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Incorporating a monetary variable 
into the Schelling model addresses 
the issue of a decreasing entropy 
trace
Alexander V. Mantzaris 

The Schelling model of segregation has been shown to have a simulation trace which decreases the 
entropy of its states as the aggregate number of residential agents surrounded by a threshold of 
equally labeled agents increases. This introduces a paradox which goes against the second law of 
thermodynamics that states how entropy must increase. In the efforts to bring principles of physics 
into the modeling of sociological phenomena this must be addressed. A modification of the model is 
introduced where a monetary variable is provided to the residential agents (sampled from reported 
income data), and a dynamic which acts upon this variable when an agent changes its location on 
the grid. The entropy of the simulation over the iterations is estimated in terms of the aggregate 
residential homogeneity and the aggregate income homogeneity. The dynamic on the monetary 
variable shows that it can increase the entropy of the states over the simulation. The path of the traces 
with both variables in the results show that the shape of the region of entropy is followed supporting 
that the decrease of entropy due to the residential clustering has a parallel and independent effect 
increasing the entropy via the monetary variable.

The Schelling model of racial segregation introduced in1,2 has provided a simple yet flexible model for simulating 
the dynamics of a complex process for residential movements based upon identity3. The motivation of the model 
starts with an examination of rules and conditions which facilitate, an initially randomly ordered set of labeled 
agents (e.g. white and black), to produce a segregated and clustered set of agents. The basic rule set for the agents 
is that there is a constraint upon each agent to have a minimum number of agents with the same label in their 
adjacent surroundings for them to remain in the sample grid cell, or else they move to a different cell in which 
the sufficient number of same labelled agents exist adjacently. Each iteration of the simulation cycles through 
each agent to satisfy this criteria/constraint. It is interesting to note that the rule set is not complex since the 
local agent homogeneity criteria on the local environment has no explicit description for the macroscopic grid 
state, and yet it results in the whole grid state to be altered in a small number of iterations. For this reason it can 
spark interest from researchers not working directly on the social issues of segregation (and related issues such 
as polarization) to apply their domain expertise to understand the dynamics of self-organization4 to a greater 
depth just as the Conway Game of Life5 has provided much insight6. An implementation of the Schelling model 
for practical applications can be found in7 which provides an interface with visualizations.

Segregation based upon race is a continuing issue in the USA8 since the time of proposing the Schelling model 
to explain the dynamics for the emergence. There are other factors as well which can contribute or act indepen-
dently such as segregation based upon a general socioeconomic status as presented in9 which looks at European 
cities and10 that examines Latin American cities. The separating label which residents can use to differentiate 
themselves can be placed upon football team support as shown in the Glasgow (UK) history of sectarianism 
between teams Celtic and Rangers11. The work of12 looks at some of the real world complex patterns displayed 
by segregation upon ethnic and religious statuses in which a utility (e.g. ability to afford moving costs) variable 
is integrated into a Schelling model without infringing upon the original formulation. An exploration of the 
monetary variable’s role in spatial heterogeneity data in urban regions for use in the Schelling model is also posed 
in the work of13 and how family income can explain the variance observed. The income data may not provide a 
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complete representation for the more general monetary effects such as ’wealth’14 but provides related measure 
of which data is more easily accessible.

Figure 1 provides a set of plots in order to develop a mental image of the Schelling model’s operation. Subfig-
ure (a) presents a random initialization of the grid where 140 agents each of 2 types (blue and orange) are ran-
domly placed in unique cell positions. These agents are also referred to as ’residents’ and in the title of a) R = 39 
refers to the number of agents which have the number of required homogeneous residents in their adjacent grid 
cells in order to be ’satisfied’ under the Schelling criteria/constraint. Subfigure (b) displays the state of the grid 
after each resident has been given the opportunity to move to a new cell in which the homogeneity satisfaction 
can be achieved (one iteration forward in the simulation from the initialization). This altered the value of R to 
increase to the value of R = 133 and the increased clustering between homogeneous labels shows this. Subfigure 
(c) shows the result of 500 independent simulations of the Schelling simulation with the x-axis being the itera-
tion number and the y-axis the average R value across those simulation iteration values. The dashed line is the 
maximum possible R achievable for that many agents. Subfigure (d) shows the normalized histogram of the final 
value of R for those 500 simulations and it can be noticed that the simulation frequently achieves in producing 
configurations with R close to the maximum value. It is noteworthy that the Schelling model can be expected to 
produce these results with few iterations.

There has been continuous development of the Schelling model’s formulation in which many variants exist 
but the work of15 provides a framework in which parameterizations allow the model to capture the dynamics of a 
wide range of different effects within the Schelling model. A different perspective is that taken by sociophyics16–18 
in which many tools developed for physical systems find applications in the social context with an appropriate 
abstraction and generalization. In19 a commentary about sociophysics in general is followed by the introduction 
of the Ising model’s20 formulation of the ferromagnetic interactions on the state of the spins {−1,+1} where the 
aggregate affects the external magnetic field; H(σ ) = −

∑

�i j� σiσj and how this can relate to different human 
label interactions. The work of21 considers not only the basic locality criteria of the homogeneity satisfaction 

Figure 1.   The plots demonstrate the operation of the Schelling model’s operation. (a) represents the first 
iteration of the Schelling model which starts with 2 sets of residential agents randomly placed upon a grid of 
empty cells. The number of agents which have their local homogeneity satisfied is R = 39 . (b) shows the state of 
the grid after a single iteration of the simulation where the number of agents with local homogeneity is R = 133 . 
(c) shows the mean value of the homogeneity satisfaction, R, across all the agents in the grid for each iteration 
from 500 simulations. (d) shows the distribution of the final homogeneity value R at each of the simulations run 
for (c).
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in the Schelling model as a modeling similarity with the Ising model, but also the phase changes of the system 
where ’spontaneous magnetism’ acts as a display of self-organising segregation. A study that investigates the phase 
transition behaviors under different conditions is found in22. The development of a ’physical analogue’ of the 
Schelling model is proposed in23 where the spatial interactions of the neighborhood of each agent is modeled with 
liquid tensions providing enhanced granularity to the simulations. Reference24 presents a probabilistic descrip-
tion of the model dynamics and the attractors of the configurations with the energies different states contain.

What is a common feature of previous work in sociophysics for this modeling development is that the progres-
sion of the Schelling model states are monitored by looking at the percentage of the agents which have achieved 
the homogeneity satisfaction or the related measure of energy of the system due to the local interactions over the 
grid. An alternative approach is taken in25 where the entropy over the simulation trace is estimated. It provides 
an equation set for the Schelling model in which the individual configurations of the agents within the grid at 
any time point can be considered as a microstate, rt , belonging to a macrostate at each time point, Rt which is 
the overall number of satisfied residential agents. The density of the macrostates, �(R) is estimated so that the 
entropy can be calculated SR = kBln�(R) for each macrostate value that the microstates belong to. The results of 
this study are summarized in Fig. 2. Subfigure (a) shows the distribution of the R macrostate values from random 
uniform samples of the grid permutations. Subfigure (b) shows the density of the macrostates, �(R) , by factoring 
in the total number of possible permutations distributed according to (a) (using the de-labeling factor). Subfigure 
(c) shows the entropy values arising from each macrostate value. Subfigure (d) presents the mean entropy values 
and standard deviation over multiple simulations for each iteration (only the first 3 iterations are shown since 
there are no samples drawn from the larger macrostate values as the density is tightly focused upon the mode).

Looking at Fig. 2a it can be seen how Schelling model simulations will produce initial samples of grids with 
R in a specific region of large density, and as the dynamics move agents the decrease in the density will result in 
a decrease of the entropy as well. A decreasing trend on the grid can therefore be used as an alternative indicator 
that the residential agents are segregating over time (simulation iterations). From a more theoretical perspective, 
it can be appreciated that this simple model dynamic is capable of taking the state of the agents into a macroscopic 
state which is very unlikely to occur by random and that it is consistent in its ability to achieve this decrease. 
Interesting as it may be, there is another possibly more important use case to be considered here in that the initial 
samples which the agents are randomly placed on the grid do not produce R = 0 or values close to the lower 
bound. As noted in26, and later in27, there is a common misconception in the interpretation of entropy that con-
figurations of high entropy would produce no clustering (adjacency of agents). From Fig. 1a it can be seen that 
the initialization produces some regions with clustering of homogeneous agents but that this did not occur with 
any of the Schelling segregation dynamics to begin with. A state of the grid where the labels assigned do not act 

Figure 2.   The plots here show how the progression of the Schelling model produces a decrease in entropy 
with the iterations (which is introduced in25). (a) shows the distribution of the grid homogeneity value R across 
all the agents on the grid at random initializations. Considering R as a macrostate, (b) plots the density of the 
macrostate across different values �(R) . (c) shows the entropy values SR for the macrostate values, and in (a)–(c) 
the red dashed line is the largest value R can take for the number of agents on the grid. (d)  shows the trace of 
the entropy calculation across multiple simulations and the standard deviation of the values.
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according to the Schelling dynamics produces a high level of entropy irrespective when movements are made if 
agnostic of the labels. Therefore in order to determine whether the residential agents are moving independent 
of the labels the homogeneity minimization would require a reduction in the entropy and an actual awareness 
of the label in contrast to the maximization of the entropy measure which intrinsically allows for sporadic clus-
tering (which could be considered false positives for segregation intentions if a minimization upon R is used).

An issue with the current approach to the Schelling model is that the system moves the agents in a direc-
tion for a decrease in entropy of the grid state which is not in line with the desire to have physical analogies of 
the system dynamics that respects the arrow of time28. The increase of entropy in physical systems over time, as 
stated in the second law of thermodynamics, is applied as a key concept in the modeling of global climate as the 
’maximum entropy production principle’29 and in ecological system models30,31. This principle can be applied 
ubiquitously to most system models32,33 and those which do not produce an increase in entropy are said to intro-
duce a ‘paradox’34. This paradox displayed in multi-agent systems has been noted in studies of other social system 
models35 and although they can accurately capture the system dynamics and provide competitive predictions 
there is room to provide a more complete physical analogy.

The model proposed here to alleviate this issue introduces a monetary variable which is a property of the 
agents that does not influence the moves, but is altered by the movement choices. By having this monetary vari-
able, the expenditure incurred by movements results in a dispersal of value creating a trajectory of the states of 
the system in two dimensions. In order to introduce a monetary variable into the Schelling model, each resident 
is allocated a sample from the distribution of the 2014 USA social security administration income reports (fol-
lowing the motivation of36 to use income data with justifications discussed in the Supplemental Information). 
As residential agents change positions in the grid they subtract a portion of the monetary value they have and 
evenly distribute it between the adjacent agents of the new cell they will occupy which updates the monetary 
variable representing income over the simulation. It is assumed that the movement incurs a relocation cost 
which operates as a type of ‘friction’37 decreasing the monetary store of the moving agent while its new neigh-
bors absorb this loss of value by being able to offer services and from the rise in their current property values 
due to investment38. There are income brackets39 which can be found for the agents and if the difference in the 
monetary variable spans fewer than a predefined number of income brackets then those agents are considered 
to have the monetary homophily as considered for the labels. For an agent the number of adjacent agents which 
satisfy the income bracket homophily will determine whether the agent is satisfied in the same manner as with 
the Schelling model in respect to the group label. The grid state will use the aggregate of these satisfactions. An 
initial income allocation based upon a uniform income process will also be used for comparison. The density of 
the states is estimated from samples of the grid microstates using both the label and income satisfactions so that 
entropy values for a trajectory can be allocated. Details are provided in the Supplemental Information regarding 
the data used and the income allocations while the Methodology section will discuss in more detail the dynam-
ics. This introduced dimension is another macrostate, I, the model trajectory then produces a macrostate value 
pair (R, I), and the density of the space for the residential and the income homogeneity, �(R, I) . It will be used 
so that the entropy for the macrostate variables SR,I = kBln�(R, I) can be found.

The importance of considering the entropy trace of the Schelling model is stated in the work of40 where the 
authors argue that the transformations of the grid states could be caused by ’entropic’ effects and since those 
results presented are based upon ratios of agent population features it leaves the task of computing the entropy 
trace as a worthy pursuit to complete. From a more general perspective for systems theory41, poses the question 
of “does the second law of thermodynamics apply to social systems or not?” and the Schelling model can help in 
answering this question if the model captures more key variables. In42 a description can be found for the scope of 
using entropy in general for sociological modeling. Reference43 describes how economic factors can be reasoned 
about with entropy and their relation to econophysics.

Methodology
The outline of the methodology will follow a similar notation set used in25. The grid in which residents are placed 
and allowed to move within will be represented by a lattice � of d = 2 . Each position within � is referred to as 
a cell of which there are a total of N = |�| and are indexed linearly via n ∈ [1, . . . ,N] . The square lattice will 
have N = 192 and 70 agents for each group so that the maximum satisfaction for the grid is 140 (each agent 
of each group label having a satisfied homogeneity). In this study there are 2 type of residents and three types 
of cell memberships, mn ∈ {mgroup1,mgroup2,mempty} . The residential macrostate variable that is the number of 
agents on the grid which have their local homogeneity satisfied is denoted by R, and the grid total number of 
agents surrounded by other agents with income brackets (as described in the Data section of the Supplemental 
Information) close to its own, is the monetary macrostate variable I. The density of the space for these variables 
is estimated through sampling and the entropy calculations on this space (R, I) is produced.

Linear indices are used to map to the grid coordinates, mn ⇐⇒ m(ni,nj) , which indexes the cells 1, . . . ,N . The 
calculation for an agent’s local homogeneity total is found from:

where the δ is the Kronecker delta. The local homogeneity value is used to evaluate the criteria for the agent 
homogeneity satisfaction via:

(1)l(mn) =

1
∑

i=−1

1
∑

j=−1

(

δm(ni,nj) ,m(ni+i,nj+j) : i, j �= 0

)

.
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The cells not on an edge require four similar cells adjacent to it ( h = 4 ), cells on an edge but not a corner need 
three ( h = 3 ), and the cells in a corner require two equally labelled cells ( h = 2 ) or more to be satisfied on this 
constraint. These values will be binary for each cell and the grid is stored as an ordered set of agents for each 
iteration t:

The macrostate summation over the whole grid using linear indices is found via R =
∑N

n=1 r(mn) and using 
the time index:

The number of microstates (the density) for a particular macrostate value R is represented as �(R) , and over 
the iterations each microstate belongs to one of the macrostates, rt ∈ R . It is considered that each microstate is 
drawn from the density R with the same probability, p(r) = 1

�(R) . The entropy of the macrostate is denoted by 
SR = kBln�(R) . As the simulation progresses the macrostate value at each iteration can be used for the entropy 
trace ( Rt);

The distribution of �(R) is sampled with Monte Carlo where the r microstates are drawn uniformly U(r) . The 
de-labeling factor is used for the total number of permutations of the agents on the grid, N !

(
∏group

g Ng !)
 where Ng is 

the number of agents of each group, so that the distribution of the macrostate samples can be used to partition 
the expected number of microstates of each macrostate. The relationship for the total macrostate space is found 
with:

Using the probability from the sample numbers for each macrostate, p(R), the sampled density of each macrostate 
can be found;

and the probability for a macrostate is calculated p(R) = �r∈R�
K .

The monetary variable is produced from income data and referred to as income in the model. These values 
are sampled from real data (USA social security incomes) and from a uniform distribution of income allocation. 
Each cell in the grid mn , which is not empty, is assigned an income bracket, mnb . The income brackets are used 
to assess similarity between the agents as noted in the Data section of the Supplemental Information. b ← fb(i) 
produces a bracket number for each income value, and mnb ⇐⇒ m(ni,nj,b) converts the linear indices back to grid 
coordinates. The income of each agent is denoted with mni . The analogue of Eq. (1) of the local label homogeneity 
for the monetary variable using the income brackets is:

Here hb1 is the threshold for the maximum difference in the number of income brackets between neighbors36 for 
homogeneity to exist and is set to hb1 = 4 . As Eq. (2), shows how the satisfaction of the Schelling constraint is 
computed for the group label association, the income bracket similarity association is found with:

As with the label associations, the hb2 = 4 (agents not on an edge), hb2 = 3 (on an edge but not corner), and 
hb2 = 2 (on a corner). Each grid produces a set of income bracket homogeneity satisfactions which is a binary 
vector:

The macrostate variable I for the income is found from:

(2)r(mn) =

{

(l(mn) ≥ h) ifmn /∈
{

mempty

}

0 ifmn ∈
{

mempty

} .

(3)rt = [r(m1, t), . . . , r(mN , t)].

(4)Rt =

N
∑

n=1

r(mn,t).

(5)St = kBln�(Rt).

(6)
Rmax
∑

R=Rmin

�(R) =
N !

∏�group�
g=1 Ng !

.

(7)�̃(R) = p(R)×
N !

�
�group�
g=1 Ng !

,

(8)lb(mnb ) =

1
∑

i=−1

1
∑

j=−1

((

|m(ni,nj,b) −m(ni+i,nj+j,b)| < hb1
)

: i, j �= 0
)

.

(9)bh(mnb ) =

{ (

lb
(

mnb

)

≥ hb2
)

ifmn /∈
{

mempty

}

0 ifmn ∈
{

mempty

} .

(10)bt = [bh(m1b ,t), . . . , bh(mNb ,t)].

(11)I =

N
∑

n=1

bh(mnb ).
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For Schelling model simulations which use the real data distribution, mnb , is sampled using the CDF of reported 
incomes. In the Supplemental Information section ’Uniform Income allocation’ the algorithm for the generation 
of the uniform incomes is provided and figures for the distribution of the incomes across the agents.

Figure 3 displays examples of the income grids produced by the 2 different allocation processes. Subfigure 
(a) shows a grid where the incomes of the agents is sampled by the data distribution shown in the Supplemental 
Information Data section coming from real income data. Subfigure (b) shows the income allocation using the 
uniform process where there are fewer outliers and a smaller range of values. The income data macrostate value 
in (a) is less than that in (b), I = 26 compared to I = 127.

The monetary variable of grids can be initialized with Mni , coming from income data, or Mnu from the uni-
form allocation using the same total. Along with the sample of the agent positions within the grid, the vectors r 
and b for the initialization ( t = 1 ) allows the density of the macrostates to be estimated in a manner similar to 
Eq. (7). The same de-labelling factor N !

(
∏group

g Ng !)
 is used in conjunction with the n-tuples for the income compo-

nents. The sample probability for the grids is p(R, I) = �r,b∈R,I�
K  for K samples is used,

The density at the macrostate of the grid can then be used to find the entropy for each macrostate value the 
microstate configuration is in:

which permits the estimation of the entropy for a trace of a simulation; SR,I ,t = kBln ˜�((R, I))t.
Figure 4 shows the entropy contours across the domain of (R, I). These samples come from a uniform alloca-

tion of the residential group labels and the process of the uniform income allocation. Subfigure (a) displays a 
heatmap and Subfigure (b) the contour map for the changes in the values across the macrostate values (100,000 
samples were used and further increases in the sample number did not substantially increase the range of the 
samples from the center of the density).

At each move of the Schelling algorithm, the proposed model here conducts an operation which captures 
a basic effect of expenditure for the move that is absorbed by the surrounding local agents. A 5% is subtracted 
from the moving agent’s income variable for each new adjacent neighbor which is then randomly distributed in 
that neighborhood. This dynamic is outlined in Algorithm 1. This is included in the Schelling simulations where 
the income variable information is used. Also a variant of the Schelling algorithm may be employed where the 
agents search for new empty cells to occupy if the destination provides label homogeneity (regardless if there is 
satisfaction already). The 5% can be substituted with other values to observe the effect and in this study it was 
found that 5% produces a similar number of steps for both the residential and income dynamics to reach the 
plateau from initialization.

(12)�̃(R, I) = p(R, I)×

(

N !

(
∏group

g Ng !)
×

(

70

∑

mni
1000

)2
)

.

(13)SR,I = kBln�̃(R, I),

Figure 3.   Examples of the monetary variable applied to the agents on the grid. (a) shows an initialization of a 
Schelling grid where each agent is allocated an income independently from the distribution of incomes reported 
by the USA social security administration, and the local income homogeneity for the agents across the grid 
is I = 26 . (b) shows the initialization of another Schelling grid where the monetary variable sample for each 
agent comes a process of uniformly allocating portions of a total income across the agents, and the income 
homogeneity for the agents on the grid is I = 127.
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Algorithm 1 Income dynamic

1: procedure INCOMEDYNAMIC(grid,n, i, j, income) 5% for each neighbor is randomly distributed amongst neighbors
2: neighbors← getAd jacentAgents(grid[i, j])
3: distribute← (0.05× income) neighbors
4: grid[i, j]income = grid[i, j]income−distribute
5: du← uni f ( neighbors )
6: du← du/sum(du)
7: tmp← 1
8: for all (∀(i, j) ∈ neighbors) do
9: grid[i, j]income ← du[tmp]+grid[i, j]income
10: tmp← 1+ tmp
11: end for
12: return grid
13: end procedure

Figure 4.   The sampled entropy values for the macrostate variables R, I for the proposed Schelling with the 
monetary variable. (a) shows the heatmap of the values and (b) the contours of the values sampled. The spatial 
positions of the agents are randomly allocated and the incomes for the agents come from the uniform allocation 
process.

Figure 5.   Example of the entropy trajectory under a simulation with random grid movements, no income 
dynamics and the incomes are obtained from a uniform allocation. (a) shows the values of the macrostates the 
simulation passes through in relation to the value of the entropy each state is sampled to have and the blue circle 
represents the initial starting point. (b) shows the mean value of the entropy trace of 5 independent simulations.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17005  | https://doi.org/10.1038/s41598-020-74125-6

www.nature.com/scientificreports/

Results
Figure 5 shows the results of running a simulation with random movements and no income dynamics when the 
initial starting position is produced with incomes coming from the process of uniform allocation. The random 
spatial arrangements of the agents is analogous to what is shown in Subfigure (a) of Fig. 1, but the movement 
patterns are not governed here by the Schelling criteria where a local homogeneity constraint is satisfied but 
random movements between empty cells. The incomes for the agents on the grid will resemble that shown in 
Subfigure (b) of Fig. 3. Here Subfigure (a) shows the trajectory of a single simulation where the blue circle is the 
starting point and the contours shows the regions of the entropy values depicting the changes in the values over 
the regions. It can be seen how the trajectory remains in the areas of the largest entropy values. Subfigure (b) 
shows the entropy value trace over five independent simulations and that the values can display various changes 
in values as they cross between regions of the contours within R, I. This shows that spatial rearrangements them-
selves do not produce repositioning outside of the regions of largest sample densities which produce the largest 
entropy region. As shown in Eq. (13), the entropy trace is produced from SR,I.

Figure 6 shows the results of running simulations with only the residential dynamics for R (without income 
dynamics), and the results of the simulations with only income dynamics operating on I (without the Schelling 
criteria). Subfigure (a) shows the results of initializing a grid where the agents are allocated incomes from the 
process of uniform income allocation rather than sampling it from the real data distribution, and the Schelling 
dynamics are applied to the state of the grid (shown in Supplemental Information section ’Uniform Income 
allocation’). At each iteration the simulation moves agents so that they achieve a local homogeneity satisfaction 
from their neighbors where the starting point is indicated by the blue circle. Although there are movements there 
are no changes to each agents’ income variable values due to these spatial rearrangements. The heatmap of the 
contour lines is shown as presented in Fig. 4. Subfigure (b) shows the mean trace of the entropy values along the 
simulation iterations of (a) for five simulations, and how it decreases as the state of the agent arrangments on 
the grid corresponds to regions of lower entropy on (R, I). Subfigure (c) shows the trace of a simulation where 
the grid initialization allocates the monetary variable I according the real income data distribution shown in 
the Supplementary Figure in the Data section, and there are random spatial movements with income dynamics 
applied. As described in the Methodology section, the income dynamics subtract 5% of an agent’s monetary value 
for each new neighbor at the destination cell and distributes this total randomly between these new neighbors 
of the agent. Subfigure (d) plots the trace of the entropy values across five simulations and the increase can be 
seen when the path enters the region of the contours.

Figure 6.   The entropy traces for simulation involving either only the spatial Schelling dynamics or only the 
income dynamics. (a,b) come from the model where the Schelling dynamics operate upon the agents whose 
income values are allocated from the uniform process and the entropy of the trace is shown which decreases as 
the value of R (for homogeneity) increases. (c,d) are produced from the model where the spatial movements are 
random placements and the incomes are allocated from the real data distribution from the USA social security 
data. There is an increase in the entropy as the state enters the region of greater sample density of the macrostate.
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The results of Subfigures (a) and (b) mirror what is shown in Figs.  1 and 2, with the added component of the 
monetary variable for each agent is presented, as depicted in Fig. 3 (subfigure b) since that grid has the incomes 
allocated according to the uniform process). Since the incomes are allocated from a process of uniform alloca-
tion, there is less skew and variance so there are more agents with similar incomes producing a higher value of 
I than with the real data distribution. Since the differences are typically not large enough in the income variable 
for each agent for movements to change the monetary local homogeneity, I stays relatively the same over the 
iterations. The Schelling criteria is applied for the movements so that as the samples initially are drawn from the 
region of largest density in R, I, the trajectory towards larger R decreases the entropy values as the distance from 
the dense contour center increases.

Subfigures (c) and (d) have incomes sampled from the real data distribution of incomes reported by the USA 
social security administration shown in the Supplementary Information section ’Uniform Income allocation’, 
where there is larger variance and skew so that a grid with agents sampling incomes from that distribution will 
have a smaller aggregated income homogeneity I. Although the movements are random placements without the 
Schelling criteria, the income exchanges between the agents results in an increase of the local income homogene-
ity values of the agents and therefore the overall grid macrostate value I. This change over the simulation iteration 
results in the movement towards the region of the largest sample density with increased entropy values since the R 
value came from the largest region to begin with and that random movements to not change it substantially. Two 
important points to note is that the number of iterations required for the income dynamics to produce a change 
in SR,I is larger than for the Schelling dynamics altering the label homogeneity, and that the income dynamics 
can effectively take the state of the grid from a low entropy region into a high entropy region. It is not necessary 
that the scale of the macrostate value changes are equal as can be seen by the shape of the entropy value contours.

Continuous homogeneity movement Schelling model with the income dynamic applied.  Fig-
ure 7 shows the results of running simulations with the continuous Schelling model which is a modification to 
the classic model. The modification is that residential agents can continue to move between grid cells while still 
maintaining local label homogeneity satisfactions instead of remaining in the same cell if the homogeneity cri-
teria is satisfied. Subfigure (a) shows the trace of a simulation for the values of the macrostate variables R, I. The 
blue circle is the starting point of the initialization and the contours are of the entropy values from the density 
samples SR,I . Subfigure (b) shows the individual macrostate variable value progressions over the simulation. It 
can be seen in both plots that the simulation stays within the highest possible values of both variables with minor 
oscillations.

As a result of the continuous movements it can be seen that the R values are not monotonic increasing or 
producing a flat line after a certain point because of the inter-dependency between agents for satisfying the homo-
geneity criteria. This can be compensated for in subsequent iterations and it is why there are oscillations seen 
for R but were not observed previously. The continuous movements also ensures that the value of I continues to 
increase with the increased number of movements because each move results in the income spread. The R values 
increase towards the maximum at a faster rate than I does and if the movements ceased when R approached the 
maximum the progression of I would be halted. So it can be seen that an increased number of spatial movements 
are needed in order to increase both macrostate variables to the same levels. This implies agents may balance 
their movement patterns in order to retain their monetary differential by refraining to move unless a constraint 
chosen must be satisfied. The path taken in SR,I increases both macrostate variables which from the previous 
simulations shown in Fig. 6 decreases the entropy in respect to R but increases it in respect to I.

Schelling model simulation with the income dynamic.  Figure 8 shows the results of the Schelling 
model simulation with the monetary variable I included. In this simulation the income distribution of the agents 
is sampled from the real data obtained from the USA social security administration, and is then normalized so 
that the total accumulated sum of incomes is constant across all the simulations presented. Subfigure (a) shows 

Figure 7.   The simulations using the Schelling model with income dynamics when continuous movements 
are applied. The continuous movement here means that agents continue to change positions in the grid even if 
homogeneity satisfaction is achieved if destination position also results in satisfaction. (a) shows the value of 
the macrostate variables and (b) shows the trace on the entropy contour plot where the blue circle is the starting 
point.
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the mean trace of five simulations where the coordinates are the values of the (R, I) macrostate variables. The blue 
circle places the average coordinate of the starting random initialization point, and the contours are produced 
from the sampling of the entropy values SR,I in this space as shown in Fig. 4. Subfigure (b) shows the traces of 
the two macrostate variables over the iterations of the five simulations. The results of this subfigure shows that 
although the original context of the Schelling model is preserved with the effective quick increase in R to the 
maximum value or close to it across all the simulations, the local homogeneity of the I variable does not see 
an such an increase. After the spatial movements cease to be made the income dynamics also do not affect the 
agents and the corresponding flat trace lines can be seen.

In Fig. 7 the results do not show the flat traces indicative of a convergence since that modified Schelling model 
allows for the agents to move at each iteration as long as there is spatial satisfaction achieved, and why there are 
oscillations close to the maximum values of both macrostate variables. It could be expected that the increase in 
the spatial homogeneity variable should be compensated by an equivalent change in the income homogeneity as 
the spatial variable moves away from the high density region as much as possible on R, but the income variable 
has a smaller change on the scale of I. These scales though do not have to be equivalent as can be seen by the 
non-circular shape in the contours of the entropy samples. The contours of the entropy density values show that 
the changes are on an ellipse so that there is a faster rate of decay from the center for I than R because between 
the maximum and minimum values of I. From Fig. 6 it can be seen how the direction of change in R produce 
here supports a decrease in the entropy, while the increase in I supports an increase.

Discussion
The Schelling model of segregation provides a insight to how populations change their residential positions based 
upon identity label homophily. The trace of the simulations with this models shows a decreasing entropy trace 
which goes against the maximum entropy principle if it is to find a correspondence with models in physics. In 
order to address the issue of a decreasing entropy trace in the Schelling model, another variable is introduced 
which operates within the Schelling model but without disrupting its original formulation. A monetary variable 
can be introduced as attributes of the residential agents with a dynamic for the changes incurred from move-
ments. This monetary variable for the residential agents in the model is sampled from government reported 
income data as is done in36. The aggregate homogeneity values for the residential component among the agents 
and the income component allow a simulation with to produce an entropy trace accounting for both variables 
(Eq. (13)). As a result it can be seen that as the residential dynamic works to decrease the entropy the income 
dynamics bring the states closer to higher density regions (Fig. 4).

The results show how that the real income data sampled for the agents produces lower aggregate income 
homogeneity values than when the incomes are sampled uniformly for the initialization of a grid, and brings 
the entropy for those real income sampled states to lower values. Simulations with real income data operating 
without the Schelling residential homogeneity (random grid movements) show that the entropy trace increases 
as the income dynamics upon movements induce larger income homogeneity values, while the residential homo-
geneity values stay roughly within the initialization region of high entropy (Fig. 6). Figure 6 demonstrates that 
the model captures an effect which balances the reduction in the entropy due to the residential homogeneity 
with state changes in the direction of an increase of entropy due to the initial income skews being reduced 
from movement expenditures. By introducing the monetary component into the Schelling model dynamics the 
simulation then supports a key principal in physics, the second law of thermodynamics, that systems progress 
towards an increase in entropy.

In order to create an increasing entropy simulation trace an alternative modification could be the introduction 
of multiple identity labels for the agents. A ranked order upon the satisfaction provided by residing in homoge-
neous regions of different labels would produce different values of entropy considering the labels independently 
and a swapping of the rank order of satisfaction provided by the different labels would incur a wide range of 
movements which would lead to a new configuration where there would be increases and decreases during these 

Figure 8.   The Schelling model with the monetary variable simulation results when the income for the agents 
is sampled from the distribution reported from the USA social security administration. In (a) the macrostate 
variable traces for the simulation are shown. (b) shows the mean trajectory of 5 simulations where the blue circle 
is the average starting point.
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periods of reconfiguration. The changes would only be visible while the states move in order to reach a new 
overall stability at the same entropy value. This could be an interesting avenue for future work.

All the code used in this study was written in Julia44 (using version 1.4), within a single Jupyter notebook45,46, 
and the implementation will be available on Github under the account at https​://githu​b.com/mantz​aris.

Data availability
The software will be made available as a repository under the Github account https​://githu​b.com/mantz​aris, as 
a single Jupyter notebook for the Julia Lang kernel developed on version 1.4.
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