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Abstract: Chemo and radiation therapies are the most commonly used therapies for cancer, but
they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded
breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a
wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic
integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage.
Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the
response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by
the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA
damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in
controlling the gene expression and regulation of autophagy, which are indirectly involved with
individual development. The dysregulation of these functions can facilitate human tumorigenesis.
In this review, we summarized the origin and overview function of lncRNAs and highlighted the
roles of lncRNAs involved in the repair of DNA damage.
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1. Introduction

DNA damage is constantly caused by various endogenous and exogenous factors,
such as ionizing radiation, ultra-violet, reactive oxygen species (ROS), and genotoxic
drugs [1,2]. It is generally accepted that DNA damage is a potential threat to human health.
Human have evolved intricate mechanisms for the repair of DNA damage to sustain
genome stability, and homologous recombination (HR) and nonhomologous end joining
(NHEJ), as two major DSBs repair pathways, have been ubiquitously applied in cells [3,4].
If living organisms fail to accurately repair the damaged DNA in cells, the accumulation of
DNA damage will lead to serious consequences and, eventually, the occurrence of cancers
in the body. So, genomic integrity is essential for organism survival and for the inheritance
of traits to offspring. Long noncoding RNAs (LncRNAs) are an important class of RNA
transcripts, with over 200 nucleotides in length, which resemble protein-coding genes but
lack the ability for translation into proteins in general [5]. Hangauer et al. [6] reported that
over 10,000 lncRNA transcripts could be produced from the human genome, and some
lncRNAs were reported to play regulatory roles in various biological processes, ranging
from the innate immune response, cell cycle control, pluripotency, and differentiation to
disease [7–9]. Moreover, recent evidence showed that some lncRNAs such as NORAD and
GUARDIN could directly participate in the repair of DNA damage [9–11].

Different classes of lncRNAs were transcribed from several DNA elements, such as
enhancers, promoters, and intergenic regions, in eukaryotic genomes [12]. Iyer et al.
(2015) [13] reported that over 50,000 lncRNAs (designated MiTranscriptome lncRNAs)
could be generated in the human transcriptome from various tumors, normal tissues,
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and cell lines based on The Cancer Genome Atlas (TCGA; http://cancergenome.nih.
gov/). To date, 268,848 lncRNAs have been collected in the database of human lncR-
NAs (https://bigd.big.ac.cn/lncbook/index), which is far greater than the number of
protein-coding mRNAs (~20,000) in the genome. Unlike protein-coding mRNAs, lncRNAs
exhibit functional uniqueness by participating in and modulating various cellular processes,
including histone modification, DNA methylation, cellular transcription, the inflammatory
response, antiviral immunity, and repair of DNA damage [14–17]. Additionally, some lncR-
NAs also function as diagnostic markers and/or possible therapeutic targets. Therefore,
the understanding of biogenesis and the biological functions of lncRNAs is helpful for
disclosing their functional significance.

2. Biogenesis of lncRNAs in Eukaryotes

According to the diversity of noncoding RNAs, they can be divided into two main
types: structural noncoding RNAs and regulatory noncoding RNAs [8]. Structural noncod-
ing RNAs comprise of rRNAs and tRNAs, and regulatory noncoding RNAs are further
divided into three classes: small, medium, and long noncoding RNAs (Figure 1A) [18,19].
The biogenesis of lncRNAs is cell type- and stage-specific, which is under the control of
cell type- and stage-specific stimuli. Different classes of lncRNAs were reported to be tran-
scribed from different DNA elements, such as enhancers, promoters, and intergenic regions,
in eukaryotic genomes (Figure 1B). As we know, promoters and enhancers are essential
DNA elements in the control of gene expression networks. Some short-lived medium-
length lncRNAs can be transcribed from promoter upstream regions and enhancers by
RNA polymerase II (Pol II), and some lncRNAs can be bidirectionally transcribed from
enhancers by Pol II [20,21]. Additionally, some lncRNAs are transcribed by Pol II from
intergenic regions between two genes and represent the best-studied subclass of lncRNAs.
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Most annotated lncRNAs contain multiple exons and have typical mRNA-like features,
with a 5′ m7G cap and a 3′ poly(A) tail. These similarities existing between lncRNAs and
mRNAs provide the possibility that mature lncRNAs may behave similarly to mRNAs
in cells. In fact, this is not the truth. Due to a lacking of robust protein-coding potential,
lncRNAs are less evolutionarily conserved and less abundant. They exhibit more tissue-
specific expression and greater nuclear localization patterns. Additionally, a significant
difference was found among different lncRNAs varying in their sizes. In the database of
lncRNA (http://lncrnamap.mbc.nctu.edu.tw/php), the statistics of the lncRNA classes
show that there are 23,879 lncRNAs with length <1000 nt, 4985 lncRNAs with lengths
ranging from 1000 to 2000 nt, 1943 lncRNAs with lengths ranging from 2000 to 3000 nt,
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and 12 lncRNAs with lengths ranging from 9000 to 10,000 nt). Moreover, some lncRNAs
were found to be involved in the DNA damage response, which are summarized in Table 1.

Table 1. Different long noncoding RNA (lncRNA) involvement with DNA damage.

LncRNAs Accession
Number Functions Length (nts) Genome Refs.

NORAD NR_027451.1 Critical for genome stability 5378 Human [10]
GUARDIN NR_132738.1 Critical for genome stability 1003 Human [11]

LCPAT1 NM_018715.4 Involvement with DNA damage 4040 Human [17]
LINC00261 NR_001558.3 Activation of DDR 4924 Human [21]

Meg3 NR_046473.1 Regulation of DNA damage response 9701 Human [22]
DNM3OS NR_038397.2 Regulation of DNA damage response 7957 Human [23]

LINP1 NR_138480.1 facilitating DNA damage repair 838 Human [24]
DINO NR_144384.1 Efficient activation of p53 target genes 951 Human [25]

TODRA NR_040058.1 Promoting RAD51-dependent DSB repair 1156 Human [26]
DDSR1 KT318134.1 Modulating DNA repair by HR 1616 Human [27]
JADE KC469579.1 Functional linking with histone H4 acetylation 1721 Human [28]

NEAT1 MK562403.1 A common mediator for inflammasome stimuli 2713 Human [29]
ROR HG975412.1 A p53 repressor in response to DNA damage 2591 Human [30]

Note. DDR and HR are the abbreviations for DNA damage response and homologous recombination. DSB: double-stranded break. Refs is
the abbreviations for references.

3. Involvement in a Variety of Biological Functions

LncRNAs are characterized by the wide diversity, which is consistent with their
diverse roles in a wide variety of biological processes. LncRNAs can regulate gene expres-
sions at the levels of transcription and translation. Additionally, lncRNAs also participate
in several aspects of DNA damage response and genomic stability maintenance.

3.1. LncRNAs Participating in Transcription Regulation

Increasing evidence indicates that lncRNAs can function as transcriptional regulators.
Numerous lncRNAs have been reported to function in many cases as transcriptional
regulators, which can bind with different partners to exert their functions. Some lncRNAs
can bind to transcription factors and RNA polymerase II for the transcriptional regulation
of various genes. This action can be either in cis or in trans at the transcriptional level.
For example, PANDAR is known to interact with the nuclear transcription factor Y subunit
A (NF-YA), which can inhibit the expression of apoptotic genes [31]. Furthermore, Pospiech
et al. [32] reported that PTBP1 could interact with PANDAR, and the interaction was
confirmed to be involved in splicing regulation. Miao et al. [33] reported that the lncRNA
LEENE could facilitate the recruitment of RNA Pol II to the eNOS promoter to enhance the
eNOS nascent RNA transcription.

LncRNAs can be located within cellular compartments such as the nucleus, nucleo-
lus, and cytoplasm. Six thousand, seven hundred and sixty-eight GENCODE-annotated
lncRNAs across various compartments of 15 cell lines are collected in the database of
lncATLAS (http://lncatlas.crg.eu/). Of these, 31 lncRNAs can be detected in all samples
tested, and lncRNAs display a highly cell type-specific expression pattern [34]. The cellular
localizations of lncRNAs are indicative of their functions. Researches reported that most
lncRNAs were located in the nucleus and performed their functions through forming
complexes. For example, the lncRNA of Kcnq1ot1 is localized exclusively in the nuclear
compartment, which can interact with the G9a of a histone methyltransferase to facil-
itate the transcriptional silencing of target genes related to the development of mouse
placenta [35,36]. Some lncRNAs such as TUG1 and MALAT1/NEAT2 can bind with CBX4
to stimulate the sumoylation of the E2F1 growth factor, which can lead to activation of the
growth control gene [37]. Compared with nuclear lncRNAs, cytoplasmic lncRNAs are less
well-understood. Now, accumulating evidence indicates that cytoplasmic lncRNAs can
form complexes with diverse structural and regulatory functions. For example, NORAD

http://lncatlas.crg.eu/
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is an abundant 5.3-kb unspliced polyadenylated transcript that localizes predominantly
in the cytoplasm, and it can interact with PUMILIO proteins to facilitate the stability and
translation of mRNAs for the maintenance of genomic stability [38]. Lu et al. [39] reported
that lncRNA-DANCR could modulate mTOR expression by sponging miR-496 to facilitate
the progression of lung adenocarcinoma. Moreover, several p53-induced lncRNAs such as
TUG1 and PINT1 are involved in negatively regulating p53 targets [40,41].

Furthermore, lncRNAs also can modulate the expression of target genes at the level
of post-transcription. For example, Gonzalez et al. [42] reported that an evolutionarily
conserved nuclear antisense lncRNA could promote the epithelial-specific alternative
splicing of FGFR2 pre-mRNA. Additionally, several studies identified the involvement of
oncogenic nuclear lncRNA MALAT1 in alternative splicing regulation [43,44]. The lncRNAs
are summarized in Table 2. In a word, lncRNAs can regulate gene expressions via multiple
diverse mechanisms. However, the dysregulation may be directly involved with individual
development and tumorigenesis [45,46].

Table 2. LncRNA functions in transcription regulation.

LncRNAs Localization Potential Targets Functions Refs.

PANDAR Nuclear NF-YA Inhibition of apoptotic genes
expression [31]

PANDAR Nuclear PTBP1 Splicing regulation [32]
LEENE Nuclear Recruitment of RNAPII to the promoter Enhancement of eNOS transcription [33]

Kcnq1ot1 Nuclear G9a of histone methyltransferase Silence of genes related to mouse
placenta development [35]

TUG1 Nuclear CBX4 and E2F1 sumoylation Activation of growth control genes [37]
MALAT1/NEAT2 Nuclear CBX4 and E2F1 sumoylation Activation of growth control genes [37]

NORAD Cytoplasm PUMILIO Maintenance of genome stability [38]
DANCR Cytoplasm miR-496 Modulation of mTOR expression [39]

PINT1/TUG1 Cytoplasm P53 Negatively regulation of p53 targets [40,41]
MALAT1 Nuclear Unknown Alternative splicing regulation [43,44]

3.2. Involvement of lncRNAs in the Repair of DNA Damage

Several types of DNA damage, including single-stranded break, double-stranded
break, base mismatches, bulky adducts, and base alkylation, may be produced constantly
in the host cell [47]. The cellular damage will amplify the cascade signal, leading to cell
death or cancerization if they cannot be repaired immediately. Meanwhile, cells have
evolved the ability to repair the lesion and maintain genome integrity when the genome
of the host cell gets damaged. Although various lncRNAs were involved in the repair of
DNA damage, the underlying mechanism of DNA repair behind the phenomenon remains
insufficiently understood [48].

Many factors, including RNA-binding proteins and lncRNAs, can be recruited at
DNA damage sites, indicating that they may have important roles during the response
of DNA damage. To date, various lncRNAs have been shown to participate in the repair
of DNA damage, and these lncRNAs usually exert their functions via interactions with
protein complexes [48]. For example, Sharma and colleagues identified lncRNA DDSR1 as
a regulator of DNA repair by homologous recombination [27]. DINO, a conserved DNA
damage-inducible lncRNA, was identified as a new component for the stability of p53 and
the regulator of the p53-dependent DNA damage response [49]. LncRNAs CUPID1 and
CUPID2 were predominantly expressed in hormone receptor-positive breast tumors, which
can modulate the repair of double-stranded breaks by the NHEJ and HR pathways [50].
Jiao et al. [51] reported that X-ray-inducible LIRR1 with a 273-bp length could regulate
DNA damage response signaling in the human bronchial epithelial BEAS-2B cell line.
While the HR pathway requires a homologous template, the NHEJ pathway repairs DSBs
by directly ligating the ends. To better understand the roles of lncRNAs in the repair of
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DNA damage, the involvement of various lncRNAs in the repair of DNA damage are
summarized in Table 3.

Table 3. LncRNAs involved in DNA damage/repair. NHEJ: nonhomologous end joining.

lncRNA Localization Potential Targets Roles Refs.

NORAD Cytoplasm TOP1, RBMX, UMILIO Contribution of maintaining genomic stability [9,10]

LINC00261 Nucleus ATM kinase, TOP2A Activation of the DNA damage response [21]
Meg3 Nucleus Mdm2, PTBP3 Regulation of DNA damage response [22]

DNM3OS Exosome PDGFβ/PDGFRβ/FOXO1 Regulation of DNA Damage Response [23]
LINP1 Cytoplasm Ku80, DNA-PKcs Facilitation of DNA damage repair by NHEJ pathway [24]

TODRA Nucleus RAD51 Enhancement of RAD51-dependent DSB repair [26]
DDSR1 Nucleus BRCA1 and hnRNPUL1 Modulation of DNA repair by HR [27]
JADE Cytoplasm Histone H4 Induction of histone H4 acetylation in the DDR [28]
DINO Nucleus RRM2b, DDB2 Regulation of p53-dependent DNA damage response [49]

CUPID1 Nucleus Phosphorylated RPA Modulation of the Response to DNA Damage [50]
LIRR1 Nucleus KU70, KU80, and RAD50 Mediation of DDR and DNA damage repair. [51]

TP53TG1 Cytoplasm PI3K/AKT signal pathways Contribution of the p53 response to DNA damage [52]
ERIC Cytoplasm E2F1, E2F3 Modulation of the cellular response to DNA damage [53]

TERRA Nucleus TRF2, Suv39h1, ORC1 Telomere maintenance and genome stability [54]

3.3. Clinical Biomarkers in Cancer Patients

Mounting evidence suggests that the dysfunction of lncRNAs is implicated in a wide
variety of diseases, especially with cancer, and the distinct expression profiles of lncRNAs
are often used as biomarkers for disease types and stages [55–57]. LncRNA disease 2.0 is
freely available at http://www.rnanut.net/lncrnadisease/, in which more than 200,000
lncRNA–disease associations are collected. As of October 2020, a search in the National
Institutes of Health PubMed database with the keywords “long noncoding RNA” and
“Cancer” produced >14,126 publications. These lncRNAs can regulate various aspects of
cellular homeostasis, including the survival, proliferation, invasion, metastasis, and angio-
genesis of cancer cells. Furthermore, some lncRNAs can function as oncogenes or tumor
suppressors, and they were further summarized in a list by Chandra and Nandan [58].

HOTAIR and FAL1 can function as oncogenes, which are directly involved with the
occurrence and development of cancers [59–61]. HOTAIR was reported to be frequently
upregulated in various types of cancer, including breast cancer, esophageal cancer, lung can-
cer, gastric cancer, and melanoma [60,62]. Moreover, HOTAIR was further developed as a
diagnostic marker for lymph node metastasis [63]. Additionally, lncRNA small nucleolar
RNA host gene 1 (SNHG1) also functions as an oncogene in various human cancers [64].
Some lncRNAs were often found to be dysregulated in various of cancers, which were
potentially used as biomarkers in the diagnosis of cancer [65,66]. For example, MALAT1
showed a marked upregulation in lung cancer, breast cancer, colorectal cancer, bladder
carcinoma, and hepatocellular carcinoma [67]. Therefore, it could be used as a potential
biomarker for the early diagnosis of cancer, as well as prognosis.

As is well-known, some cancers have entered the middle and late stages when they
are discovered. Therefore, the early diagnosis of cancer in patients is key to providing
personalized treatment strategies, and it is promising to improve the clinical outcome.
To this purpose, some lncRNAs have been developed to be novel diagnostic markers for
cancer. For example, the lncRNA PCA3 was firstly developed as a routine biomarker for
the diagnosis of prostate cancer [68]. Yuan et al. [69] reported that the three lncRNAs
of LINC00152, RP11-160H22.5, and XLOC014172 may function as novel biomarkers for
diagnosis of HCC patients. Recently, lncRNA-D16366 has been reported to be a potential
biomarker for the diagnosis and prognosis of HCC [70]. They are summarized in Table 4.

http://www.rnanut.net/lncrnadisease/
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Table 4. LncRNAs as clinical biomarkers.

lncRNA Function Cancer Type Refs.

HOTAIR Oncogene Breast Cancer, Esophageal Cancer, Lung Cancer, Gastric
Cancer, and Melanoma [60,62]

MALAT1 Oncogene Lung Cancer, Breast Cancer, Colorectal Cancer, Bladder
Carcinoma, and Hepatocellular Carcinoma [67]

PCA3 Diagnosis Prostate Cancer [68]
LINC00152 Diagnosis Hepatocellular Carcinoma [69]

RP11-160H22.5 Diagnosis Hepatocellular Carcinoma [69]
XLOC014172 Diagnosis Hepatocellular Carcinoma [69]

lncRNA-D16366 Diagnosis and prognosis Hepatocellular Carcinoma [70]

3.4. Regulation of Autophagy by lncRNAs

Various cellular lncRNAs can regulate autophagy, which is a highly conserved cellular
process to maintain the homeostasis in eukaryotes [71]. The dysfunction of autophagy can
cause the pathogenesis of numerous human diseases, including cancers. So far, the three
critical protein complexes include the ULK1-ATG13-FIP200-ATG101 complex, the Beclin1-
ATG14-Vps34-Vps15 (class III PI3-kinase) complex, and the ATG12–ATG5-ATG16L1 com-
plex, and these complexes have been reported to be involved in the formation of autophago-
somes [72]. Mounting evidence has shown that many proteins important for autophagy
could be regulated by lncRNAs [73–75]. Now, studies for demonstrating the relationship
between lncRNAs and autophagy are becoming a worldwide hot spot of life science.

The progression of some cancers can be achieved through the lncRNA-mediated
regulation of autophagy. For example, Yang et al. [76] reported that HOTAIR could activate
autophagy through the upregulation of ATG3 and ATG7 to facilitate the proliferation of
hepatocellular carcinoma. The knockdown of HOTAIR could result in the silencing of miR-
454-3p, which, subsequently, resulted in the reduction of a signaling cascade to the target,
ATG12. It also further decreased autophagy in a chondrosarcoma cell line [77]. MALAT1,
a well-established lncRNA, also promotes cancer proliferation and metastasis via the
stimulation of autophagy. For example, MALAT1 could activate autophagy by sponging
miR-101 and upregulating STMN1, RAB5A, and ATG4D expressions in the glioma and,
also, modulate the autophagy of retinoblastoma cell through miR-124-mediated stx17
regulation [78,79]. Moreover, Malat1 was also involved with chemoresistance in gastric
cancer and multidrug resistance in hepatocellular carcinoma cells via the modulation of
autophagy [80,81]. They are summarized in Table 5. Therefore, it is important to elucidate
the cellular mechanism of lncRNA for the regulation of autophagy. Furthermore, it can
provide a novel strategy of prevention and treatment of tumors by the way of lncRNA-
regulated autophagy.

Table 5. Regulation of autophagy by lncRNAs.

lncRNA Mechanism Function Refs.

HOTAIR Upregulation of ATG3 and ATG7 Facilitation of Hepatocellular Carcinoma
proliferation [76]

HOTAIR Protect miR-454-3p from silencing Increase of ATG12 and autophagy in a
chondrosarcoma cell line [77]

MALAT1 Sponge of miR-101 and upregulation of
STMN1, RAB5A, and ATG4D expression Autophagy activation in glioma [78]

MALAT1 MiR-124-mediated stx17 regulation Autophagy modulation of retinoblastoma cell [79]
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According to the above reports, lncRNAs are regarded as functional transcripts that
directly link with the occurrence and development of cancer. Therefore, they are becoming
effective biomarkers of diagnosis and attractive potential therapeutic targets.

4. Expression Level of lncRNAs Regulated by m6A

N6-adenosine methylation (m6A) is the most common internal modification in mRNA
and long noncoding RNA, and it is also a dynamic reversible modification with implica-
tions in fine-tuning the cellular metabolism. It is modulated by m6A regulators, including
“writers” (methyltransferases), “readers” (signal transducers), and “erasers” (demethy-
lases) [82]. To date, this modification has been identified in various organisms, including
yeasts, plants, flies, mammals, and some viruses, and more than 12,000 m6A sites in the
transcripts of ∼7000 protein-coding genes and ∼300 noncoding genes have been character-
ized in human cells [83]. Furthermore, the majority of m6A was found within the conserved
RRACH motif (R = G/A and H = A/C/U) in mRNAs. Meanwhile, many lncRNAs could be
modified by m6A, which can control many aspects of gene expression and cellular biology
at both the transcriptional and post-transcriptional levels [84–86].

However, the aberrant expression and dysregulation of lncRNA is strongly linked to
tumorigenesis, metastasis, and the tumor stage [87,88]. For example, MEG3 and NBAT1
have been confirmed to play an important role in the formation of pathogenicity of
gliomas [89,90]. Moreover, MALAT1 is highly expressed in the nucleus, and it has been con-
firmed to play a suppressive role in the formation of gliomas by downregulating MMP2 and
devitalizing ERK/MAPK signaling [91]. The m6A modification has been confirmed to play
functional roles in RNA splicing, nuclear export, and decay [92]. For example, the MALAT1
with m6A modification could regulate the interaction between RNAs and some special
binding proteins and, also, affect its localization and activity in the nucleus [93]. Now,
the m6A modification has been identified as the most abundant modification in mRNA
and noncoding RNA (ncRNA). Accumulating studies have focused on the role of lncRNAs
regulated by m6A modification in cancer progression, and it was used to demonstrate the
mechanisms by which m6A participates in the biology of cancers.

As is well-known, DNA damage is closely involved with the occurrence and develop-
ment of cancers, and many lncRNAs were involved in the repair of DNA damage [94,95].
To further examine whether the expression of lncRNAs is regulated by m6A, an anal-
ysis of RT-qPCR was performed to detect the expressions of some lncRNAs related to
DNA damage. For the purpose, some lncRNAs from siControl- and siWTAP-transfected
HCC cell lines (SMCC7721) were selected for the analysis. The results showed that the
expressions of ROR, LINP1, TERRA, and DNM3OS were significantly increased by over
two-fold compared with the control group (Figure 2, unpublished data). Additionally,
the expressions of DDSR1, SNHG5, LCPAT1, NORAD, and ANRIL also showed a 1.5-fold
increase compared with the control group, and the statistical analysis further showed that
there were significant differences between siControl and siWTAP (Figure 2). As far as the
rest of the lncRNAs (Figure 2) were concerned, no obvious changes in the expression levels
were observed compared with the control group. Therefore, we think that the expressions
of some lncRNAs related to DNA damage could be regulated by m6A, indicating that the
modification may play an important role in the regulation of the DNA damage response.
However, abnormal regulation may directly promote tumorigenesis.
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Figure 2. Expression analysis of lncRNAs through RT-qPCR from the siControl- and siWTAP-transfected HCC cell lines
(SMCC7721). The error bar represents the standard deviation of each mean value (mean ± SD; n = 3). Asterisks indicate
significant differences compared with the controls. *** represents significant difference compared with control group.

5. Future Prospects

The early detection of cancers is very critical for preventing the occurrence and
development of metastatic diseases. Although some proteins have already been applied
for the detection of tumors, their sensitivity and clinical staging abilities are not favorable
for the treatment of cancers. It can be disastrous for cancer patients if a diagnosis is
made during the middle and late stages of cancer. Therefore, the development of novel
biomarkers can not only facilitate the early detection of cancers but, also, improve the
physical health of tumor patients.

LncRNAs were once considered as dark matter and junk DNA for decades because
of a bunch of evidence for their failure to encode proteins [96]. Now, mounting evidence
indicates that lncRNAs participate in various biological processes, including the occurrence
and development of cancers. Furthermore, some lncRNAs were found to be regulated
by m6A modification (Figure 2), which is closely involved in the repair of DNA damage.
If lncRNAs are dysregulated by some factors such as the m6A modification, they may result
in cellular imbalances, including DNA damage. Furthermore, the accumulation of DNA
damage leads to diseases, even cancers. The emerging roles of lncRNAs in the development
of human cancers are diverse, and the mechanisms of lncRNAs in tumorigenesis are very
complex. Further researches are required to demonstrate the correlations between lncRNAs
and cancers.

In conclusion, the changes of the expression patterns of some specific lncRNAs can be
indicative of cancers. We think that lncRNAs may be promising diagnostic biomarkers for
the detection of cancers, and they can be utilized to predict the prognosis of cancer patients
in the future.
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