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Abstract: Alignment-free k-mer-based algorithms in whole genome sequence comparisons remain
an ongoing challenge. Here, we explore the possibility to use Topic Modeling for organism
whole-genome comparisons. We analyzed 30 complete genomes from three bacterial families by
topic modeling. For this, each genome was considered as a document and 13-mer nucleotide
representations as words. Latent Dirichlet allocation was used as the probabilistic modeling of the
corpus. We where able to identify the topic distribution among analyzed genomes, which is highly
consistent with traditional hierarchical classification. It is possible that topic modeling may be applied
to establish relationships between genome’s composition and biological phenomena.

Keywords: topic model; bacteria genome comparison; alignment-free

1. Introduction

Alignment-free sequence algorithms have been widely explored for sequence analyses due to their
ability to render relatively accurate results while lowering algorithm complexity [1]. Among them,
many utilize segments of genomic sequences of length k. Such segments are symbolic representations
of a four-letter alphabet called words or k-mers. K-mer frequency content comparisons have proven
high-accuracy [2,3]. Moreover, Fofanov et al. [4] described that bacterial genome word distributions for
various k-mer lengths are not random, which suggests that genome k-mer distribution differs between
families. And while Zhang et al. [5] demonstrated how virus whole-genome word distributions clusters
according to their taxonomy, the k-mer alignment-free comparisons for whole-genome sequence
analysis still remains a challenge.

Methods based on word count or k-mer frequency can be summarized into: (i) composition
vectors, where genomic content is represented in matched/mismatched occurrence-vector motifs to
classify studied sequences either by pairwise-distance measures or machine-learning approaches [6,7];
(ii) information theory, which include a set of methodologies that evaluate the shared Shannon-view
informational content (i.e., mutual information and complexity/data compression) among the
sequences studied [3,8]; (iii) motif composition, where probabilistic methods model genomic sequences
and compare the motifs’ expected frequencies rendered by their respective models [4]; and (iv) D2

statistics, that describe the compared sequences as the D2 model based on the shared words’
statistics [9,10].

A general practice in these methods is to perform pairwise comparisons, which renders a version
of a distance matrix that is typically solved by maximum parsimony, neighbor joining or other
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tree-building methods. Alternate solutions for a distance matrix include clustering algorithms, (such as
k-means) [11–13] and probabilistic topic modeling. Also, machine-learning methods –such as Support
Vector Machines–, have been used for sequence classification [14].

Altogether, these methods have been implemented into different biological applications, from
small viral sequences analysis [15] to complete genome analysis [3], with a considerably increase in
computational requirements as the analyzed sequences number and size increases [1] even when
highly optimized algorithms are applied [16,17]. Also, most of these processes involve prior knowledge
of the nature of the sequences [18], classifier training [19], and they do not necessarily provide insight
into the genomic composition of the evaluated sequences nor regarding other significant biological
phenomena.

Topic modeling is a suite of algorithms aimed to discover certain lexicon-themed structures in
a corpus of several documents [20] based on their word-list distribution. Some applications outside
language natural processing have been reported in the literature: drug classification according to safety
and therapeutic use [21], image clustering [22], audio [23] and music [24] analysis, and more recently,
the k-mer sequence analysis [25].

Most of the topic modeling sequence analysis have consisted in single gene-based non-overlapping
word analysis and lexicon clustering of such genes [25,26]. To our knowledge, no work has used
whole-genome word corpus –bacterial or otherwise– clustered by topic modeling in organism genomic
comparisons. In this paper, we explore a proof-of-concept cluster topic modeling of three bacterial
families based on their genome word-list distribution.

2. Methods

2.1. Corpus & Bacterial Families

To apply the cluster topic modeling to sequence analysis and genome comparison, we selected and
downloaded 30 complete genomes from the NCBI database (https://www.ncbi.nlm.nih.gov/, June
2019), and treated each genome as a document. Ten genomes were downloaded for three pathogenic
bacterial families: Chlamydiales, Vibrionaceae, and Yersiniaceae respectively (Accession numbers and
species details are referenced in Table 1). Bacterial families were chosen according to three criteria:
clear biological differences among them, enough complete genomes in the family for the analysis,
as well as in numbers that allowed computational manageability. Complete genomes were selected
over incomplete genomes/scaffolds since the former are annotated and curated, and therefore their
information has a very low variation rate between versions. The algorithm can be applied to incomplete
genomes.

Given that the corpus is the full collection of words that are putatively present in a group
of documents and, that the subcorpus is a collection of unique words that composes a particular
document, we studied both the corpus and subcorpus of the genomes through the presence or absence
of particular words on each genome. We considered the word –or k-mer– to be an overlapped genome’s
k-size sub-string. Therefore we can establish that in any given length l genome, the total number of
k-mers (N) is equal to l − k + 1. The k-mer size selection was determined by the Cumulative Relative
Entropy metric [8], which is a second-order Markov estimator that reflects the information gain of
a word of size k. As the value approaches zero, the accuracy to estimate longer features trades-off with
computer-time geometric increase.

https://www.ncbi.nlm.nih.gov/
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Table 1. Genomic information from bacteria selected for Whole-genome k-mer topic modeling association.

Accession No. Family Organism Genome Size (bp)
AE001273.1 Chlamydia trachomatis D/UW-3/CX 1,042,519
AE002160.2 Chlamydia muridarum Nigg 1,072,950
AE009440.1 Chlamydophila pneumoniae TW-183 1,225,935
AE015925.1 Chlamydophila caviae GPIC 1,173,390
AP006861.1 Chlamydiales Chlamydia felis Fe/C-56 1,166,239
CP002549.1 Chlamydophila psittaci 6BC 1,171,660
CP002608.1 Chlamydophila pecorum E58 1,106,197
CP006571.1 Chlamydia avium 10DC88 1,041,170
CP015840.1 Chlamydia gallinacea 08-1274/3 1,059,583
CR848038.1 Chlamydophila abortus strain S26/3 1,144,377
BA000031.2 Vibrio parahaemolyticus RIMD 2210633 3,288,558
BA000037.2 Vibrio vulnificus YJ016 3,354,505
CP000020.2 Vibrio fischeri ES114 2,897,536
CP000626.1 Vibrio cholerae O395 1,108,250
CP000789.1 Vibrionaceae Vibrio harveyi ATCC BAA-1116 3,765,351
CP002284.1 Vibrio anguillarum 775 3,063,912
CP002377.1 Vibrio furnissii NCTC 11218 3,294,546
CR354531.1 Photobacterium profundum SS9 4,085,304
FM178379.1 Aliivibrio salmonicida LFI1238 3,325,165
FM954972.2 Vibrio splendidus LGP32 3,299,303
AL590842.1 Yersinia pestis CO92 4,653,728
CP000720.1 Yersinia pseudotuberculosis IP 31758 4,723,306
CP000826.1 Serratia proteamaculans 568 5,448,853
CP002505.1 Rahnella sp. Y9602 4,864,217
CP002774.1 Yersiniaceae Serratia sp. AS12 5,443,009
CP006250.1 Serratia plymuthica 4Rx13 5,328,010
CP016940.1 Yersinia enterocolitica strain YE5 4,593,248
CP017236.1 Yersinia ruckeri strain QMA0440 isolate 14/0165-5k 3,856,634
HG738868.1 Serratia marcescens SMB2099 5,123,091
LN890288.1 Serratia symbiotica strain STs 650,317

2.2. Topic Model

Probabilistic topic modeling refers to a suite of algorithms that are assembled in order to discover,
classify and annotate thematic information in large documents (Figure 1). The principal advantage of
these algorithms is that they do not require prior document information –such as previous annotations
or labeling– as the topics emerge from the original texts’ analysis [27]. Topic models’ analysis is build
up on the concept that documents can be considered to be as mixtures of topics, where a topic is
generated by the probability distribution of words [28]. Therefore, it is possible to extract the most
recurrent themes –or topics– shared by a corpus of sequences [25] which in this work, is the corpus
composed by the selected genomes. In order to do so, a series of N words can represent a document
d: d = (w1, w2, ..., wN). The generative model for documents can be expressed by the following
probability distribution:

P(wi) =
T

∑
j=1

P(wi|z = zj)P(z = zj) (1)

where P(wi) is the probability of the word wi in a given document; P(z = zj) is the probability of
choosing a word from a topic zj for the current document; P(wi|z = zj) is the probability of sampling
the word wi, given the topic zj; and T is the number of topics [25,29]. In this context, a corpus is defined
as a collection of M documents denoted by D = w1, w2, ..., wM [30].

The probabilistic topic model used in this work is the Latent Dirichlet Allocation (LDA). The main
idea is that documents are represented as random mixtures over latent topics, where each topic is
characterized by a distribution over words. LDA assumes the following generative process for each
document w in a corpus D [30]:
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1. Choose N ∼ Poisson (ξ).
2. Choose θ ∼ Dir (α).
3. For each of the N words wn:

Choose a topic zn ∼Multinomial (θ).

Choose a word wn from p(wn|zn, β), a multinomial probability conditioned on the topic zn.

In this work, we used the topicmodels R package [25].

Figure 1. Schematic procedure of Whole-genome k-mer topic modeling association. To-be-compared
genomes are retrieved either from databases or from experimental procedures (1) to be decomposed
into k-mers (2) and then analyzed in order to determine the adequate topic number (3) to finally
perform the topic classification as summarized in (4).

3. Results and Discussion

Optimal k was determined as 13-mer by Cumulative Relative Entropy metric, since it rendered
values under the suggested threshold (Figure 2) without a considerably trade-off with computational
requirements.

From the 413 possible 13-mers, only about 8% (41’392,339) where significantly present in the 30
complete genomes included in this study. Thus, we reduced our corpus to those k-mer words that
where present in a number of genomes equal or greater than ten –the number of species on each
evaluated family–. This provided with a discrimination criteria that allowed us to select the putative
useful k-mers for subcorpus classification. The selected corpus consisted in 211,680 13-mers that where
found 2’419,034 overall in the evaluated genomes.

Once the corpus was established, we applied the LDA algorithm to model topics that could
differentiate the genomes based on their taxonomy. The LDA was compiled with Gibbs sampling and
the default parameters for 3 topics. The main result of the algorithm is the probability distribution for
each genome to all topics based on its subcorpus.
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Figure 2. Box plot for Cumulative Relative Entropy for different k sizes involving 30 bacterial genomes.
The suggested threshold is below 0.1 to maximize differences between the genomes. Notice that k = 13
is the first k where neither value is above the threshold.

Given that topics are sets of highly-probable k-mers occurring in each genome, we can infer that
those lexicons carry out similar biological functions in the evolutionary process. Therefore, closely
functional genomes aggregate similar k-mers. Our results (Figure 3) show that each cluster is highly
represented by a topic: topic 1 for Chlamydiales, topic 2 for Vibrionaceae, and topic 3 for Yersiniaceae.
This suggests that these genomes tend to adopt a homogeneous lexicon that agrees with a selective
process and outline the biological functions or traits that could fulfilled.

1 3 2
Topics

Chlamydophila pecorum E58
Chlamydia trachoma!s D/UW−3/CX
Chlamydia muridarum Nigg
Chlamydia felis Fe/C-56
Chlamydophila pneumoniae TW−183
Chlamydophila caviae GPIC
Chlamydia avium 10DC88 
Chlamydia gallinacea 08−1274/3
Serra!a symbio!ca strain STs
Chlamydophila psi#aci 6BC
Chlamydophila abortus strain S26/3
Serra!a marcescens SMB2099
Serra!a proteamaculans 568
Serra!a sp. AS12
Serra!a plymuthica 4Rx13
Rahnella sp. Y9602
Yersinia ruckeri strain QMA0440
Yersinia pseudotuberculosis IP 31758
Yersinia pes!s CO92
Yersinia enterocoli!ca strain YE5
Vibrio furnissii NCTC 11218
Vibrio vulnificus YJ016
Vibrio cholerae O395
Vibrio fischeri ES114
Aliivibrio salmonicida LFI1238
Vibrio parahaemoly!cus RIMD 2210633
Vibrio harveyi ATCC BAA−1116
Photobacterium profundum SS9
Vibrio anguillarum 775
Vibrio splendidus LGP32

0.2 0.4 0.6 0.8

Probability

Vibrionacea Yersiniacea Chlamydiacea

Figure 3. Phylogenomic classification of bacterial families Chlamydiales, Vibrionaceae, and Yersiniaceae
based on topic modeling (In this work, three topics).
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Figure 3 shows the hierarchical clustering of the probability distributions of each genome for
the three topics. The three well-defined clusters correspond with the bacterial families used in this
work. Each cluster tends to be more related with a single topic. It is of note the case of the Yersineaceae
family that is represented by topic 3 and is clearly divided in two subclusters, correlating with the two
distinct genera that these genomes belong within this family. The difference between both genera is
their probability of sharing words with topic 2.

The clustering method groups together most of the genomes based on their families.
One exception is Serratia symbiotica strain STs, that shows a high-probability for words in topic 1,
and thus is clustered together with the Chlamydiales family. Although we cannot relate the rendered
topic-based organism classification with particular intrinsic corpus characteristics, the clustering
presents an interesting result. S. symbiotica is not allocated as expected with its traditional taxonomical
family Yersiniaceae, but with Chlamydiales instead. This may be explained by the fact that organisms
with high presence of topic 1 are conventionally classified as obligate intracellular parasites, while the
rest are either facultative intracellular or extracellular parasites. As among Yersiniaceae S. symbiotica
is an obligate intracellular symbiont in Aphids [31], it is possible that either topic 1 corpus lexicon is
related to specific mechanisms for intracellular biological relationship while topic 2 and 3 lexicons
may establish a correspondence with mechanisms related to free-life capabilities. This explanation
needs to be taken with reserve, mainly by the fact that genome sizes are considerably smaller in
those obligate intracellular parasites and even more in the symbiont. One of the multiple factors
that could be affecting k-mer topic identity assignation by the algorithm is the genome size. k-mer
sequences and topic’s pertinence’s probability will shift more drastically in a smaller genome. However,
this result suggests that there is a high possibility that in fact topic 1 narrative is related to intracellular
mechanisms and invites to further research.

k-mer analysis has become a popular approach for sequence comparison [32,33]. So far, there
are three pivotal previous studies that classified complete genomes by this approach. Two of them
focused on viral genomes [5,34], while the remaining one on the classification of bacterial genomes [3].
Complete genomes comparison is still challenging when under- and over-represented words are
considered, and becomes even more so as the genome size increases. Sims and Kim [3] removed sets
of words terms in order to classify bacterial genomes from different genera. With topic modeling we
were able to include over-represented words with an accurate bacterial family’s classification (Figure
4), which could be explained by the fact that the removed lexicon may carry meaningful biological
information. A plausible solution for this methodological artifact is the incorporation of natural
language processing –such as LDA– which has proven success at single gene comparison level [25]
and that takes into consideration the over-represented terms. Our results show that this rationale is
efficient in the bacterial family’s classification at a whole genome scale comparison.

Most topic modeling algorithms have been successfully applied to single gene sequences [25,35],
however, with the exponential growth of whole-genome data, topic modeling can be implemented
to span complete genome analysis. Our approach, is based on the concept that genomic lexicon may
be fixed as a representation of biological processes in organisms and therefore used as discriminators
between them. The expected outcome is k-mers being clustered according to topics with putative
similar lexicons. As organisms are clustered based on the frequency of k-mer’s probability to each
topic, it is possible to hypothesise that each topic is part of a lexicon related to a group of similar
biological processes or functions. Backenroth et al. [36] demonstrated that it is possible to predict how
regulatory-sequence changes diverge in topics to predict tissue-specific functional effects. Functional
word analysis may be implemented as an extension of topic attributes, becoming another approach for
future work that involves supervised topic modeling.

Topic modeling techniques have been previously used in bioinformatics to classify sequences ether
according to their coding genes [26], 16S rDNA [25], or other biological activities [37–40]. La Rosa and
colleagues compared LDA vs. support vector machine to classify bacterial families. They concluded
that while both methods are precise for full-length 16S rDNA sequences, only LDA is robust enough
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for smaller k-mers. The explanation for this lies in the capacity for supervised machine learning
methods to generalize information from their training sets via previously selected features. In contrast,
LDA is an unsupervised machine learning method able to correctly classify a small-k-mer corpus
composed of complete genomes. This implementation could be extrapolated to incomplete genomes
(e.g., when analyzing bacterial high-throughput sequencing) by considering that word samples do not
necessarily mean a corpus and biological significance interpretation can be compromised.

0.50.60.70.80.9

Escherichia coli

Vibrio cholerae 

Vibrio furnissii

Vibrio harveyi

Vibrio parahaemolyticus

Vibrio vulnificus

Vibrio splendidus

Vibrio anguillarum

Vibrio fischeri

Photobacterium profundum

Aliivibrio salmonicida

Chlamydopila caviae

Chlamydia avium

Chlamydopila abortus

Chlamydopila pneumoniae

Chlamydia muridarum

Chlamydia trachomatis

Chlamydia felis

Chlamydia gallinacea

Chlamydophila pecorum

Chlamydopila psittaci

Yersinia ruckeri

Yersinia pestis

Serratia plymuthica

Serratia proteamaculans

Serratia sp. AS12

Serratia symbiotica

Yersinia pseudotuberculosis

Yersinia enterocolitica

Serratia marcescens

Rahnella sp. Y9602

Figure 4. Phylogenomic classification of bacterial families Chlamydiales, Vibrionaceae, and Yersiniaceae
based on the methodology of Sims and Kim [3], and including over-represented words.

4. Conclusions

Herein we establish that the Topic model can be applied to complete genome comparison with
results that are consistent with the current bacterial taxonomy. The topic modeling has the advantage
of not needing a selection of characteristics to differentiate genomes according to their taxonomy. It is
possible that future exploration will help to establish relationships between genome’s composition and
other significant biological phenomena.
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