion
Classification problems are implemented using MATLAB R2017a software on Windows 10 and executed on a 
PC with an Intel Core i7-5600U processor of 2.6 GHZ 8.0 GB. The maximum number of iterations is set to 100 
and the population size is set to 40.

Fifteen classification datasets are evaluated using the MVDE method. The datasets are from different 
sources49–52. Datasets with different issues of instances and attributes are chosen for validating MVDE. Four 
heuristic algorithms: DE, CSO, WOA, SCA, and PSO algorithms are used to compare and valuate with the 
MVDE. Table 1 outline the description of the datasets.

(18)E
(

p
)

=
100

Np

Np
∑

i=1

(yi − yi)

(19)Rf =
ns

nf

(20)Pc =
1

nc

nc
∑

i=1

(wi + bi)

(21)f (s) = E
(

p
)

+ a1 ∗ Rf + a2 ∗ Pc

Table 1.   Description of datasets.

Dataset Number of instances Number of features Number of classes

Iris 150 4 3

Australian credit 690 14 2

German credit 1000 24 2

Glass 214 9 6

Hillvalley 606 100 2

Ionosphere 351 34 2

Waveform 5000 40 3

Spambase 4601 57 2

Vehicle 846 18 4

Arrhythmia 452 279 16

Wine 178 13 3

Zoo 101 16 2

Wisconsin Breast Cancer 699 9 2

Heart Statlog 270 13 2

WBCD 569 31 2
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The performance of the proposed algorithm and compared methods for finding solutions are measured using 
eight metric indices. The metric indices are the average of classification accuracy, best, mean, worst, standard 
deviation (Std), the number of selected features, complexity of the network (active number of connections/total 
number of connections), and time cost (Seconds) of solutions for denoting the sturdiness and firmness of all 
implemented methods. The chance to find optimal solutions is increased when candidate solutions broadcast 
over a wide area of search space. Moreover, the average ranking test is used to judge the performance of MVDE 
and other methods. The best results for all algorithms using different metric indices are presented in bold.

In Fig. 3 which indicates the convergence rates of different methods for various datasets, the MVDE algorithm 
achieves better performance compared to other methods. The convergence rates of MVDE algorithm are rapid 
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Figure 3.   Convergence curves for datasets by different optimizers.
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compared to the other algorithms except in case of arrhythmia, ionosphere, and WBCD datasets where DE algo-
rithm is the faster and competes MVDE. Besides, the compared algorithms; CSO, WOA, and SCA contend each 
other to converge in various benchmarks and converge slowly than MVDE. Mainly, the MVDE is an impactful 
algorithm to use in various datasets which are utilized in this study.

Table 2 outlines the average classification accuracy which indicates the performance on test data for all data-
sets using the selected features from different algorithms. We can observe from the table that MVDE is the best 
performing over all other optimizers except in Australian and zoo datasets where DE is doing better than MVDE. 
The solutions that have the best average of fitness maximizes the accuracy of the classification and minimizes the 
selected features’ number is presented in Table 3 which indicates that the best solutions are attained by the MVDE. 
Considering these results, MVDE has the capability for searching the area of space adaptively outperforms the 
other algorithms. The average mean and worst solutions are presented in Tables 4 and 5. These results assure the 
superiority of MVDE over compared algorithms.

Table 6 shows the results of standard deviations for the achieved values of the fitness to investigate the firm-
ness and sturdiness among compared methods with MVDE. From the results, we can observe that the MVDE 
outperforms the compared methods due to the faintness of the compared methods for exploring and exploiting 
the search space.

We can conclude that the MVDE is an outstanding method with various benchmarked problems which attains 
the best results of different metric indices to avoid trapping in local minima.

The average of selected features are outlined in Table 7 for all compared methods. The number of the selected 
features is minimized better using the SCA algorithm than others algorithms. Moreover, the MVDE is doing 
better also and comes in the second place of selecting features number ranking.

Table 2.   Average classification accuracy of different optimizers.

Dataset MVDE (%) DE (%) CSO (%) WOA (%) SCA (%) PSO (%)

Iris 95.556 94.074 95.556 92.593 92.593 87.407

Australian Credit 88.245 88.406 86.473 85.99 87.762 76.49

German credit 73.333 73.111 71.444 72.333 73 72

Glass 96.875 93.229 90.104 93.75 93.229 48.438

Hillvalley 55.678 51.832 51.648 51.465 48.901 49.451

Ionosphere 86.032 85.714 82.857 76.19 79.365 81.905

Waveform 85.867 85.933 82.489 74.733 78.022 80.733

Spambase 80.507 77.488 76.014 69.13 69.396 76.329

Vehicle 75.556 68.571 68.889 62.54 66.825 41.905

Arrhythmia 82.843 80.147 79.167 80.637 78.676 61.029

Wine 96.855 96.855 91.195 89.308 95.597 94.969

Zoo 96.667 97.778 93.333 76.667 91.111 52.222

Wisconsin Breast Cancer 96.508 96.508 93.968 94.286 95.079 94.127

Heart Statlog 84.362 83.128 80.658 81.481 78.189 76.543

WBCD 95.322 93.567 90.448 86.355 83.821 92.398

Table 3.   Best fitness function of different optimizers.

Dataset MVDE DE CSO WOA SCA PSO

Iris 0.097706 0.097706 0.097706 0.10723 0.10723 0.097706

Australian credit 0.17464 0.17257 0.19742 0.19742 0.19949 0.1498

German credit 0.26532 0.27389 0.30968 0.34397 0.3396 0.30532

Glass 0.077143 0.090476 0.097143 0.097143 0.11048 0.61048

Hillvalley 0.43575 0.48076 0.46119 0.48287 0.50105 0.47982

Ionosphere 0.13072 0.13792 0.18763 0.21843 0.22735 0.16151

Waveform 0.15814 0.1606 0.19843 0.25231 0.24529 0.19806

Spambase 0.23977 0.25734 0.27371 0.31788 0.31459 0.27031

Vehicle 0.245 0.28385 0.31446 0.36791 0.34138 0.64092

Arrhythmia 0.15896 0.18663 0.22024 0.21307 0.22366 0.51454

Wine 0.044316 0.044316 0.052316 0.057673 0.052316 0.065673

Zoo 0.044359 0.044359 0.066607 0.066607 0.044359 0.3632

Wisconsin breast cancer 0.070926 0.079106 0.089331 0.085241 0.085241 0.087286

Heart Statlog 0.1713 0.1713 0.21433 0.22421 0.2295 0.23604

WBCD 0.070007 0.07252 0.10221 0.14303 0.14492 0.10332
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Table 4.   Mean fitness function of different optimizers.

Dataset MVDE DE CSO WOA SCA PSO

Iris 0.097706 0.10088 0.10405 0.11358 0.11358 0.11993

Australian credit 0.17947 0.18706 0.20294 0.19897 0.20225 0.19552

German credit 0.27201 0.27865 0.32775 0.35677 0.34389 0.32579

Glass 0.088254 0.10159 0.12381 0.14011 0.12381 0.61492

Hillvalley 0.46297 0.48652 0.48431 0.49354 0.50233 0.48287

Ionosphere 0.14803 0.15516 0.20863 0.2523 0.24632 0.17183

Waveform 0.16292 0.17024 0.2274 0.30933 0.2615 0.22268

Spambase 0.24966 0.26909 0.3049 0.34258 0.33572 0.28404

Vehicle 0.27032 0.31729 0.34655 0.40043 0.37388 0.64266

Arrhythmia 0.18092 0.18713 0.22717 0.22075 0.22955 0.52104

Wine 0.044316 0.054102 0.078983 0.092549 0.065649 0.083011

Zoo 0.044359 0.047955 0.074695 0.15019 0.04919 0.3632

Wisconsin breast cancer 0.075016 0.081151 0.094784 0.094103 0.088649 0.087968

Heart Statlog 0.17483 0.18986 0.25522 0.24537 0.23832 0.24142

WBCD 0.077392 0.083472 0.11735 0.17577 0.16586 0.11169

Table 5.   Worst fitness function of different optimizers.

Dataset MVDE DE CSO WOA SCA PSO

Iris 0.097706 0.10723 0.10723 0.11675 0.11675 0.14532

Australian credit 0.18706 0.20363 0.2057 0.20001 0.2057 0.27041

German credit 0.27826 0.28817 0.33817 0.36675 0.34675 0.33675

Glass 0.097143 0.12381 0.15714 0.18603 0.14381 0.61714

Hillvalley 0.48114 0.49231 0.49703 0.51057 0.50415 0.4853

Ionosphere 0.16558 0.18465 0.21984 0.28753 0.268 0.17884

Waveform 0.16717 0.18666 0.25702 0.34845 0.27831 0.24607

Spambase 0.26555 0.2849 0.3453 0.37594 0.36911 0.29942

Vehicle 0.31643 0.345 0.37834 0.42875 0.42867 0.64365

Arrhythmia 0.19239 0.18783 0.23128 0.23272 0.23355 0.52599

Wine 0.044316 0.060316 0.11632 0.15166 0.076316 0.10334

Zoo 0.044359 0.055147 0.084133 0.19468 0.058852 0.3632

Wisconsin Breast Cancer 0.077061 0.083196 0.099556 0.099556 0.093421 0.089331

Heart Statlog 0.17659 0.21363 0.27837 0.27183 0.24537 0.24537

WBCD 0.085083 0.093273 0.14716 0.20373 0.19769 0.119

Table 6.   Standard deviation of different optimizers.

Dataset MVDE DE CSO WOA SCA PSO

Iris 0.0 0.0054986 0.0054986 0.0054986 0.0054986 0.023968

Australian Credit 0.0066554 0.015631 0.0047814 0.001373 0.0031626 0.065379

German credit 0.0064815 0.0082479 0.015708 0.011648 0.0037796 0.017747

Glass 0.010184 0.019245 0.030551 0.044518 0.017638 0.003849

Hillvalley 0.02401 0.005773 0.020056 0.01491 0.0016178 0.0027902

Ionosphere 0.017431 0.025662 0.018201 0.034573 0.02046 0.0091206

Waveform 0.0045368 0.014295 0.029303 0.050504 0.016522 0.024031

Spambase 0.013894 0.014223 0.036675 0.029979 0.029251 0.014626

Vehicle 0.039991 0.030975 0.031941 0.030635 0.047725 0.0015157

Arrhythmia 0.019029 0.00062295 0.006037 0.010501 0.0052074 0.0058749

Wine 8.4984e−18 0.0085771 0.033307 0.051465 0.01222 0.019013

Zoo 0.0 0.0062283 0.0088404 0.072437 0.0083674 0.0

Wisconsin Breast Cancer 0.003542 0.002045 0.0051464 0.0077422 0.004257 0.0011807

Heart Statlog 0.0030548 0.021639 0.035517 0.024246 0.0080821 0.0048312

WBCD 0.0075424 0.010424 0.025819 0.03063 0.028016 0.0078903
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The consuming time is introduced in Table 8. The SCA algorithm executes at the lowest period of time com-
pared to other methods. This means that it is a rapid algorithm to be executed whereas the MVDE, DE, and PSO 
algorithms are contested to execute in small time. On the other hand, CSO and WOA are high consuming time.

In the case of the complexity of the network, Table 9 outlines the complex network of different optimizers. The 
results show that MVDE and SCA methods outperform in using the least connections of the network. Therefore, 
MVDE has the ability for training the ANN using a fewer complexity of the network model by a high accuracy.

In a conclusion, the judgment on the different optimizers are presented in Table 10 to rank and order every 
compared algorithm. From this table, the MVDE algorithm is graded in the first place for all metric indices 
excluding the average number of selected features, consuming time, and complexity of the network.

Table 11 indicates the results using KNN classifier, which MVDE average classification accuracy results using 
KNN classifier are better than using ANN classifier in some datasets and vice versa. The values’ range of average 
fitness, mean, worst, standard deviation are different using KNN classifier than using ANN classifier due to the 
differences between the two classifiers. Execution time using KNN classifier is more than using ANN classifier, 
which means that KNN classifier is a time consuming method compared to ANN classifier. Some of classification 
methods just work with some of the data or applications better than others.

To authenticate the performance of the MVDE technique, the comparison among the MVDE and the lately 
four published algorithms by other researchers is presented in Table 1223,24,27–30. Eleven datasets that are common 
among this study and the compared studies in the recent researches. The results due to the comparison among 
the MVDE and the methods in the literature review indicate that the MVDE outperforms the other four methods 
on iris, Australian credit, German credit, hillvalley, and waveform datasets. In contrast, a slight bad performance 
of classification on ionosphere, vehicle, wine, zoo, WBC, and heart datasets. For the heart benchmark, MVDE 

Table 7.   Average selected features of different optimizers.

Dataset Original features MVDE DE CSO WOA SCA PSO

Iris 4 2 2 2 2 2 2

Australian credit 14 5 5 5 5.3333 5 5.3333

German credit 24 8.3333 8 8.6667 8.3333 8 8

Glass 9 3 3 3 3.6667 3 3

Hillvalley 100 32.6667 35 36.3333 36.3333 30.3333 36

Ionosphere 34 14.6667 12 13.6667 14 11 16.6667

Waveform 40 12.3333 12.6667 15.6667 16 12.3333 18.3333

Spambase 57 21.3333 20.6667 26 20 18.3333 23.6667

Vehicle 18 6.6667 7 9 6.6667 6.3333 7.3333

Arrhythmia 195 81.3333 75.6667 74.3333 62.3333 68.6667 68

Wine 13 4 4.3333 4 5.6667 4 6

Zoo 16 5 5.3333 6 6.6667 5 5

Wisconsin Breast Cancer 9 3 3 3 3 3 3

Heart Statlog 13 4 4.3333 7 4 4 5

WBCD 31 10.6667 11 12.6667 15.3333 10 13.6667

Table 8.   Execution time in seconds of different optimizers.

Dataset MVDE DE CSO WOA SCA PSO

Iris 1.28 1.28 6.44 1.46 0.82 1.50

Australian credit 9.07 8.17 51.15 4.93 2.16 9.58

German credit 14.51 12.20 121.49 15.10 6.47 12.78

Glass 2.08 2.03 12.73 1.94 1.14 1.94

Hillvalley 49.20 58.81 571.89 679.02 16.32 50.96

Ionosphere 9.43 9.50 84.13 12.26 2.22 8.04

Waveform 99.82 115.73 1278.06 108.78 20.61 124.62

Spambase 146.18 169.16 2344.56 243.35 32.25 208.75

Vehicle 8.92 7.81 63.74 8.20 2.28 7.37

Arrhythmia 192.56 190.88 2015.80 17,241.83 64.17 126.34

Wine 1.85 2.14 14.15 2.55 0.97 3.01

Zoo 1.66 1.53 10.31 1.17 0.75 1.36

Wisconsin Breast Cancer 5.36 5.20 35.18 4.37 1.87 6.29

Heart Statlog 3.25 3.13 21.45 2.37 1.28 3.15

WBCD 11.40 11.39 108.58 11.34 3.06 12.13
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attains well performance of classification over one method, but worse than the other one. On the other side, 
the MVDE chooses a fewer number of features compared to all other algorithms for all benchmarks. However, 
it selects a slight more selected features’ number on ionosphere dataset than only one method. In addition, the 
computational time that is achieved by MVDE algorithm is typically shorter for all datasets except for WBC 
dataset since the number of selected features is smaller. Additionally, the results validate that the MVDE algo-
rithm’s performance is competitive to the state-of-the art algorithms. MVDE benefits from the advantages of DE 
algorithm in addition to the modifications applied to it for overcoming DE drawbacks. MVDE is a parameter 
free optimization method with a high performance and applicable to deal with complex high-dimensional prob-
lems. The design of MVDE algorithm with multi variant mutation and adaptive scaling factor help it to select 
the optimal number of features used for classification which has an impact on the accuracy of the classification.

Table 9.   Complexity of the network for different optimizers.

Dataset MVDE DE CSO WOA SCA PSO

Iris 0.3818 0.3818 0.3818 0.3818 0.3818 0.3818

Australian Credit 0.1677 0.1677 0.1677 0.1677 0.1677 0.1677

German credit 0.1341 0.1341 0.1341 0.1341 0.1341 0.1341

Glass 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714

Hillvalley 0.0953 0.1282 0.0953 0.1503 0.0953 0.1353

Ionosphere 0.1871 0.1412 0.2125 0.1871 0.1207 0.2125

Waveform 0.1366 0.1031 0.1748 0.1552 0.1031 0.1957

Spambase 0.1593 0.2031 0.1459 0.1593 0.1208 0.2521

Vehicle 0.1417 0.1417 0.4049 0.1835 0.1417 0.1417

Arrhythmia 0.2022 0.1799 0.1757 0.1174 0.0974 0.1072

Wine 0.1355 0.1921 0.1355 0.4212 0.1355 0.2586

Zoo 0.1311 0.1311 0.1311 0.1311 0.1311 0.1311

Wisconsin Breast Cancer 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714

Heart Statlog 0.1355 0.1355 0.1921 0.2586 0.1355 0.2586

WBCD 0.1442 0.1442 0.1216 0.1442 0.1216 0.2236

Table 10.   Average of the ranks for different optimizers.

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Average rank Final rank

MVDE 1.3 1.366667 1 1.066667 2.5 3.066667 3.566667 3.3 2.145834 1

DE 2.033333 2.1 2.133333 2.166667 3.033333 3.3 3.233333 3.4 2.675 2

CSO 3.833333 3.7 4.166667 4.1 4.566667 4.266667 5.866667 3.533333 4.254167 5

WOA 4.5 4.766667 5.166667 5.2 4.766667 4.133333 3.466667 4.1 4.5125 6

SCA 4.333333 4.833333 4.4 4.3 3.233333 2 1 2.366667 3.308333 3

PSO 5 4.233333 4.133333 4.166667 2.9 4.233333 3.7 4.3 4.083333 4

Table 11.   Average values of different metrics using KNN classifier for MVDE.

Dataset
Classification 
accuracy (%) Best fitness Mean fitness Worst function Std

Number of 
features Execution time

Australian credit 88.937 0.71071 0.71243 0.7151 0.00236 5 78.63

German credit 78.567 0.7528 0.75819 0.7655 0.00656 8 92.50

Hillvalley 59.944 0.8583 0.8624 0.86455 0.00357 30 77.44

Ionosphere 93.81 0.6738 0.67602 0.6790 0.00272 11 50.04

Waveform 84.473 0.7106 0.71188 0.7130 0.00121 12 880.13

Arrhythmia 56.889 0.8856 0.88744 0.8891 0.00175 59 82.86

Wisconsin Breast 
Cancer 97.647 0.6623 0.66234 0.6623 0.0000 3 65.58

Heart Statlog 86.543 0.7039 0.70458 0.7058 0.00106 4 51.20
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Conclusion
This work presents a novel optimization algorithm (MVDE), which has multi variant mutation with adaptive 
scaling factor is developed by integrating adaptive crossover rate with mutation factors and adaptive selection 
of parent to achieve better performance. The performance of the MVDE algorithm is verified using fifteen real-
world problems to ensure its stability, quality, and simplicity. In this paper, the performance and the complexity 
of the ANN for training process are optimized simultaneously. Different weights, biases, number of nodes of the 
hidden layers, and selecting inputs during the search process have the opportunity to be checked by providing 
this method. So, an effective model of ANN with low complexity and classification error has the chance to be 
found. The goal challenge to balance between exploration (diversification) and exploitation (intensification) is 
achieved utilizing the MVDE and a varied population is preserved through iterations.

The evaluation is implemented using a set of evaluation criteria to evaluate different aspects of the MVDE 
algorithm. In addition, DE, CSO, WOA, and SCA methods are applied to solve the problems and to compare 
the results to MVDE method. The results of the methods in the literature review and the MVDE algorithm are 
compared to evaluate the performances.

The investigative results infer that the MVDE optimization method is a useful and an appropriate technique 
to classify data and can move to a particular group of benchmarks. The results also investigate the ability of the 
MVDE algorithm for dodging the local minima better than the compared DE, CSO, WOA, and SCA meth-
ods. The performance of the selected features is promising and better for the features selected by the MVDE. 
Furthermore, the superiority of the MVDE performance is obviously detected for training ANNs in terms of 
evaluation metrics.

Table 12.   Comparison with other methods. Note: unavailable data are denoted as “–”.

Dataset Method Classifier Ave no. of features Ave accuracy Std Time (s)

Iris
Shunmugapriya et al.23 WEKA 3.6.3 2 95.1% – 2.04

MVDE ANN 2 95.556% 0.0 1.28

Australian Credit
Peng et al.27 SVM 8.2 87.3% – –

MVDE ANN 5 88.245% 0.0066554 9.07

German credit

Hancer et al.24 KNN 9.13 70.1% – –

Peng et al.27 SVM 12.3 70.33% – –

MVDE ANN 8.3333 73.333% 0.0064815 14.51

Hillvalley
Hancer et al.24 KNN 44.96 54.92% – –

MVDE ANN 32.6667 55.678% 0.02401 49.20

Ionosphere

Hancer et al.24 KNN 11.53 91.74% – –

Peng et al.27 SVM 16.1 96.6% – –

Mafarja et al.28 KNN 16.4 89.9% 0.007 2.899

Zawbaa et al.29 KNN – 83.6% – –

MVDE ANN 14.6667 86.032% 0.017431 9.43

Waveform

Mafarja et al.28 KNN 26.233 73.7% 0.003 123.546

Zawbaa et al.29 KNN – 83.6% – –

MVDE ANN 12.3333 85.867% 0.0045368 99.82

Vehicle
Hancer et al.24 KNN 7.73 77.88% – –

MVDE ANN 6.6667 75.556% 0.039991 8.92

Wine

Mafarja et al.28 KNN 8.8 98.9% 0.0 2.492

Zawbaa et al.29 KNN – 95.3% – –

MVDE ANN 4 96.855% 8.4984e−18 1.85

Zoo

Mafarja et al.28 KNN 9.167 99.3% 0.09 2.485

Zawbaa et al.29 KNN – 84.6% – –

MVDE ANN 5 96.667% 0.0 1.66

Wisconsin Breast Cancer

Shunmugapriya et al.23 WEKA 3.6.3 3 99.07% – 7.09

Mafarja et al.28 KNN 5 98% 0.001 3.537

Zawbaa et al.29 KNN 9 95.7% – –

Li et al.30 BABC 14.9 92.16% 0.0249 –

MVDE ANN 3 96.508% 0.003542 5.36

Heart Statlog

Shunmugapriya et al.23 WEKA 3.6.3 4 84.51% – 11.43

Mafarja et al.28 KNN 8.4 83.3% 0.004 2.803

Zawbaa et al.29 KNN 13 82.2% – –

MVDE ANN 4 84.362% 0.0030548 3.25
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