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Abstract
Background: The fusion protein RUNX1-CBFA2T1 associated with t(8;21)-positive acute
myeloid leukaemia is a potent inhibitor of haematopoetic differentiation. The role of RUNX1-
CBFA2T1 in leukaemic cell proliferation is less clear. We examined the consequences of siRNA-
mediated RUNX1-CBFA2T1 depletion regarding proliferation and clonogenicity of t(8;21)-positive
cell lines.

Methods: The t(8;21)-positive cell line Kasumi-1 was electroporated with RUNX1-CBFA2T1 or
control siRNAs followed by analysis of proliferation, colony formation, cell cycle distribution,
apoptosis and senescence.

Results: Electroporation of Kasumi-1 cells with RUNX1-CBFA2T1 siRNAs, but not with control
siRNAs, resulted in RUNX1-CBFA2T1 suppression which lasted for at least 5 days. A single
electroporation with RUNX1-CBFA2T1 siRNA severely diminished the clonogenicity of Kasumi-1
cells. Prolonged RUNX1-CBFA2T1 depletion inhibited proliferation in suspension culture and G1-
S transition during the cell cycle, diminished the number of apoptotic cells, but induced cellular
senescence. The addition of haematopoetic growth factors could not rescue RUNX1-CBFA2T1-
depleted cells from senescence, and could only partially restore their clonogenicity.

Conclusions: RUNX1-CBFA2T1 supports the proliferation and expansion of t(8;21)-positive
leukaemic cells by preventing cellular senescence. These findings suggest a central role of RUNX1-
CBFA2T1 in the maintenance of the leukaemia. Therefore, RUNX1-CBFA2T1 is a promising and
leukaemia-specific target for molecularly defined therapeutic approaches.
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Background
The chromosomal translocation t(8;21) (q22;q22), which
is associated with 10–15% of all cases of acute myeloid
leukaemia, fuses the DNA binding domain of the tran-
scription factor RUNX1 (also called AML1 or CBFα) to the
almost complete open reading frame of CBFA2T1 (also
named MTG8 or ETO) [1,2]. The resulting fusion protein
RUNX1-CBFA2T1 (AML1/MTG8, AML1/ETO) interferes
with haematopoetic gene expression by recruiting histone
deacetylases via N-CoR and mSin3 to promoters, thereby
inhibiting the transcription of the respective target gene
[3-7]. Moreover, by directly binding to and sequestering
transcription factors, such as SMAD3, C/EBPα or vitamin
D receptor, RUNX1-CBFA2T1 interferes with signal trans-
duction pathways controlling differentiation and prolifer-
ation [8-12]. Consequently, RUNX1-CBFA2T1 blocks
myeloid differentiation and promotes self-renewal of hae-
matopoetic progenitors [13-16].

The influence of RUNX1-CBFA2T1 on the control of pro-
liferation and apoptosis is less clear. On the one hand, its
ectopic expression in several cell types, including leukae-
mic cell lines such as U937, inhibits proliferation and
enhances apoptosis [13]. On the other hand, RUNX1-
CBFA2T1 may interfere with p53-dependent cell cycle
arrest and apoptosis by suppressing the p53-stabilizing
protein p14ARF [17]. RUNX1-CBFA2T1 expression sup-
ports the expansion of haematopoetic progenitor cells,
which has been mainly attributed to its anti-differentia-
tion capabilities, but which may also depend on a prolif-
eration supporting activity of RUNX1-CBFA2T1 [18-21].
RUNX1-CBFA2T1 alone is not sufficient to cause leukae-
mia [22,23]. Instead, secondary mutations have to be
acquired in addition to RUNX1-CBFA2T1 to induce leu-
kaemia [24-27].

Cellular senescence limits the proliferative capacity of
cells and is characterized by an irreversible G1 arrest [28].
Senescent cells cannot be stimulated with mitogens to
enter the S phase of the cell cycle. Nevertheless, senescent
cells are still viable and metabolically active [29]. They can
be distinguished from non-senescent cells by the expres-
sion of senescence-associated β-galactosidase activity,
which can be detected at slightly acidic pH [30]. In the
case of replicative senescence, cells enter G1 arrest after
the telomeres have shortened below a critical length [29].
After exposure to stresses, cells may also undergo stress-
induced senescence instead of apoptosis or transient cell
cycle arrest [28]. The molecular mechanisms of senes-
cence are still very incompletely understood. However,
several regulators of cell cycle progression such as pRb,
p53 or the cdk inhibitors p16Ink4a or p27Kip1 are involved
in the establishment of senescence [31]. Furthermore,
overexpression of oncogenic H-Ras in murine embryonic
fibroblasts (MEFs) induce premature senescence in a

PML-dependent fashion [32,33]. Similarly, overexpres-
sion of RUNX1 in MEFs induces senescence likely by
upregulating p19Arf [17]. However, control of senescence
by an endogenously expressed oncogene such as RUNX1-
CBFA2T1 in t(8;21)-positive leukaemic cells has not been
shown yet.

The specific inhibition of gene expression by small inter-
fering RNAs (siRNAs) provides a new approach to investi-
gate the functions of oncogenes in the development of
cancer, thereby complementing other approaches such as
ectopic (over-) expression [34-36]. We and others have
used siRNAs to specifically down-modulate leukaemic
fusion genes such as BCR-ABL or RUNX1-CBFA2T1
[14,37-39]. We have shown that the siRNA-mediated
depletion of RUNX1-CBFA2T1 led to a sensitization
towards myeloid differentiation inducing agents such as
TGFβ and vitamin D3 [14]. Here, we report the conse-
quences of RUNX1-CBFA2T1 depletion on CD34 expres-
sion (a surface marker, indicator of differentiation), for
the proliferation and clonogenicity of in t(8;21)-positive
leukaemic cell lines. We demonstrate that RUNX1-
CBFA2T1 supports the clonogenicity and proliferation of
t(8;21) positive Kasumi-1 cells by interfering with the
establishment of cellular senescence.

Methods
siRNAs
The siRNAs siAGF1 and siAM targeting the fusion site of
the RUNX1-CBFA2T1 mRNA, the mismatch control
siAGF6, and the unrelated controls targeting luciferase
(siGL2) (for sequences see ref. 13) or MLL-AF4 (siMLL14;
sense 5'-AAA CCA AAA GAA AAG CAG ACC-3', antisense
5'-GGU CUG CUU UUC UUU UGG UUU UU-3') were
synthesized by either Alnylam Europe AG (Kulmbach,
Germany) or MWG Biotech (Ebersberg, Germany) and
hybridized as described [14].

Cell culture and siRNA transfection
The t(8;21)-positive acute myeloid leukaemia (AML) cell
lines Kasumi-1 (Deutsche Sammlung für Mikroorganis-
men und Zellkulturen (DSMZ) No. ACC 220) [40] and
SKNO-1 [41], and the t(8;21)-negative leukaemic lines
MV4-11 (DSMZ No. ACC 102), NB4 (DSMZ No. ACC
207), HL60 (DSMZ No. ACC 3), U937 (DSMZ No. ACC
5) and K562 (DSMZ No. ACC 10) were cultivated and
electroporated together with siRNAs as described
[14,42,43]. Briefly, cells were electroporated in 100–500
µl culture medium at a density of 5 × 106/ml in 4 mm elec-
troporation cuvettes. SiRNAs were added immediately
before electroporation. If not otherwise indicated, the
siRNA concentration during electroporation was 100 nM.
Electroporations were performed using a rectangle pulse
EPI 2500 electroporator (Fischer, Heidelberg, Germany;
http://home.eplus-online.de/electroporation).
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Parameters were 330 V and 10 ms (milliseconds) for
Kasumi-1 cells, and 350 V and 10 ms (milliseconds) for
all other cell lines. Fifteen minutes after electroporation,
cells were diluted twenty fold in culture medium and
incubated at 37°C, 5% CO2 and 92% humidity. Using
this protocol, we routinely observe less than 10% of dead
cells after electroporation with an siRNA transfection effi-
ciency close to 100% [14,42,43].

Immunoblotting
To obtain total cell lysates, cells were washed with phos-
phate-buffered saline, lysed in Urea lysis buffer (9 M urea,
4% (w/w) 3-[(3-Cholamidopropyl)-dimethylammonio]-
propansulfonat (CHAPS), 1% (w/w) Dithiothreitol) and
treated for 30 min on ice with 2.5 u/ml Benzonase
(Merck, Darmstadt, Germany). Total (10–20 µg) and
nuclear lysates (10 µg) were analyzed as described [14].
Band intensities were determined by scanning the
exposed films followed by quantification using the Image
Gauge 3.0 software (Fujifilm, Düsseldorf, Germany). The
following antibodies were used for detection: AML1/RHD
(2.5 mg/l; Oncogene Research PC285, Boston, USA); p27
C-19 (200 µg/l; Santa Cruz Biotechnology sc-9737; Hei-
delberg, Germany); Tubulin Ab-4 (1 mg/l, NeoMarkers
MS-719-P0, Fremont, USA).

Real-time RT-PCR
Total RNA was isolated using the RNeasy Kit (Qiagen,
Hilden, Germany). Reverse transcription was performed
with random hexamers using MMLV-RT, RNase H-

(Promega, Heidelberg, Germany) as suggested by the
manufacturer. Real time PCRs were performed using Sybr-
Green Mix (Applied Biosystems, Warrington, UK), 300
nM primers and 20% v/v diluted RT reaction mix using
standard conditions on a 7000 Sequence detection system
(Applied Biosystems, Foster City, CA, USA). The primer
sequences for STAT1 (5'-CAT CAC ATT CAC ATG GGT
GGA (forward primer) and 5'-GGT TCA ACC GCA TGG
AAG TC (reverse primer)), for CD34 (5'-TCC AGA AAC
GGC CAT TCA G (forward primer) and 5'-CCC ACC TAG
CCG AGT CAC AA (reverse primer)), for G-CSF (5'-CCC
ACC TTG GAC ACA CTG C (forward primer) and 5'-AGT
TCT TCC ATC TGC TGC CAG (reverse primer)) and for
GAPDH (5'-GAA GGT GAA GGT CGG AGT C (forward
primer) and 5'-GAA GAT GGT GAT GGG ATT TC (reverse
primer)) were designed with Primer-Express software
(Applied Biosystems, Foster City, CA, USA).

Proliferation, single cell expansion and colony formation 
assays
To determine proliferation rates and doubling times, cells
were counted using trypan blue. For single cell expansion
assays, 24 h after electroporation cells were diluted to a
density of 10 cells/ml and plated in 100 µl aliquots into
96 well tissue culture plates. Colony formation assays

were performed 24 h after electroporation with a density
of 5,000 cells/ml in semisolid medium (RPMI1640 con-
taining 20% fetal calf serum and 0.5625% methyl cellu-
lose). Colonies were counted 14 days after plating. The
cytokine concentrations were 20 ng/ml for G-CSF and
GM-CSF in the cell cycle and senescence assays, and 10
ng/ml for all growth factors in the colony formation
assays.

Cell cycle analysis
Cell cycle analysis was performed as described [44]. Four
days after electroporation, 106 cells were suspended in
200 µl citrate buffer (250 mM sucrose, 40 mM sodium cit-
rate pH 7.6) followed by the addition of 800 µl staining
solution (phosphate-buffered saline containing 20 mg/l
propidium iodide, 0.5% (w/w) NonIdet P40, 500 µM
EDTA) and 10 µl boiled RNase A (10 g/l). Cells were kept
for 30 minutes on ice and analyzed by flow cytometry
(FACSCalibur, Becton Dickinson, Heidelberg, Germany).
Data analysis was performed with FCSPress 1.3 http://
www.fcspress.com.

Analysis of apoptosis and of CD34 expression
For quantification of apoptotic cells, cells were stained
with FITC-labeled annexin V as suggested by the supplier
(Bender, Vienna, Austria). CD34 expression was moni-
tored by staining with anti-human CD34-FITC (clone
581, BD Pharmingen #555388, Heidelberg, Germany).
Analysis was performed by flow cytometry (FACSCalibur,
Becton Dickinson, Heidelberg, Germany) using FCSPress
1.3 http://www.fcspress.com for data analysis.

Results
Time course of RUNX1-CBFA2T1 protein depletion by 
siRNAs
Electroporation of t(8;21)-positive cells with the RUNX1-
CBFA2T1 siRNA siAGF1, but not with the mismatch con-
trol siRNA siAGF6, resulted in a three- to fourfold reduc-
tion of RUNX1-CBFA2T1 fusion protein in both Kasumi-
1 cells (fig. 1A, lanes 1–3) and SKNO-1 cells (fig. 1A, lanes
4–6). One day after electroporation with siAGF1, RUNX1-
CBFA2T1 protein levels were already reduced by 75% (fig.
1B). This finding suggests that RUNX1-CBFA2T1 protein
has a half-life of less than 24 hours. The depletion of
RUNX1-CBFA2T1 lasted for at least 7 days with a slow
recovery of RUNX1-CBFA2T1 protein levels from day 5 on
(fig. 1B), in agreement with the previously reported time-
course of siRNA-mediated RUNX1-CBFA2T1 mRNA
reduction [14].

Transfection with siRNAs may induce an interferon
response leading to non-specific effects on cellular proc-
esses such as proliferation or differentiation [45]. Since
STAT1 is an interferon-stimulated gene, and since several
siRNAs have been shown to induce STAT1 expression
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Depletion of RUNX1-CBFA2T1 protein by siRNAsFigure 1
Depletion of RUNX1-CBFA2T1 protein by siRNAs A. RUNX1-CBFA2T1 and RUNX1 protein levels in siRNA-treated 
Kasumi-1 and SKNO-1 cells. Nuclear lysates were prepared 4 days after electroporation with 100 nM siRNAs and analyzed by 
immunoblotting. The electroporated cells and siRNAs are indicated on top. Arrows on the right mark RUNX1-CBFA2T1 and 
RUNX1 proteins. Markers are shown on the left, and the relative ratios between RUNX1-CBFA2T1 and RUNX1 are indicated 
below the blot. B. Time course of siRNA-mediated RUNX1-CBFA2T1 depletion. Kasumi-1 nuclear lysates were isolated at the 
indicated days after electroporation with 100 nM siRNA and analyzed by immunoblotting. Values were normalized to the con-
trol siRNA siAGF6.
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[45], we examined a possible induction of STAT1 gene
expression by RUNX1-CBFA2T1 siRNAs or by mismatch
control siRNAs in Kasumi-1 cells. Neither the electropora-
tion with RUNX1-CBFA2T1 siRNA nor with the control
siAGF6 caused a substantial change in STAT1 mRNA levels
(data not shown), suggesting that these siRNAs do not
induce an interferon response in Kasumi-1 cells.

RUNX1-CBFA2T1 siRNAs decrease the clonogenic growth 
of Kasumi-1 cells
In comparison to mock-transfected cells, electroporation
with RUNX1-CBFA2T1 siRNAs resulted in a ten- to twenty
fold decreased clonogenicity in both single cell expansion
(data not shown) and colony formation assays (fig. 2).
Electroporation with the mismatch control siRNA siAGF6
affected the clonogenicity in neither of these assays. We
did not observe major differences in colony morphology.
However, the colonies derived from cells treated with
RUNX1-CBFA2T1siRNAs tended to be smaller in size than
those derived from control cells (data not shown).

We also examined the effects of RUNX1-CBFA2T1 siRNA
on the clonogenicity of AML cell lines not expressing
RUNX1-CBFA2T1. Colony formation of the t(8;21)-nega-
tive myeloid leukaemia cell lines MV4-11, NB4, HL60,
U937 and K562 was not affected upon electroporation
with RUNX1-CBFA2T1 siRNA (data not shown), which
argues against a general, unspecific effect of the siRNAs
used in this study on leukaemic clonogenicity. Therefore,
the application of RUNX1-CBFA2T1 siRNAs is sufficient
to inhibit the clonogenic growth of Kasumi-1 cells, indi-
cating that RUNX1-CBFA2T1 is essential for the clono-
genicity of these leukaemic cells.

RUNX1-CBFA2T1 depletion reduces CD34 expression
To examine the effects of RUNX1-CBFA2T1 on the pro-
genitor status of t(8;21)-positive leukaemic cells, we ana-
lyzed the CD34 expression levels in siRNA-treated
Kasumi-1 cells. When compared to mock-transfected
cells, depletion of RUNX1-CBFA2T1 caused a twofold
decrease in CD34 surface expression 7 days after electro-
poration (fig. 3). Control siRNA-treated cells contained
only slightly lower amounts of CD34 surface marker.

RUNX1-CBFA2T1 suppression inhibits proliferation in 
suspension cell culture
In contrast to its effects on clonogenicity, a single electro-
poration with RUNX1-CBFA2T1 siRNA was not sufficient
to substantially inhibit Kasumi-1 proliferation in suspen-
sion culture. However, repeating the electroporation every
three to four days strongly inhibited cell proliferation (fig.
4A). During a course of three to four electroporations with
or without mismatch control siRNA, the cell numbers
steadily increased with a doubling time of 3 days (fig. 4B).
RUNX1-CBFA2T1 siRNA treatment increased the dou-
bling time twofold. Therefore, repetitive siRNA applica-
tions causing a long-lasting RUNX1-CBFA2T1 depletion
inhibited cell proliferation of Kasumi-1 cells. These results
suggest that RUNX1-CBFA2T1 is essential for the prolifer-
ation of t(8;21)-positive leukaemic cells in suspension
culture.

RUNX1-CBFA2T1 suppression interferes with cell cycle 
progression
Next, we examined possible consequences of RUNX1-
CBFA2T1 depletion for the cell cycle distribution of
Kasumi-1 cells. Three days after an electroporation with
RUNX1-CBFA2T1 siRNA we observed 25% less cells being
in S phase (data not shown). Two or more consecutive
electroporations with RUNX1-CBFA2T1 siRNA caused a
reduction of the amount of S phase cells by 50% and a
30% reduction in G2/M phase cells, with a corresponding
increase of the G1/G0 fraction by 20% (fig. 4C). Treat-
ment of Kasumi-1 cells with the mismatch control siRNA
did not affect the cell cycle distribution.

RUNX1-CBFA2T1 depletion reduces the clonogenicity of Kasumi-1 cellsFigure 2
RUNX1-CBFA2T1 depletion reduces the clonogenicity of 
Kasumi-1 cells The columns represent the means of four 
independent experiments. Error bars indicate standard devia-
tions. ‡, p < 0.001 according to Student's t-test.
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The changes in the cell cycle distribution are associated
with changed expression levels of CDKN1B (p27Kip1), a
general inhibitor of Cyclin-CDK complexes and, thereby,
of cell cycle progression. Two electroporations with
RUNX1-CBFA2T1 siRNA caused a twofold increase in
CDKN1B protein levels in RUNX1-CBFA2T1-depleted
cells, but not in control cells (fig. 4D). Therefore, siRNA-
mediated inhibition of RUNX1-CBFA2T1 expression may
interfere with the transition of Kasumi-1 cells from the G1
to the S phase of the cell cycle.

RUNX1-CBFA2T1 controls apoptosis
A possible reason for the observed inhibition of prolifera-
tion is the induction of apoptosis upon suppression of
RUNX1-CBFA2T1. We addressed this possibility by exam-
ining the amount of apoptotic cells by annexin V staining
and of hypodiploid (subG1) cells by flow cytometry. Elec-
troporation of Kasumi-1 cells together with the RUNX1-
CBFA2T1 siRNA siAGF1 neither increased the amount of
hypodiploid cells nor the amount of annexin V positive
cells when compared to control cells. Instead, after siAGF1
treatment we observed a slight but reproducible decrease
in the amount of apoptotic cells in both assays. This
decrease was more pronounced after two consecutive elec-
troporations with siRNAs. Repeating the siAGF1 electro-
poration after 4 days resulted in a threefold decrease of the
amount of annexin V stained cells (fig. 5) indicating that
RUNX1-CBFA2T1 depletion has an antiapoptotic effect
on Kasumi-1 cells, and that the reduced proliferation
upon siRNA treatment is not related to increased
apoptosis.

RUNX1-CBFA2T1 siRNAs induce senescence in Kasumi-1 
cells
The observed G1 arrest upon RUNX1-CBFA2T1 depletion
could be either reversible or irreversible. An irreversible
G1 arrest is a hallmark of cellular senescence. To address
the question of the nature of the G1 arrest, and to analyze
a possible influence of RUNX1-CBFA2T1 on cellular
senescence, we stained siRNA- and mock-treated cells for
senescence-associated β-galactosidase activity. After two
or more electroporations with RUNX1-CBFA2T1 siRNA,
but not with control siRNA, a significant fraction of the
Kasumi-1 cells stain positive for β-galactosidase (fig. 6A).
Cell counting revealed up to 50% of senescent cells,
whereas mock or control siRNA treatment caused only a
minor increase in senescent cells compared to untreated
cells (fig. 6B). Therefore, depletion of RUNX1-CBFA2T1
results in an increase in cellular senescence. This implies
that the observed G1 arrest is irreversible for a major frac-
tion of RUNX1-CBFA2T1 siRNA treated cells.

Haematopoetic growth factors cannot rescue RUNX1-
CBFA2T1-depleted cells in the long term
A possible mechanism of how RUNX1-CBFA2T1 prevents
cell cycle arrest and senescence is the autocrine production
of growth factors. Kasumi-1 cells express, for instance, G-
CSF (fig. 7A), but not GM-CSF (data not shown). Depletion
of RUNX1-CBFA2T1 caused a twofold decrease in G-CSF
transcript levels (fig. 7A). Therefore, we examined whether
addition of haematopoetic growth factors rescued siRNA-
treated cells from cell cycle arrest and senescence.

RUNX1-CBFA2T1 depletion diminishes CD34 expressionFigure 3
RUNX1-CBFA2T1 depletion diminishes CD34 expression Seven days after electroporation with the indicated siRNAs, cells 
were analyzed for CD34 surface marker by flow cytometry as described in Material and Methods.
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RUNX1-CBFA2T1 depletion inhibits cell proliferation and G1-S transition in Kasumi-1Figure 4
RUNX1-CBFA2T1 depletion inhibits cell proliferation and G1-S transition in Kasumi-1 A. Proliferation curve of siRNA 
treated cells. Kasumi-1 cells were electroporated at days 0, 4, 8 and 12. Cell numbers were determined at the indicated days 
using trypan blue counting. Arrows indicate electroporations. B. Graphical representation of cell doubling times. The columns 
represent the means of three independent experiments. Error bars indicate standard deviations. *, p < 0.05 according to Stu-
dent's t-test. C. Graphical representation of the cell cycle phase distribution. Kasumi-1 cells were electroporated at days 0 and 
4, and were examined at day 8 using FACS analysis. The columns and error bars represent the mean values and standard devi-
ations of three independent experiments. †, p < 0.01 according to Student's t-test. C. RUNX1-CBFA2T1 suppression is associ-
ated with increased CDKN1B (p27Kip1) levels. After electroporation at days 0 and 4, total cell lysates were prepared at day 8 
and analyzed using immunoblotting. After CDKN1B detection, the membrane was stripped and reprobed with an anti-tubulin 
antibody. The siRNAs are indicated on top. Arrows on the left mark RUNX1-CBFA2T1, RUNX1, CDKN1B (p27Kip1) and 
tubulin proteins. The relative ratios between CDKN1B and tubulin are indicated below the blot.
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Depletion of RUNX1-CBFA2T1 for 16 days reduced the
fraction of S phase cells twofold compared to control cells.
This decrease is independent of G-CSF or GM-CSF (fig.
7B). When analyzing the cell cycle distribution siRNA or
mock-treated cells in dependence on the duration of
siRNA treatment, the fraction of S phase cells already
decreases within 4 days of leukaemic fusion protein
depletion and reaches its minimum after further 4 to 8
days (fig. 7C). Addition of G-CSF, and particularly of GM-
CSF delayed this decrease, but could not prevent it. Fur-
thermore, in RUNX1-CBFA2T1 siRNA treated cells,
neither G-CSF nor GM-CSF addition caused any substan-
tial change in the generation of senescent cells compared
to cells without growth factors (fig. 7D). In each setting,
the fraction of senescent cells increased from 2% at day 4
to 30–50% at days 12 and 16. Control groups contained
between 1–10% of senescent cells.

Finally, we examined the effects of several haematopoetic
growth factors on colony formation of siRNA-treated
Kasumi-1 cells. Supplementing the semisolid medium
with the corresponding growth factors increased colony
numbers for both control cells and RUNX1-CBFA2T1-
depleted cells (fig. 8). G-CSF enhanced colony formation
by control cells twofold, and by RUNX1-CBFA2T1-
depleted cells threefold, and GM-CSF three- and fivefold,
respectively. However, in comparison to control cells, nei-
ther G-CSF nor GM-CSF could completely restore colony
formation of RUNX1-CBFA2T1-depleted cells.

Taken together, the addition of G-CSF or GM-CSF delays,
but does not prevent the G1 arrest in RUNX1-CBFA2T1-
depleted cell. Furthermore, senescence is not inhibited by
these growth factors. In line with these findings, neither of
these growth factors completely restored the impaired clo-
nogenicity of such cells. These results indicate that neither
G-CSF nor GM-CSF can rescue leukaemic cells suffering of
siRNA-mediated RUNX1-CBFA2T1 depletion.

Discussion
The leukaemic fusion protein RUNX1-CBFA2T1 inhibits
haematopoetic differentiation by repressing gene expres-
sion via recruitment of histone deacetylases [4-7], and by
sequestering transcription factors such as C/EBPα, SMADs
or vitamin D3 receptor [8-11]. In addition, RUNX1-
CBFA2T1 inhibits cell proliferation by inducing apoptosis
in a variety of different cell types [13,46], in spite of
repressing the proapoptotic gene p14Arf [17]. The notable
exception are haematopoetic stem cells (HSCs); ectopic
expression of RUNX1-CBFA2T1 causes an increased clo-
nogenicity and results in their expansion both ex vivo and
in vivo [20,21]. In addition to the block of differentiation,
RUNX1-CBFA2T1 may also support proliferation, as, for
instance, RUNX1-CBFA2T1-expressing HSCs maintain
their telomere lengths and their CD34 expression [21].

Effects of RUNX1-CBFA2T1 and RUNX1 suppression on extent of apoptosis in Kasumi-1 cellsFigure 5
Effects of RUNX1-CBFA2T1 and RUNX1 suppression on 
extent of apoptosis in Kasumi-1 cells Kasumi-1 cells were 
electroporated at days 0 and 4, and were examined at day 8 
by annexin V and propidium iodide staining followed by 
FACS analysis. One of two experiments yielding very similar 
results is shown. The percentage of cells is given for each 
quadrant of the plots.
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RUNX1-CBFA2T1 siRNAs induce senescence in Kasumi-1 cellsFigure 6
RUNX1-CBFA2T1 siRNAs induce senescence in Kasumi-1 cells A. Senescence-associated β-galactosidase stained cells. 
Kasumi-1 cells were electroporated with siRNAs at days 0 and 4, and were examined at day 8 for senescence by staining for 
senescence-associated β-galactosidase. B. Quantification of cellular senescence. Cells were treated as above, and the ratio of β-
galactosidase positive cells was examined by counting. Error bars represent the standard deviations of single-blinded counts 
performed by three different experimentators. †, p < 0.01 according to Student's t-test
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Effects of growth factors on the cell cycle distribution and extent of senescence of siRNA-treated Kasumi-1 cellsFigure 7
Effects of growth factors on the cell cycle distribution 
and extent of senescence of siRNA-treated Kasumi-1 
cells A. Autocrine G-CSF expression in dependence on the 
siRNA treatment. Kasumi-1 cells were electroporated at 
days 0 and 4. Total RNA was isolated on day 8 and analyzed 
by real-time RT-PCR. The columns and error bars represent 
the means and standard deviations of three independent 
experiments. B. Cell cycle distribution of siRNA-treated cells 
in the absence and presence of growth factors. Kasumi-1 
cells were analyzed on day 8 by FACS analysis as described in 
Materials and Methods. C. Amount of S phase cells in 
dependence on the length of RUNX1-CBFA2T1 depletion. 
D. Amount of senescent cells dependence on the length of 
RUNX1-CBFA2T1 depletion. Growth factors are indicated 
below the graphs. The data shown in B, C and D were 
obtained from the same time course experiment. Cells were 
electroporated with the indicated siRNAs at days 0, 4, 8 and 
12, and were analyzed on days 4, 8, 12 and 16.

Influence of haematopoetic growth factors on the colony forma-tion of siRNA-treated Kasumi-1 cellsFigure 8
Influence of haematopoetic growth factors on the col-
ony formation of siRNA-treated Kasumi-1 cells Kasumi-1 
cells were electroporated with the indicated siRNAs, plated 
in semi-solid medium containing the indicated growth fac-
tors, and analyzed as described in Material and Methods. The 
columns and error bars represent the mean values and 
standard deviations of four to five independent experiments. 
†, p < 0.01; ‡, p < 0.001 according to Student's T test.
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We show that RUNX1-CBFA2T1 also supports prolifera-
tion, CD34 expression and colony formation in the
t(8;21)-positive leukaemic cell line Kasumi-1. Thus,
RUNX1-CBFA2T1 functions are similar in HSCs and in
Kasumi-1. In the latter, support of proliferation is not
caused by an inhibition of cell death. Instead, as observed
with many other cell types [13,46], RUNX1-CBFA2T1
expression is associated with a certain extent of apoptosis.
This observation disagrees with a report employing
ribozymes to interfere with RUNX1-CBFA2T1 expression
[47]. In contrast to our study, no clear reduction of either
fusion transcript or protein was shown. It may, thus, be
possible that the ribozyme effects observed in this study
are not related to a suppression of RUNX1-CBFA2T1.

The reduced proliferation of Kasumi-1 cells upon RUNX1-
CBFA2T1 depletion is paralleled by a cell cycle arrest in
G1. Particularly from a therapeutic point of view, it is
important to know, whether this G1 block will be relieved
by recovering RUNX1-CBFA2T1 expression, or by growth
factors, or whether this arrest is irreversible. We observe
that RUNX1-CBFA2T1 depleted cells show enhanced lev-
els of senescence-associated β-galactosidase activity, a
hallmark of cellular senescence. Therefore, the inhibition
of G1 to S transition is associated by the induction of
senescence indicating that this G1 arrest is irreversible.
Interestingly, the elevated levels of p27Kip1 (CDKN1B)
during RUNX1-CBFA2T1 depletion are in line with the
recently demonstrated central role of this CDK inhibitor
in the establishment of senescence [49,50].

Furthermore, RUNX1 was shown to induce senescence in
murine embryonic fibroblasts, probably by inducing
p19Arf [17]. Since RUNX1-CBFA2T1 inhibits the expres-
sion of p19Arf and of its human homologue, p14Arf [17],
an increased expression of this regulator of p53 may also
account for the induction of senescence in RUNX1-
CBFA2T1-depleted Kasumi-1 cells.

An important point to consider is a possible relation
between the effects of RUNX1-CBFA2T1 on clonogenicity,
proliferation and senescence, and its anti-differentiation
activity. For instance, increased β-galactosidase activity
may also be associated with late monocytic differentiation
[48]. Moreover, later stages of myeloid differentiation are
characterized by a stop of proliferation. Therefore, the
observed inhibition of proliferation upon RUNX1-
CBFA2T1 depletion might be directly related to myeloid
differentiation. Kasumi-1 and SKNO-1 cells express the
myeloid differentiation marker CD11b when treated with
RUNX1-CBFA2T1 siRNA in combination with TGFβ and
vitamin D3 [14]. However, in the absence of differentia-
tion inducers, even extended siRNA treatment only results
in a small fraction of less than 5% of CD11b-positive cells
[14], and data not shown) which cannot be accountable

for the up to 50% β-galactosidase positive cells. Neverthe-
less, depletion of RUNX1-CBFA2T1 causes an onset of
myeloid differentiation; therefore, a possible link between
the antiproliferative effects of RUNX1-CBFA2T1 suppres-
sion and early differentiation events cannot be entirely
excluded.

The haematopoetic growth factors G-CSF and GM-CSF
were shown to support clonogenicity and proliferation in
Kasumi-1 cells [40]. However, neither of these factors pre-
vented senescence in RUNX1-CBFA2T1-depleted cells.
Furthermore, G1-S transition was only transiently
restored; after extended terms of RUNX1-CBFA2T1 deple-
tion, the fraction of S phase cells also diminished in the
presence of G-CSF or GM-CSF. Finally, clonogenicity of
RUNX1-CBFA2T1-depleted cells was not completely
restored in the presence of G-CSF or GM-CSF. These
findings show that at least some haematopoetic growth
factors cannot rescue leukaemic cells treated with RUNX1-
CBFA2T1 siRNAs, and suggest that targeting of leukaemic
cells with such siRNAs in vivo might interfere with the
development and maintenance of leukaemia. However, a
remaining possibility might be that the stroma environ-
ment with its complex mixture of growth factors and cell-
cell interactions may be able to rescue RUNX1-CBFA2T1-
depleted cells. We are currently investigating this question
both in cell culture and in vivo.

A major point of concern for siRNA applications is the
specificity of the corresponding siRNA [51]. Reasons for
"off-target" effects may be (i) the siRNA-induced RNA
cleavage of transcripts with imperfect homology to the
siRNA [52,53], (ii) a possible competition with
endogenously expressed micro RNAs (miRNAs), which
may be involved in the control of, for instance, cell
differentiation, for RISC protein components [54], and
(iii) the induction of an interferon response [45,55].
However, neither RUNX1-CBFA2T1 siRNAs nor the mis-
match control siRNA affected the clonogenicity of five dif-
ferent leukaemic cell lines not carrying the translocation
t(8;21). Furthermore, expression of the interferon-induci-
ble gene STAT1 is not changed upon electroporation with
RUNX1-CBFA2T1 siRNA or mismatch control siRNA.
These results do not argue for general "off-target" effects
being responsible for the observed changes in cell prolif-
eration and clonogenicity of RUNX1-CBFA2T1 siRNA-
treated Kasumi-1 cells. Instead, the data suggest the
siRNA-mediated depletion of this leukaemic fusion pro-
tein as the cause for the observed phenotypic changes.

Conclusions
In summary, we show that RUNX1-CBFA2T1 does not
only inhibit the myeloid differentiation [14], but is also
essential for the proliferation and clonogenicity of the
t(8;21)-positive leukaemic cell line Kasumi-1 by interfer-
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ing with the establishment of senescence. Since this cell
line was derived from a patient suffering of leukaemia
refractory to chemotherapy [40], these findings suggest a
central role of RUNX1-CBFA2T1 not only in the
expansion of preleukaemic progenitor cells, but also in
the maintenance of the leukaemia. Moreover, they imply
that this leukaemic fusion gene is a promising target for
molecularly defined therapeutic approaches.
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