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RESPONSE TO COMMENT ON SEGAR ET AL.

Machine Learning to Predict the Risk of
Incident Heart Failure Hospitalization
Among Patients With Diabetes: The
WATCH-DM Risk Score. Diabetes Care

2019;42:2298-2306
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Identifying patients with type 2 diabetes
mellitus (T2DM) at high risk for future
heart failure (HF) has been challenging
given the multisystem inputs that contrib-
ute to HF risk, inaccuracies in administra-
tive coded data, and complexities with
risk prediction models. In the machine
learning—derived WATCH-DM (Weight
[BMI], Age, hyperTension, Creatinine,
HDL-C, Diabetes control [fasting plasma
glucose], QRS Duration, Ml, and CABG)
score, we considered 147 candidate var-
iables to create a simple, user-friendly,
integer-based risk score to predict adju-
dicated incident HF events (1). We appre-
ciate the critical appraisal of WATCH-DM
by Fonseca and colleagues (2).

Our integer score was developed sim-
ilarly to the well-established method
popularized by the Framingham frame-
work, in which the points associated with
each level of each risk factor are relative
to the points associated with an increase
in age (3). Briefly, continuous variables
were first converted to dichotomous
variables. Cutoffs for the continuous
variables were either determined by
established guidelines (for example,
the normal, overweight, and obese cut-
offs for BMI) or by plotting the probability
of outcome events against the numeric
variable of interest using a locally weighted
scatterplot smoothing (LOESS) function.
As most developed risk scores are not
routinely employed in clinical practice of-
ten due to perceived complexity and

inconvenience, integer-based scores such
as WATCH-DM may be more practical,
user-friendly, and potentially more likely
to be adopted.

We would like to thank Dr. Fonseca
and colleagues for bringing to our at-
tention the Building, Relating, Assess-
ing, and Validating Outcomes (BRAVO)
engine (4). In addition to simplifying
prediction models to integer-based
as a strategy to enhance potential clin-
ical use as was our focus with the
WATCH-DM project, we acknowledge
and agree with the caveat noted by
Fonseca and colleagues of the potential
for increased penetrance and use of
more complex risk-scoring algorithms
when automated within the context of
the standard electronic health care re-
cord, as is per their comments being
pursued with the BRAVO models.

By including 17 separate risk equa-
tions, the BRAVO engine is able to esti-
mate the risk of microvascular as well as
macrovascular events in patients with
T2DM. Conversely, our goal in creating
the WATCH-DM risk score was to provide
clinicians with a framework with three
separate relationship modeling techni-
ques that best suit their individual needs
in identifying patients with T2DM at
risk for heart failure. The WATCH-DM
integer-based score is an easy calculation
for clinicians to use at the bedside or in
the clinic, while the regression-based
score that optimizes model performance
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could be programmed for use in an
electronic health care record. Finally,
the machine learning—based risk score
(using random survival forest modeling)
is the most accurate method for pre-
dicting and stratifying patients at risk for
heart failure. By making all three im-
plementations of the WATCH-DM risk
score publicly and freely available on-
line (www.cvriskscores.com), our hope
is that our tool can be useful for clinicians
who are caring for patients with diabetes
and thinking about what strategies can
be used to help them.

Fonseca and colleagues also note that
the use of electrocardiogram (ECG)
parameters in a risk score may not
be available in a primary care setting.
Even though up to 95% of adult patients
in the U.S. have an ECG within 30 days of
their annual health examination (5), the
benefit of using machine learning—based
modeling in the WATCH-DM risk score is
that random survival forests are able to
handle missing data with minimal loss in
accuracy (6). Thus, a patient does not
have to have available ECG parameters to
obtain an accurate 5-year risk of heart
failure estimate.

Collectively, these risk scores highlight
the complexity of initial risk prediction
of HF events and the challenges with
subsequent facile implementation of
prediction tools in clinical practice. We
are actively externally validating the
WATCH-DM risk score in external cohorts
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and are implementing the score in mul-
tiple health care systems across the U.S.
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