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Abstract: Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from 
a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory 
insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry 
a fatality rate that hovers around 30–40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. 
Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the 
etiology of ALI, NLRP3 Inflammasome is essential to the body’s innate immune response. The composition of this inflammasome 
complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory 
response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for 
therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the 
constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the 
NLRP3 inflammasome to combat acute lung injury. 
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Introduction
The pandemic-causing influenza and emerging viruses have brought about sporadic spikes in global acute lung injury (ALI). 
ALI manifests through injury to the cells lining the alveoli and those composing the capillary walls, which leads to interstitial 
and alveolar edema within the lungs, thus leading to a severe shortage of oxygen causing respiratory distress.1,2 ALI presents 
with reduced pulmonary capacity, diminished elasticity within the lungs, and a profound disruption of the ventilation- 
perfusion balance.3 When left untreated, acute lung injury (ALI) can develop into acute respiratory distress syndrome 
(ARDS).4 Despite advancements in grasping the fundamental processes that lead to acute lung injury (ALI), an effective 
targeted treatment for the condition remains elusive. While ALI morbidity and mortality have declined, the death rate 
associated with ALI and ARDS continues to hover around a staggering 30 to 40%. It is typified by an unchecked inflammatory 
reaction. Currently, the main strategies for treating ALI are reduction of inflammation and prevention of respiratory failure. 
Consequently, gaining a deeper comprehension of the inflammatory origins of ALI and stalling its advancement is crucial.

The NLRP3 inflammasome, recognized as the extensively studied NLR receptor family member, is widely present across 
various immune cells and holds a crucial part in the body’s immune system, safeguarding the body against the infiltration of 
infectious agents. This intricate entity comprises a detector (NLRP3), a connector (equipped with the c-terminal cysteine 
protease enlistment domain, ASC), and an executor (caspase-1). It is a vital element of the innate immune system, enabling the 
development of active caspase-1 as well as the following development and production of inflammatory cytokines IL-1β and 
IL-18.5 Important functions in the inflammatory response are played by IL-1β and IL-18.

Activating the NLRP3 inflammasome is a critical stage in the development of ALI. In ALI/ARDS patients, elevated 
IL-1β and IL-18 levels correlate with unfavorable outcomes. One study found that levels of IL-1β were markedly 
increased in the BALF of mice with ALI model produced by LPS, and the expression of NLRP3 protein was noticeably 
higher in lung tissue. The NLRP3 inflammasome acts as an important catalyst and accelerator of ALI. By coordinating 
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the discharge of pro-inflammatory cytokines.6 Consequently, hindering the stimulation of the NLRP3 inflammasome has 
the potential to be a viable method in managing ALI.

In this review, we offer a succinct overview of ALI, followed by an in-depth look at the make-up and triggering of the 
NLRP3 inflammasome. We investigate the link between ALI and the NLRP3 inflammasome, as well as potential therapy 
options for ALI.

Acute Lung Injury
Concept
Since the initial conceptualization of acute respiratory distress syndrome (ARDS) back in 1967, there has been 
remarkable advancement in unraveling the mechanisms underlying its onset and progression, as well as the physiological 
changes associated with acute lung injury (ALI).7 ALI presents as a grave medical emergency, carrying a death rate of 
approximately 30 to 40%. Its characteristics include the aggregation of inflammatory cells in pulmonary tissue, loss of 
alveolar-capillary membrane integrity, interstitial edema, abnormal gas exchange, and alveolar septal damage. Treatment 
approaches for ALI remain very limited in their efficacy.8

Diagnostic Criteria
The diagnostic criteria for ALI/ARDS have undergone several changes over the years. In 1988, the system for assessing the 
degree and severity of lung injury was proposed by Murray et al.9 In 1994, the American-European Consensus Conference 
(AECC) laid down the definition for ALI/ARDS and set forth the subsequent diagnostic criteria: chest x-rays showing acute 
bilateral diffuse pulmonary infiltrates; a PaO2/FiO2 ratio ≤300 mmHg for ALI and ≤200 mmHg for ARDS; and either PAWP 
≤18 mmHg or absence of indications of left atrial hypertension. This set of criteria first introduced the concept of ALI, with 
ARDS considered a more severe form of ALI warranting significant attention in the early days of ALI.10 However, the AECC 
criteria faced many clinical issues. In 2012, a collaborative committee comprising the European Society of Intensive Care 
Medicine, the American Thoracic Society, and the American Society of Critical Care Medicine unveiled the Berlin Criteria for 
ARDS. ARDS is categorized into different levels based on the degree of hypoxemia- mild (PaO2/FiO2 is between 200mmHg 
to 300mmHg), moderate (PaO2/FiO2 is between 100mmHg to 200mmHg), and severe (PaO2/FiO2 is less than or equal to 
100mmHg).11 Compared to earlier attempts, the Berlin Criteria provide a better prediction of mortality and do not require 
measuring pulmonary capillary wedge pressure.

Etiological Factors
The etiology of ALI is complex, with pneumonia being a leading factor causing ARDS and ALI.12 Sepsis and gastric 
content aspiration are common reasons for pulmonary impairment.13,14 There are also some less common factors, such as 
massive transfusion, blast waves, smoke inhalation, and toxic gas inhalation.15–18 If two or more of these risk factors are 
present at the same time, the probability of developing ALI or ARDS becomes higher. For instance, a common cause of 
sepsis is gram-negative bacterial infection. The outer membrane of gram-negative bacteria harbors lipopolysaccharides 
(LPS) that can trigger an inflammatory reaction in the body during infections, potentially leading to lung damage.19,20

Pathogenesis
The development of ALI is highly intricate, involving multiple mechanisms such as inflammation activation,6 cell apoptosis,21 

oxidative stress injury,22 and coagulation dysfunction.23 It is widely believed that at the core of its pathogenesis is an 
uncontrolled inflammatory response. The initiation of inflammatory cells and the ensuing discharge of various inflammatory 
agents in ALI prompted by LPS inflict damage on the alveolar-capillary barrier disruption results in heightened permeability. 
This pernicious cycle ultimately advances into pulmonary fibrosis, lung injury, and lung edema.24

Signaling Pathways
The inflammatory response during ALI has been shown by recent studies to involve various signaling pathways like 
AMPK, Wnt/β-catenin, RhoA/ROCK, JAK/STAT, NF-κB, VEGF, PI3K/Akt, and MAPK.(Figure 1).
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AMPK Signaling Pathway
The AMP-activated protein kinase (AMPK) regulates cellular energy metabolism, ensuring energy balance is maintained 
during metabolic stress.25 The transcription regulator nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in the 
antioxidant response. In particular, it regulates heme oxygenase-1 (HO-1) expression. Nrf2 acts downstream of AMPK. 
Activation of Nrf2 and HO-1 by AMPK suppresses reactive oxygen species production.26 Studies have shown that 
Xanthohumol enhances AMPK-Nrf2 pathway to mitigate LPS-induced ALI in mice.27

Wnt/β-Catenin Signaling Pathway
Wnt family constituents are glycoproteins that exert their action via autocrine or paracrine modes. Wnt interacts with cell 
surface-specific receptors, triggering a cascade of protein phosphorylation and dephosphorylation events, which result in 
nuclear β-catenin accumulation.28 Many biological processes such as cellular growth, maturation, programmed cell death, 
motility, penetration, and tissue system balance depend on the Wnt/β-catenin signaling pathway.29 Villar J. et al30 reported 
that the Wnt/β-catenin signaling pathway experienced heightened activation in animals suffering from sepsis-triggered ALI. 
Moreover, defensive MV repressed WNT/β-catenin signaling pathway and enhanced pulmonary restoration.

Figure 1 Signaling pathways implicated in acute lung injury. (A) AMPK - Nrf2 - HO-1; (B) Wnt - β-catenin - TNF-β; (C) RhoA - ROCK – eNOS; (D) JAK - STAT - IL-6, IL-1β, TNF-α; 
(E) NF-kB - NLRP3 - caspase-1 - IL-1β, IL-18; (F) VEGF - VEGFR2; (G) PI3K - Akt - mTOR - HIF-1α; (H) MAPKs - JNK - NETs; MAPKs - ERK1/2 - NETs; MAPKs - P38. 
Abbreviations: AMPK, AMP-activated protein kinase; Nrf2, Nuclear Factor Erythroid 2-Related Factor 2; HO-1, heme oxygenase-1; TNF-β, tumor necrosis factor-β; 
ROCK, Rho-associated kinase; Enos, Endothelial Nitric Oxide Synthase; JAK, anus kinase; STAT, signal transducer and activator of transcription; IL-6, Interleukin-6; IL-1β, 
Interleukin-1β; TNF-α, tumor necrosis factor-α; NF-Kb, nuclear factor kappa-B; NLRP3, NOD like receptor heat protein domain related protein 3; IL-18, Interleukin-18; 
VEGF, Vascular Endothelial Growth Factor; VEGFR2, Vascular Endothelial Growth Factor Receptor 2; PI3K, phosphoinositide 3 kinase; Akt, Protein Kinase B; mTOR, 
mammalian target of rapamycin; HIF-1α, hypoxia inducible factor-1α; MAPKs, mitogen activated protein kinases; JNK, c-Jun N-terminal kinase; NETs, neutrophil extracellular 
traps; ERK1/2, extracellular signal-regulated kinase.
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RhoA/ROCK Signaling Pathway
The RhoA, a diminutive GTPase protein belonging to the Rho family, represents a key component known as the Ras 
homologous gene family member A. The Rho-Associated Protein Kinase (ROCK) functions as a downstream effector of 
RhoA. The Rho/ROCK signaling pathway is involved in cell growth, maturation, movement, and evolution.31 

Endothelial NO synthase (eNOS) can mediate LPS-induced RhoA activation, resulting in pulmonary dysfunction and 
pro-inflammatory cytokine secretion. Blocking eNOS activity can suppress NF-κB signal transduction.32 Research has 
demonstrated the engagement of the Rho/ROCK signaling cascade serves as a mediator for increased permeability in 
pulmonary endothelial tissues, and it holds a vital role in the pathophysiological progression of ALI.33

JAK/STAT Signaling Pathway
Janus kinase (JAK) is an intracellular tyrosine kinase that plays a crucial role in signal transduction initiated via multiple 
membrane receptors. The JAK/STAT signaling cascade governs a myriad of cell functions that are vital for maintaining 
internal equilibrium.34 It also contributes to the emergence of a wide array of inflammatory and autoimmune disorders.35 

Zhang et al36 showed that during sepsis, LPS upregulates JAK/STAT expression, interacting with Toll-like receptors to 
cause the excretion of IL-10, IL-6, and TNF-α, resulting in alveolar epithelial and vascular endothelial cell injury, leading 
to diffuse ALI.

NF-kB Signaling Pathway
NF-κB acts as a transcriptional activator, spurring the creation of cytokines and enhancing cellular longevity. NF-κB 
exists in nearly every type of animal cell, engaging in cellular reactions to stimuli, such as cytokines, stress, oxidative 
LDL, free radicals, and viral antigens or bacterial.37 Several investigations have demonstrated that ALI is linked to the 
start and activation of NLRP3 inflammasomes, which damage and inflame the lungs via the NF-kB pathway. The 
subsequent triggering of caspase-1 leads to the release and development of IL-1β and IL-18, which drive cell apoptosis 
and inflammatory reactions, thus aggravating ALI.38–44

VEGF Signaling Pathway
The angiogenic stimulant vascular endothelial growth factor (VEGF) encourages the expansion of endothelial cells. It 
stimulates the proliferation, increases the permeability, and enhances endothelial cell migration.45 Research has indicated 
that pulmonary VEGF upregulation plays a crucial part in lung damage caused by fat embolism. VEGF expression is 
increased in several forms of ARDS, and its severity is associated with mortality. VEGFR-2 antagonists can significantly 
alleviate lung inflammation and cellular damage induced by fat embolisms.46

PI3K/Akt Signaling Pathway
The PI3K/AKT cascade functions as an internal messenger system that reacts to external cues, enhancing cellular metabolism, 
division, survival, development, and the formation of new blood vessels.47 In addition, the PI3K/Akt signaling pathway 
performs a vital function in cellular survival and resistance to oxidative stress during pulmonary inflammation.48 Li et al49 

revealed that within mature dendritic cells, HMGB1 triggers the PI3K/Akt/mTOR signaling cascade, upregulating the mRNA 
levels and subsequent activation of PI3K, Akt, and mTOR to facilitate the development of lung inflammation in ALI.

MAPK Signaling Pathway
Mitogen activated protein kinase (MAPK) comprises p38, ERK and JNK subfamilies, which are key regulatory factors in cell 
physiology and the pathogenesis of various diseases, including cancer, where they regulate cell proliferation, growth, and 
apoptosis.50 Neutrophil extracellular traps (NETs) indirectly induced by LPS cause acute lung injury.51 Erythropoietin may 
provide relief from acute lung injury resulting from ischemia-reperfusion by inhibiting the p38 MAPK signaling pathway.52 

FK866 can partially inhibit the JNK pathway and decreases reactive oxygen species production in neutrophils, thereby 
suppressing NETs.53 Redouning improves ALI by obstructing the phosphorylation process of ERK1/2 and the formation of 
NETs.54
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NLRP3 Inflammasome
Overview
Innate immunity acts as the initial defense mechanism against the incursion of pathogens. Unlike the adaptable branch of the 
immune system, it has nonspecific defense functions.55 Innate immunity comprises two lines. The first one includes natural 
barriers effectively prevent the invasion of common pathogens into tissue.56 The second line consists of leukocytes, which 
eliminate pathogens upon detection.57 Pattern recognition receptors (PRRs) expressed in germ cells are primarily responsible 
for the primary stimulation of inherent immune responses. PRRs can detect the presence of microbes by recognizing 
conserved pathogen macromolecular structures, known as pathogen-associated molecular patterns (PAMPs). They are also 
capable of recognizing endogenous substances secreted by compromised cells, commonly known as damage-associated 
molecular patterns (DAMPs).58 In response to infection, PRRs activate signaling pathways, thereby stimulating the host 
defense response against microbial invasion.59 PRRs can be classified into numerous categories, which encompass TLRs, 
RIG-I-like receptors, and nucleotide-binding oligomerization domain receptors and leucine-rich repeat-containing receptors 
(NLRs), synthase of cyclic GMP-AMP and the route that activates interferon genes, along with AIM2-similar receptors and 
C-type lectin.60 When these PRRs are activated, they can initiate an inflammatory reaction to combat infections and heal tissue 
injuries. Through these mechanisms, innate immunity plays ensures an effective response to harmful external stimuli.

Intracellular pattern recognition receptors (PRRs) orchestrate the assembly of inflammasomes, which are intricate multi- 
protein structures.61 Once assembled, inflammasomes can trigger the enzymatic activity of caspase-1 advances the devel-
opment and release of IL-1β and IL-18, in addition to cleaving gasdermin-D (GSDMD) and thus facilitating cellular pore 
formation and subsequent pyroptosis.62 The NLRP3 is the most thoroughly examined inflammasome.63 It is primarily 
expressed in macrophages and neutrophils. Abnormal NLRP3 inflammasome activation can cause inflammatory ailments.64

Composition of the NLRP3 Inflammasome
The effector enzyme caspase-1, adaptor ASC (sometimes referred to as PYCARD), and sensor NLRP3 make up the NLRP3 
inflammasome.65 The NLRP3 molecule is composed of three unique segments: an N-terminal pyrin domain, a NACHT domain 
situated centrally, and a C-terminal domain that is characterized by a series of leucine-rich repeats. The NACHT domain plays 
a pivotal role in driving ATPase activity, an essential mechanism for the self-assembly and operational efficacy of NLRP3.66 This 
domain is also a major structural component of the inflammasome. ASC is comprised of two integral components: the PYD 
domain, which associates with NLRP3, and the CARD domain, which facilitates its connection to caspase-1.67 The effector 
caspase-1 of the NLRP3 inflammasome converts IL-1β and IL-18 precursors into their activated forms.68 Caspase-1 plays 
a pivotal role in cell death associated with inflammation, specifically through a process known as pyroptosis.69

NLRP3 Inflammasome activation
The initiation of NLRP3 inflammasome entails a dual approach: firstly, a preparatory phase, and secondly, the actual 
triggering event.70 The NLRP3 inflammasome activation entails four typical pathways: ion channels, mitochondrial 
autophagy, excessive reactive oxygen species (ROS) production and lysosomal rupture.71

Priming of the NLRP3 Inflammasome
During the priming phase, immune cells must be exposed to inducing stimuli such as LPS and tumor necrosis factors, which 
bind to transmembrane PRRs such as IL-1R, TLRs, and TNFR. This binding activates NF-kB, further upregulating the 
expression of inflammasome components NLRP3 and pro-IL-1β. The presence of high levels of NLRP3 and pro-IL-1β is 
crucial for inflammasome formation.72

Activation of the NLRP3 Inflammasome
Upon the first signal, NLRP3 is stimulated by diverse activators including inherent DAMPs, assorted PAMPs, multiple 
pathogens, and potassium ions.73 The structural proteins of NLRP3 bind to the PYD of the adaptor ASC through 
oligomerization. Next, the CARD domain within ASC interacts with the CARD in pro-caspase-1, culminating in the 
formation of the fully integrated NLRP3 inflammasome, and thereby converting pro-caspase-1 to its active form caspase-1. 
IL-1β and IL-18 mature as a result of caspase-1 activation, and GSDMD is cleaved into its N- and C-terminal components. 
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The GSDMD N-terminus can form pores by binding to the cell membrane, thus promoting the secretion of pro- 
inflammatory cytokines (IL-1β and IL-18), which in turn, initiates pyroptotic cell death. (Figure 2).74,75

NLRP3 Inflammasome and ALI
There is considerable proof highlighting the crucial function of the NLRP3 inflammasome in ALI.38 It has been 
demonstrated through research that patients suffering from ARDS often exhibit increased concentrations of IL-1β and 
IL-18, markers that typically correlate with unfavorable outcomes.39 Injection of extracellular mitochondrial DNA into 
the trachea of mice, NLRP3 inflammasome is promoted through the TLR9, p38MAPK, and NF-κB pathways, which 
leads to increased expression of NLRP3, ASC, and caspase-1. This in turn stimulates IL-1β and IL-18 release to cause 
lung injury.40 In a murine model of LPS-induced septic ALI, IL-1β and IL-18 concentrations in bronchoalveolar lavage 
fluid (BALF) and lung tissue were markedly elevated, coinciding with an uptick in the activity of NLRP3 and caspase- 
1.41 The upregulation of inflammatory cytokines IL-18, IL-1β, and TNF-α is observed in ALI induced by sepsis, 
indicating that Activation of NLRP3 inflammasome stimulates generation of proinflammatory cytokines, and its 
manifestation is correlated positively with disease severity and fatality.42 In ventilator-induced lung damage, TLR4 
activation activates NLRP3 inflammasome, thereby promoting inflammatory damage. Further, NLRP3 knockout sig-
nificantly alleviates ventilator-induced lung injury.43,44 In summary, Numerous investigations have indicated a close link 

Figure 2 Mechanisms of NLRP3 inflammasome activation. The activation of NLRP3 inflammasome occurs via four classical pathways: (1) ion channels; (2) excessive 
production of reactive oxygen species; (3) mitochondrial autophagy, and (4) lysosomal rupture. Activation of the NLRP3 inflammasome occurs in two phases. In the priming 
phase, a stimulus binds to pattern recognition receptors and activates NF-kB to further upregulate the expression of NLRP3, pro-IL-1β, and pro-IL-18. In the activation 
phase, the structural protein NLRP3 binds to the PYD of ASC through oligomerization, whereafter the CARD of ASC binds to the CARC of pro-caspase-1 to form the 
intact NLRP3 inflammasome. The NLRP3 inflammasome then activates pro-caspase-1, which in turn promotes the maturation of IL-1β and IL-18, in addition to cleaving 
Gasdermin-D to N- and C-terminal fragments, with the activated N terminus promoting pyroptosis.
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between ALI and the NLRP3 inflammasome. Targeted suppression of NLRP3 inflammasome and related signaling 
pathways represents a new direction in ALI prevention and treatment research.

Therapeutic Approaches
Research on ways to produce anti-inflammatory medications that hinder the NLRP3 inflammasome activation has 
become a focal point of interest in recent research. Given the link between ALI and the NLRP3 inflammasome, targeting 
NLRP3 for inhibition has increasingly become a pivotal approach in the therapeutic intervention for ALI.

Inhibiting the NF-kB Pathway
Propofol is a commonly used drug for anesthesia induction and maintenance. Propofol is also known to harbor anti- 
cancer,76 antioxidant,77 neuroprotective,78 and anti-inflammatory activities.79 Prior research has demonstrated that 
propofol influences pulmonary damage. Exposure to sevoflurane and propofol exhibits anti-inflammatory properties in 
the context of LPS-triggered ALI.80 Propofol has been shown to reduce inflammation and oxidative stress by inhibiting 
the p38 MAPK/NF-κB pathway and NLRP3 inflammasome activation, as well as to alleviate LPS-induced pulmonary 
edema in neonatal rats. Propofol effectively reversed the effects of LPS treatment on the NLRP3 inflammasome and the 
p38 MAPK/NF-κB pathway in newborn rats.81 Propofol may thus be a prospective medication for the therapy of 
newborn ALI.

Metformin is an established and effective anti-diabetic drug. It additionally demonstrates protective benefits for the 
lungs across various acute lung injury scenarios,82 PM2.5-induced83 and endotoxemia-induced pulmonary injury.84 Its 
action may include the activation of AMP-activated protein kinase (AMPK) to suppress NF-κB in endothelial cells and 
consequently inhibit cytokine-induced inflammation and adhesion factor expression.85 That is, metformin mitigates LPS- 
triggered ALI by inhibiting endothelial cell pyroptosis by suppressing the NF-κB-NLRP3 signaling pathway. Throughout 
the progression of inflammatory lung injury induced by LPS, the pulmonary endothelium undergoes impairment, 
rendering it unable to effectively maintain a protective barrier. Metformin effectively counteracts the negative repercus-
sions by reversing them, thus safeguarding the endothelial pathways and ameliorating lung function.86 Glibenclamide 
also has the ability to reduce LPS-induced ALI damage.87

As an anti-inflammatory agent, berberine has therapeutic effects in many diseases. Berberine modulates the NF-κB 
signaling pathway, exhibiting anti-inflammatory properties.88 It can suppress the triggering of the NLRP3 inflammasome by 
the influenza virus in macrophages by enhancing mitochondrial autophagy and reducing mitochondrial ROS, thus mitigating 
lung damage.89 Moreover, berberine has the ability to inhibit the interaction of NLRP3 with NEK7, resulting in a direct and 
effective anti-inflammatory response.90 Berberine treatment down-regulated p-NF-κB, further suppressing NLRP3 levels 
in vivo and in vitro. This caused a marked reduction in IL-18 and IL-1β concentrations in pulmonary tissues, considerably 
alleviating inflammation.91 These results underscore the promising role that berberine could play in treating ALI.

Glycyrrhizic acid is renowned for its excellent pharmacological effects and various biological activities, including 
antiviral and anti-inflammatory properties.92 Glycyrrhizic acid can reduce the production of IL-Iβ and TNF-α in 
inflammation, inhibiting NF-κB activation.93 Furthermore, it may thwart colorectal cancer development by disrupting 
the HMGB1-TLR4-NF-κB signaling cascade.94 Glycyrrhizic acid modulates autophagy through the PI3K/AKT/mTOR 
pathway to improve LPS-induced ALI.95 It possesses the capability to modulate the signaling cascade of the NF-κB/ 
NLRP3 inflammasome, hence curtailing the inflammatory reaction instigated by LPS.96 To sum it up, glycyrrhizic acid 
may alleviate ALI by suppressing the NF-kB pathway, positioning it as a potential therapeutic agent.

Remarkably, it has also been demonstrated that LPS-induced acute lung injury can be relieved by isochlorogenic acid A,97 

pterin,98 and hederasaponin-C99 through modification of the NF-κB-NLRP3 signal pathways.

Inhibiting Excessive Production of ROS
Oxidative stress, coupled with the ensuing inflammation, are key underlying pathological mechanisms in ALI. Emodin, 
an active constituent of Rhubarb, has anti-inflammatory characteristics. Studies have shown that emodin can improve 
LPS-induced ALI.100,101 Furthermore, emodin has the ability to suppress ROS, MPO, and MDA generation. In addition, 
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emodin guards against ALI brought on by LPS, presumably by lowering ROS generation and suppressing NLRP3 
expression.102 Emodin therefore represents a prospective medical remedy for ALI and lung inflammation.

Nrf2 occupies a pivotal role as a transcription factor in the antioxidant response, and it comes into action by inhibiting 
oxidative stress and inflammation.103 Recent research indicates that Nrf2 can prevent activation of the NLRP3 
inflammasome.104 Numerous substances possess the ability to alleviate LPS-triggered ALI through Nrf2 downregulation 
of NLRP3 inflammasome-induced cellular apoptosis. Among them, honokiol, a compound extracted from the Magnolia 
officinalis tree, is known for its abilities to combat oxidative stress and inflammation. HKL markedly increases the 
protein and mRNA levels of Nrf2 and HO-1, reduces MPO and MDA levels, and boosts SOD levels in vivo and in vitro. 
Moreover, Nrf2 knockdown can reverse the antioxidant effect of HKL, indicating that the latter exerts its antioxidant 
effect in LPS-induced ALI via Nrf2/HO-1 signaling.105 Oridonin (Ori), a natural substance with antioxidant and anti- 
inflammatory effects extracted from Rabdosia rubescens, serves as an activator of Nrf2. It can reduce LPS-triggered 
inflammation through the NF-κB pathway.106 In addition, it generates a covalent connection with cysteine 279 situated in 
the NACHT domain of NLRP3, thus impeding the interaction and activation of the NLRP3 inflammasome by hindering 
the link between NLRP3 and NEK7.107 Overall, Ori delivers protective benefits against LPS induced acute lung injury by 
activating its anti-inflammatory and antioxidant responses through the Nrf2 pathway. Moreover, compounds such as 
melatonin,108 hydnocarpin D,109 isoorientin,110 citrulline,111 and glycyrrhizic acid95 also inhibit NLRP3 inflammasome- 
mediated cell apoptosis through Nrf2, reducing LPS-induced ALI.

Inhibiting Mitochondrial Autophagy
Mitochondrial autophagy is notably related to NLRP3 inflammasome activation.112 Sestrin2 (Sesn2), a highly conserved 
stress-induced protein, plays a vital part in regulating cellular stress reactions and antioxidant protection.113 Studies have 
shown that Sesn2 can prevent sepsis by inducing mitochondrial autophagy and suppressing NLRP3 activation in 
macrophages.114 Moreover, Sesn2 has the ability to inhibit the NLRP3 inflammasome’s activation, which is typically 
instigated by LPS within pulmonary macrophages, reducing cell apoptosis and protecting mitochondria from damage. 
Sesn2 maintains mitochondrial homeostasis in macrophages through the Pink1/Parkin signaling pathway during mito-
chondrial autophagy, ultimately protecting the lungs from LPS-induced ALI.115 These discoveries validate Sesn2 as 
a fresh therapeutic focus for managing ALI/ARDS.

Inhibiting Ion Channels
Calcium, a crucial intracellular secondary messenger, plays a role in several cellular mechanisms.116 The influx of 
calcium ions is recognized to contribute to NLRP3 inflammasome activation.117 The binding of calcium to calmodulin 
(CaM) leads to activation of CaM kinase (CaMK), which initiates inflammation.118 In alveolar type II epithelial cells, 
CaMK4 is essential for initiating the NLRP3 inflammasome, which exacerbates lung damage in mice with LPS-induced 
ALI. The drug KN-93, a CaMK4 inhibitor, can effectively improve ALI by inhibiting NLRP3 inflammasome 
activation.119 Thus, inhibiting CaMK4 could represent a new approach for treating ALI.

Inhibiting the Maturation and Secretion of IL-1β and IL-18
The NLRP3 inflammasome coordinates IL-1β and IL-18 processing and secretion. Blocking IL-1β and IL-18 
production or upstream signaling may be effective in treating ALI/ARDS.120 Rapamycin, a natural product with 
immunosuppressive effects widely used in patients who undergo organ transplantation,121 has been confirmed to 
suppress autophagy by inhibiting mTOR an thus regulating the production of IL-1β and IL-18.122 The induction of 
autophagy can limit the secretion of IL-1β and IL-18 by clearing damaged mitochondria and preventing the release 
of mitochondrial ROS.123,124 Therefore, rapamycin-induced autophagy helps to reduce the generation of IL-1β and 
IL-18 after LPS exposure. It has also been demonstrated that rapamycin treatment reduces the total number of cells 
as well as the neutrophil count in BALF after an LPS infection.125,126 Further, rapamycin shields mice from lung 
damage triggered by LPS by suppressing mTOR activity, which subsequently reduces IL-1β and IL-18 production, 
suppressing immune cell infiltration.127 Therefore, rapamycin may represent an effective drug for treating ALI 
(Table 1).
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Summary
Herein, we reviewed the progress in our understanding of ALI and the configuration and stimulation of NLRP3 inflamma-
some, and explored the NLRP3 inflammasome’s mechanism and potential therapeutic approaches in ALI. The NLRP3 
inflammasome has the potential to be an ideal candidate for early detection and treatment of ALI owing to its crucial functions 
in transducing signals and releasing pro-inflammatory cytokines. Future investigations ought to prioritize the identification of 
upstream factors that affect the NLRP3 inflammasome and the development of interventions aimed at its assembly. Taken 
together, targeting NLRP3-driven inflammation may represent an important direction to treat and prevent ALI.
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