
RESEARCH ARTICLE

Effects of arbuscular mycorrhizal fungi and

soil nutrient addition on the growth of

Phragmites australis under different drying-

rewetting cycles

Jin-Feng Liang1☯, Jing An1☯, Jun-Qin Gao1*, Xiao-Ya Zhang1, Fei-Hai Yu1,2

1 School of Nature Conservation, Beijing Forestry University, Beijing, China, 2 Zhejiang Provincial Key

Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China

☯ These authors contributed equally to this work.

* gaojq@bjfu.edu.cn

Abstract

The frequency of soil drying–rewetting cycles is predicted to increase under future global cli-

mate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. How-

ever, it remains unknown how AMF affect plant growth under different frequencies of soil

drying–rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three

frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or

without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of

P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a signifi-

cant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewet-

ting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without

nutrient addition, AMF increased leaf area and decreased belowground to aboveground bio-

mass ratio. These results indicate that AMF may assist P. australis in coping with medium

frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how

wetland plants respond to future global climate change.

Introduction

Current climate models predict more intense rainstorms and extreme drought events under

future global climate change [1]. The increase in evapotranspiration and soil drought will

increase the frequency of soil drying–rewetting cycles [2]. This would negatively affect wet-

lands, which are regarded as one of the ecosystems most sensitive to future changes [3].

Wetlands are one of the most important and productive ecosystems on earth [4], with high

economic, cultural, and recreational value [5]. Wetland plants play an important role in

ecological function of wetlands and are a critical component of wetland ecosystems [6,7].

Therefore, how wetland plants respond to the frequency of soil drying–rewetting cycles is

important to predict the potential impact of future global climate change on wetland ecosys-

tems [5].
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Arbuscular mycorrhizal fungi (AMF) form symbiotic association with the roots of most ter-

restrial plants [8]. Historically, AMF were thought to be absent or rare in wetlands, due to

their low survival possibility in anaerobic conditions [9]. However, increasing evidence dem-

onstrates that AMF can survive in wetland ecosystems and many wetland plants are associated

with AMF [10]. Numerous studies have tested the effects of AMF on terrestrial plants [11–14].

These studies generally show that AMF can increase the growth of terrestrial plants by promot-

ing nutrient uptake, especially under nutrient-poor conditions [11,12], although a neutral or

negative effect of AMF on plant growth is also reported [13,14]. However, relative few studies

have examined effects of AMF on the growth of wetland plants [15–18]. Existing studies on

wetland plants showed that AMF colonization increased biomass of Polygonum cuspidatum
[15], increased shoot/root ratio of Eclipta prostrata [18], and had neutral or negative effects on

the growth of P. japonica [15]. AMF can also significantly promote biomass and nutrient

uptake of the mangrove species Kandelia obovata and Sonneratia apetala [16,17]. However, to

our knowledge, no study has tested effects of AMF on plant growth under different levels of

drying-rewetting cycles.

Many wetlands are subjected to eutrophication due to the input of excess nitrogen (N) and

phosphorus (P), arising from fossil fuel combustion, agricultural activities and livestock waste

[19,20]. AMF and nutrients could exert an interactive effect on plant growth [21,22]. Under

nutrient-poor conditions, host plants may benefit more from the increased uptake of soil

nutrients by their fungal symbionts [23]. By contrast, AMF may have a negative effect on host

plants under nutrient-rich conditions because AMF take carbohydrates from host plants [24–

26]. Therefore, it is also important to examine effects of AMF on wetland plants under differ-

ent nutrient conditions [27], especially when these wetland plants are subjected to different

drying-rewetting cycles.

We grew a common wetland plant Phragmites australis under three frequencies of drying-

rewetting cycles (1, 2 and 4 cycles), two nutrient addition treatments (with or without) and

two AMF treatments (with or without). Specifically, we addressed the following questions: (1)

Do AMF affect the growth of the wetland plant P. australis? (2) Do effects of AMF on the

growth of P. australis depend on the nutrient level and the frequency of drying-rewetting

cycles?

Materials and methods

Plant species and AMF

The common reed (Phragmites australis (Cav.) Trin. ex Steudel) is a clonal perennial plant that

grows in a wide variety of ecosystems, including swamp, coastal marshes, inland lakes, and riv-

ers [28, 29]. It has high adaptability, and a well-developed aerenchym and rhizosphere to facili-

tate colonization, and readily propagates by rhizome or stem node [30, 31] It has a well-

developed aerated tissue [32]. Previous studies have showed that P. australis is a common

mycorrhizal plant with an infection rate of more than 30% [31–33].

Rhizomes of P. australis were collected from Shahe in Beijing, China. They were vegeta-

tively cultivated in a greenhouse in Forest Science Co., Ltd., of Beijing Forestry University in

Beijing. After one month, 288 ramets each consisting of a shoot about 15 cm tall and some

roots were selected for the experiment. The roots of each ramet were surface-sterilized by 75%

ethyl alcohol for 10 seconds and 1% sodium hypochlorite (NaClO) for 15 minutes and then

washed by sterile distilled water three times before being transplanted into the sterilized pots.

AMF were obtained from the rhizospheres of P. australis growing in the same riparian zone

in suburban areas of Beijing, China. AMF inocula consists of spores, extraradical mycelium

and fine colonized root segments from cultures that were propagated in a sterilized mixture of
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soil and sand with host sorghum (Sorghum propinquum H.) in a glasshouse for three months.

Both soil and sand were sieved through a 2-mm mesh before being thoroughly mixed at a vol-

ume ratio of 1:1. The soil-sand mixture was then autoclaved at 121˚C for 2 h before potting.

The field studies did not involve endangered or protected species and no specific permits were

required for the described studies.

Experimental design

The experiment used a factorial design with two levels of AMF (with vs. without), three fre-

quencies of drying-rewetting cycles (1, 2, or 4), and two levels of nutrient addition (with vs

without), making a total 12 treatments. Each treatment had six replicates. Four ramets of P.

australis were transplanted into each pot (15 cm in diameter and 18 cm in height), and one

uniform ramet was retained after 2 weeks. In the treatment with AMF, we added 50 g fresh

inoculum around the roots of the ramet in the pot. In the treatment without AMF, we added

50 g sterilized inoculum and also 10 ml of a suspension of the AMF inoculum, filtered to

remove AMF spores but not other smaller soil microorganisms [34,35]. For the treatment with

nutrient addition, we added a solution of (NH4)2HPO4 at 90 g�m-2�y, and for the treatment

without nutrient addition we added distilled water with the same amount.

We applied three drying–rewetting cycle treatments during the 64 days of the experiment.

The 1-cycle treatment was the control (CK), in which pots were watered every 2 days to main-

tain constant moisture; the volumetric water content of soil was maintained at about 17%. In

the 2 and 4-cycle treatments, pots were subjected to two or four drying–rewetting events (soil

water content ranged between 16.6–21.5%), respectively. One drying-rewetting event included

8 days of dry and 8 days of wet. In the 2-cycle treatment pots encountered two drying–rewet-

ting events at the first and third period of the experiment. In the 4-cycle treatment pots

received four drying–rewetting event at all four periods.

The experiment started on 5 August 2016 and ended on 9 October 2016. It was conducted

in a greenhouse at Beijing Forestry University under natural light conditions. During the

experiment, the mean air temperature ranged between 19.7˚C and 27.2˚C.

Measurements

Before harvest, we counted the number of ramets and measured ramet height of P. australis in

each pot. Then we harvested leaves, stems, and belowground parts (roots and rhizomes) of P.

australis in each pot separately. Leaves were scanned using an Epson perfection v700 photo

scanner, and leaf area was then measured using Image J. After that, we measured dry mass of

all plant parts after oven-drying them at 70˚C for 48 h. Samples of fresh roots were taken from

each plant and cut into approximately 1-cm pieces to determine the colonization rate of AMF.

Root samples were cleaned in 10% KOH (w/v) and stained using lactic acid fuchsin solution

[36]. The root colonization rates were measured using the gridline-intersect method under a

microscope [37].

Statistical analysis

Before analyses, the data on growth were checked for normality and homogeneity of variance,

and no data transformation was used. We used three-way ANOVA to examine the effects of

AMF, drying-rewetting cycles, and nutrient addition on biomass, number of ramets, leaf area,

plant height and belowground to aboveground biomass ratio of P. australis and the coloniza-

tion rates of AMF on roots. We used Tukey HSD tests for multiple comparisons. All the statis-

tical analyses were conducted using SPSS 18.0 (SPSS, Chicago, IL, USA).

Effect of AMF, soil nutrient and drying-rewetting
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Results

Leaf mass of P. australis was significantly affected by nutrient addition (S1 Table) and the

interaction between AMF and drying-rewetting cycles (F2, 60 = 5.86, P = 0.005, S1 Table). With

AMF and nutrient addition, leaf mass was significantly higher in the 2-cycle than in the 1- and

4-cycle treatment (Fig 1A). Compared to the absence of AMF, the presence of AMF increased

leaf mass of P. australis both with and without nutrient addition in the 2-cycle treatment (Fig

1A). However, AMF decreased leaf mass with nutrient addition under the 4-cycle treatment

(Fig 1A).

There was no significant main effect of AMF, or drying-rewetting cycles on the leaf, stem,

belowground mass, or total biomass of P. australis (S1 Table). There was no significant interac-

tive effect of AMF × nutrient addition or nutrient addition × drying-rewetting cycles on leaf,

stem, belowground, or total biomass of P. australis (S1 Table).

AMF significantly affected the number of ramets (S2 Table), and nutrient addition signifi-

cantly affected both the number of ramets and ramet height (S2 Table). The number of ramets

was significantly higher with than without AMF in the 2-cycle treatment with nutrient addi-

tion (Fig 2A). Drying-rewetting cycles significantly affected belowground to aboveground bio-

mass ratio (S2 Table). Belowground to aboveground biomass ratio was significantly lower with

than without AMF in the 2-cycle treatment without nutrient addition (Fig 3B).

There was a significant interactive effect of AMF and drying-rewetting cycles on the num-

ber of ramets and leaf area (S2 Table). There was also a significant interactive effect between

AMF and nutrient addition on the number of ramets (S2 Table). Leaf area was significantly

higher with AMF than without AMF in the 2-cycle treatment without nutrient addition (Fig

2B). There was no significant effect of AMF on stem mass, belowground mass or total mass of

P. australis.
The number of ramets was not significantly affected by any of the treatments with AMF

(Fig 2A). Leaf area of P. australis was significantly higher in the 2-cycle than 1- and 4-cycle

treatments with AMF and without nutrient addition (Fig 2B). Belowground to aboveground

biomass ratio was the highest in the 1-cycle treatment with AMF and with nutrient addition

(Fig 3B). Without AMF, the number of ramets was the highest in the 1-cycle treatment irre-

spective of nutrient addition (Fig 2A). Leaf area of P. australis was significantly higher in the

4-cycle treatment than in the 1- or 2-cycle treatments without nutrient addition (Fig 2B). Plant

height or belowground to aboveground biomass ratio did not differ between the 1- and 4-cycle

treatments (Fig 3A and 3B).

Discussion

Understanding how wetland plants respond to the presence of AMF under different levels of

nutrients and drying-rewetting cycle is essential for predicting how wetland plants changes

under future global change. In our study, AMF showed higher colonization rates in the 2- and

4-cycle treatments of drying-rewetting (S1 Fig), indicating that AMF survived well during the

drying-rewetting cycles [15,38]. We also found that AMF promoted the number of ramets, leaf

area, leaf mass and stem mass of P. australis under the 2-cycle treatment. The positive effect

may not only because AMF facilitated the acquisition of limiting nutrients, but also because

they enhanced the resistance of P. australis to environmental stress [23,31]. As a rhizobacteria,

AMF can favor growth-promoting activity under alternate water cycles, leading to higher

shoot biomass [39]. The tolerance to flooded conditions increased via 1) transpiration rates

and stomatal conductance [40], and 2) increased root aeration due to increased photosynthesis

from a greater allocation to aboveground growth [18]. This may explain why the stem mass,
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leaf mass and number of ramets were higher in the 2- and 4-cycle than in the 1-cycle

treatment.

Nutrient addition can enhance plant biomass and development [41,42]. Our results demon-

strated that nutrient addition had a significant positive effect on leaf mass, number of ramets,

and height of P. australis, irrespective of the drying-rewetting cycles or the presence of AMF.

These results were in accordance with findings of other studies with P. australis [43], Phalaris
arundinaceae [41], and Miscanthus sinensis [44]. Nutrient addition, such as N, can promote

aboveground growth, particularly leaf area expansion [42]. We also found that nutrient

Fig 1. Effects of AMF, drying-rewetting cycles, and nutrient addition on biomass of Phragmites australis. Bars and error

bars show means and SE (n = 6). 1 = control (one drying-rewetting cycles); 2 = two drying-rewetting cycles; 4 = four drying-

rewetting cycles. Within each AMF treatment, bars sharing the same letter are not significantly different at P = 0.05. Asterisks

show that means differ significantly between the two treatments with and without AMF.

https://doi.org/10.1371/journal.pone.0191999.g001

Fig 2. Effects of AMF, drying-rewetting cycles, and nutrient addition on number of ramets and leaf area of Phragmites australis. Bars

and error bars show means and SE, (n = 6). Treatment codes are described as in Fig 1. Within each AMF treatment, bars sharing the same

letter are not significantly different at P = 0.05. Asterisks show that means differ significantly between the treatments with and without

AMF.

https://doi.org/10.1371/journal.pone.0191999.g002
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addition increased aboveground biomass and thus decreased belowground to aboveground

biomass ratio of P. australis. The frequency of drying-rewetting cycles had a pronounced effect

on belowground to aboveground biomass ratio of P. australis in our study. The significant pos-

itive effect on growth in the 2-cycle treatment with AMF may be attributed to the long inter-

vals of desiccation that helped AMF colonization and promoted the growth of P. australis.
Studies showed that AMF colonization rates were significantly lower in continuously inun-

dated conditions than in pulsed water treatments [18]. Soil desiccation facilitated infection of

plants by AMF, and the duration of desiccation was greater in the 2-cycle than in the 4-cycle

treatment. In addition, increasing number of drying rewetting cycles could deplete available

substrates [45], which would retard plant growth. This might partly explain why significant

effects were mostly detected in the 2-cycle treatment.

Previous studies show that appropriate drying-rewetting cycles could promote P. australis
growth compared to persistent dry or wet conditions [46]. Our results also indicated that

higher frequencies of drying-rewetting cycles did not inhibit P. australis growth, because P.

Fig 3. Effects of AMF, drying-rewetting cycles, and nutrient addition on height and below/above of Phragmites australis. Bars and

error bars show means and SE (n = 6). Treatment codes are described as in Fig 1. Within each AMF treatment, bars sharing the same letter

are not significantly different at P = 0.05. Asterisks show that means differ significantly between the treatments with and without AMF.

https://doi.org/10.1371/journal.pone.0191999.g003
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australis can tolerate flooding conditions via increased root aeration due to increased photo-

synthesis from a greater allocation to aboveground growth [18].

In conclusion, AMF were found in the rhizospheres of P. australis in all treatments and sig-

nificantly promoted P. australis growth, especially in the 2-cycle treatment. This indicated that

a moderate frequency of drying-rewetting cycles may be facilitate the mutualistic symbiosis of

AMF and P. australis. More ecosystem functions, such as gas emissions and carbon/nitrogen

cycles, together with AMF in wetlands under global climate change should be further studied

to understand the effects of global climate change on wetlands.

Supporting information

S1 Table. ANOVA results for the effects of AMF, drying-rewetting cycles, nutrient addi-

tion, and all interactions on leaf mass, stem mass, belowground mass, and total biomass of

Phragmites australis.
(DOCX)

S2 Table. ANOVA results for the effects of AMF, drying-rewetting cycles, nutrient addi-

tion, and all interactions on number of ramets, leaf area, height, and below/aboveground

biomass ratio of Phragmites australis.
(DOCX)

S1 Fig. Effects of AMF inoculation, drying-rewetting cycles, and nutrient addition on colo-

nization rate of AMF on roots of Phragmites australis. Bars and error bars show means ± SE,

respectively (n = 6).

(TIF)

Acknowledgments

We thank Ping Wang for assistance with the experiment and anonymous reviewers for their

valuable comments.

Author Contributions

Funding acquisition: Jun-Qin Gao.

Investigation: Jin-Feng Liang, Jing An, Xiao-Ya Zhang.

Supervision: Jun-Qin Gao.

Writing – original draft: Jin-Feng Liang, Jing An, Jun-Qin Gao.

Writing – review & editing: Jin-Feng Liang, Jing An, Jun-Qin Gao, Fei-Hai Yu.

References
1. Kannenberg SA, Dunn ST, Ludwig SM, Spawn SA, Schade JD. Patterns of potential methanogenesis

along soil moisture gradients following drying and rewetting in midwestern prairie pothole wetlands.

Wetlands. 2015; 35: 633–40.

2. Huntington Thomas G. Evidence for intensification of the global water cycle: review and synthesis. J

Hydrol. 2006; 319: 83–95.

3. Liao X, Inglett PW, Inglett KS. Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod

wetlands: Effects of precipitation and restoration. Sci Total Environ. 2016; 556: 136–45. https://doi.org/

10.1016/j.scitotenv.2016.02.203 PMID: 26971214

4. Luo S, Wang C, Xi X, Pan F, Qian M, Peng D, et al. Retrieving aboveground biomass of wetland Phrag-

mites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral

data. Int J Appl Earth Obs. 2017; 58: 107–17.

Effect of AMF, soil nutrient and drying-rewetting

PLOS ONE | https://doi.org/10.1371/journal.pone.0191999 January 29, 2018 8 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191999.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191999.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191999.s003
https://doi.org/10.1016/j.scitotenv.2016.02.203
https://doi.org/10.1016/j.scitotenv.2016.02.203
http://www.ncbi.nlm.nih.gov/pubmed/26971214
https://doi.org/10.1371/journal.pone.0191999


5. Hayal D, Brook L, Aramde F. Aspects of climate change and its associated impacts on wetland ecosys-

tem functions—A review. J Am Sci. 2012; 8: 582–96.

6. Adam E, Mutanga O, Rugege D. Multispectral and hyperspectral remote sensing for identification and

mapping of wetland vegetation: A review. Wetl Ecol Manag. 2009; 18: 281–96.

7. Mutanga O, Adam E, Cho MA. High density biomass estimation for wetland vegetation using World-

View-2 imagery and random forest regression algorithm. Int J Appl Earth Obs. 2012; 18: 399–406.

8. Liu Z, Ma L, He X, Tian C. Water strategy of mycorrhizal rice at low temperature through the regulation

of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol. 2014; 84: 185–91.

9. Soetaert K, Hoffmann M, Meire P, Starink M, Oevelen D, Regenmortel SV, et al. Modeling growth and

carbon allocation in two reed beds (Phragmites australis) in the Scheldt estuary. Aquat Bot. 2004; 79:

211–34.

10. Xu ZY, Ban YH, Jiang YH, Zhang XL, Liu XY. Arbuscular mycorrhizal fungi in wetland habitats and their

application in constructed wetland: a review. Pedosphere. 2016; 26: 592–617.

11. Meng L, Zhang A, Wang F, Han X, Wang D, Li S. Arbuscular mycorrhizal fungi and rhizobium facilitate

nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci. 2015; 6: 339.

https://doi.org/10.3389/fpls.2015.00339 PMID: 26029236

12. Tarraf W, Ruta C, Tagarelli A, De Cillis F, De Mastro G. Influence of arbuscular mycorrhizae on plant

growth, essential oil production and phosphorus uptake of Salvia officinalis L. Ind Crop Prod. 2017;

102: 144–53.

13. Jin L, Wang Q, Wang Q, Wang X, Gange AC. Mycorrhizal-induced growth depression in plants. Symbi-

osis. 2016; 72: 81–8.

14. Grilli G, Urcelay C, Longo MS, Galetto L. Mycorrhizal fungi affect plant growth: experimental evidence

comparing native and invasive hosts in the context of forest fragmentation. Plant Ecol. 2014; 215:

1513–25.

15. Sarkar A, Asaeda T, Wang Q, Rashid MH. Arbuscular mycorrhizal association for growth and nutrients

assimilation of Pharagmites japonica and Polygonum cuspidatum plants growing on river bank soil.

Commun Soil Sci Plan. 2015; 47: 87–100.

16. Xie X, Weng B, Cai B, Dong Y, Yan C. Effects of arbuscular mycorrhizal inoculation and phosphorus

supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in auto-

claved soil. Appl Soil Ecol. 2014; 75: 162–71.

17. Wang Y, Qiu Q, Yang Z, Hu Z, Tam NF- Y, Xin G. Arbuscular mycorrhizal fungi in two mangroves in

South China. Plant Soil. 2009; 331: 181–91.

18. Stevens KJ, Wall CB, Janssen JA. Effects of arbuscular mycorrhizal fungi on seedling growth and

development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three

levels of water availability. Mycorrhiza. 2011; 21: 279–88. https://doi.org/10.1007/s00572-010-0334-2

PMID: 20668891

19. Morillas L, Roales J, Gallardo A, Lovett GM, Groffman PM. Nitrogen supply modulates the effect of

changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange. Globe

Chang Biol. 2015; 21: 3854–63.

20. Wasson K, Jeppesen R, Endris C, Perry DC, Woolfolk A, Beheshti K, et al. Eutrophication decreases

salt marsh resilience through proliferation of algal mats. Biol Conserv. 2017; 212: 1–11.

21. Zhang B, Chang SX, Anyia AO. Mycorrhizal inoculation and nitrogen fertilization affect the physiology

and growth of spring wheat under two contrasting water regimes. Plant Soil. 2015; 398: 47–57.

22. Delavaux CS, Camenzind T, Homeier J, Jimenez-Paz R, Ashton M, Queenborough SA. Nutrient enrich-

ment effects on mycorrhizal fungi in an Andean tropical montane Forest. Mycorrhiza. 2017; 27: 311–9.

https://doi.org/10.1007/s00572-016-0749-5 PMID: 27924430

23. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd ed. New York: Academic Press.

24. Allen EB, Allen MF, Egerton-Warburton L, Corkidi L, Gómez-Pompa A. Impacts of early- and late-seral
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