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Calcium plays a fundamental role in various signaling pathways and cellular processes in the human
organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels
(LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity.
Dysfunction of LTCCs has been implicated in both aging and Alzheimer’s Disease (AD), constituting a
key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD.
However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute
to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of
LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest tar-
geting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the
diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A long-standing hypothesis for the etiology of Alzheimer’s dis-
ease (AD) is the calcium hypothesis: a disruption in calcium home-
ostasis and high intracellular calcium concentration are associated
with b-amyloid (Ab) and neurofibrillary tangles (NFT), which alter
synaptic plasticity and cognitive function, leading to neural degen-
eration and eventual cell death [43,83]. Aging and AD are associ-
ated with chronic elevations in Ca2+ influx via L-type calcium
channels (LTCC). LTCC blockers have been successful in ameliorat-
ing AD pathology in animal models [34,121]. Nimodipine, which
readily passes the blood–brain barrier, reversed some of the cogni-
tive impairment in dementia patients in earlier studies [8,57,164].
However, inconsistent effects of LTCC blockers have been reported
in recent years [4]. Although LTCC hyperfunction and associated
calcium imbalance have been extensively studied in aging
[82,84,90], how alteration of LTCC function occurs in AD and con-
tributes to AD pathology are much less understood. Thus, evidence
calls for further investigation of the role of LTCCs in AD and the
potential therapeutic benefits of LTCC blockers. In this review, we
first summarize the structure and function of LTCCs and drug tar-
geting by LTCC blockers. We then discuss changes of LTCCs in aging
and AD, and interactions of LTCCs with key pathogenic molecules
Ab and tau, with the hope of shedding light on intervention strate-
gies in AD.
2. LTCC overview

2.1. Structure and function

LTCCs are the largest group of voltage-gated calcium channels.
LTCCs are grouped based on their pharmacological responses to
dihydropyridine (DHP) antagonists and agonists and their electro-
physiological profiles [99,180]. LTCCs consist of four different pore-
forming a1 subunits named Cav1.1 (a1S), Cav1.2 (a1C), Cav1.3 (a1D),
and Cav1.4 (a1F), associated with auxiliary subunits a2-d, b, and c
[9,151,180]. The Cav1.1 isoform, encoded by the CACNA1S gene,
Fig. 1. Cross-section of the LTCC. A 3D schematic is shown in the upper left insert. The LT
d, b and c. Each a1 subunit is comprised of 6 transmembrane helices: S1-S6, with S1-S4 in
auxiliary c subunit, consisting of 4 transmembrane domains binds to the a1 subunit
extracellular a2 subunit is linked to the d subunit via disulfide bridges, and is involved
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is found in skeletal muscle. It is involved in excitation–contraction
coupling [9,132,152]. Mutations of Cav1.1 have been implicated in
malignant hyperthermia and hypokalemic periodic paralysis
[59,149]. The Cav1.4 isoform, encoded by the CACNA1F gene, can
be found in the retina and is involved in photoreceptor transmitter
release [110,111]. Mutations of the Cav1.4 isoform are linked to
night blindness [11,87]. The Cav1.2 and Cav1.3 isoforms are pri-
marily expressed in the heart and brain and they have been impli-
cated in neurological disorders such as autism, bipolar disorder
and Timothy’s Syndrome (see reviews [120,149,180]). As such,
they are the primary focus of this review.

The Cav1.3 isoform, encoded by the CACNA1D gene, can be
found in the neuroendocrine system, neurons, cochlea and cardiac
pacemaker cells and plays a role in cardiac pacemaking, synaptic
regulation, excitation-transcription coupling, hearing and hormone
release (see reviews [120,149,180]). Finally, the Cav1.2 isoform is
encoded by the CACNA1C gene on chromosome 12p13 [138], and
can be found in the heart, endocrine system, as well as neurons
[180]. In the nervous system, Cav1.2 plays an important role in var-
ious processes including activation of calcium-dependent ions,
enzymes and potassium channels [74,130]. Furthermore, they are
thought to be important for the initiation of calcium-dependent
gene transcription events such as excitation-transcription cou-
pling, synaptic integration and plasticity, and dendritic develop-
ment [47,174,180]. In addition, approximately 80 % of LTCCs in
the hippocampus, a primary memory center of the brain, are com-
prised of the Cav1.2 isoform and contribute to up to half of the total
calcium current in the region [16,58,68]. Cav1.2 subunits are
expressed on both the somatic and dendritic regions of hippocam-
pal neurons including synapses [68,107].

LTCCs are heteromultimers composed of a pore forming a1 sub-
unit which mediates the pharmacological and gating properties of
the channel [69,151,180] (Fig. 1). The a1 subunit is made up of six
transmembrane a-helices (S1-S6) [145,153,178]. The S1-S4 helices
make up the voltage sensing domain (VSD) of the transmembrane
domain, whereas S5 and S6 and their connecting P loops (P1 and
P2) make up the calcium conducting pore domain and selectivity
CC consists of four transmembrane a1 subunits (I-IV) and four auxiliary subunits, a2,
volved in voltage sensing and S5-S6 making up the calcium pore domain [178]. The
[31] while the b subunit binds to the a1 subunit I-II interaction domain [5]. The
in both trafficking and channel function [49].
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filter (Fig. 1). Upon membrane depolarization, S4 is rearranged to
have a positive arginine or lysine at every third residue and the
VSD senses this change [30]. That information is then transmitted
to S5 via the connecting cytosolic linker. Finally, the activation gate
formed by the S6 helix opens the channel [30,178]. This conforma-
tional change to the activated state allows for selective flow of cal-
cium into the neuron and as calcium ions flow into the cell, the
channel slowly returns to a resting closed state. The N- and C- ter-
minals of a1 contribute to LTCC activation and inactivation via
calmodulin interaction domains and LTCC modulating protein
binding sites [48,124,171]. a1 subunits are modulated by G-
protein coupled protein kinases via phosphorylation. For example,
protein kinase A (PKA) is known to mediate the opening and clos-
ing of the channel. When the a1 subunit is phosphorylated by PKA
in the hippocampus at serine 1928 proximal to the C terminus, the
number of functionally upregulated LTCCs increases [64,66].

In addition to the a1 subunit, LTCCs have up to four auxiliary
subunits (a2, b, d and c) which are involved in vesicle anchoring,
trafficking, regulatory functions and promote expression of LTCCs
along the membrane [5,29,178,180] (Fig. 1). The a2, d and b sub-
units are known to play a role in a1 subunit trafficking and to influ-
ence biophysical properties of the channels [146,178]. The a2 and d
subunits originate from the same gene. However, during post-
translational modification, they are cleaved into separate proteins
that are connected by a disulfide bond creating the a2-d subunit.
The a2 component is extracellular and the d subunit spans the
membrane (Fig. 1). The primary function of the a2-d subunit is to
stabilize and promote the cell surface expression of LTCCs [40].
The site and mechanism by which a2-d promotes expression is
unclear. However, knockout of this subunit results in reduced cal-
cium channel currents in Purkinje neurons, impairing their func-
tion [10,50]. While the function of the a2-d is not entirely clear,
it is known that they are essential for the relief of neuropathic pain
as drugs such as gabapentin and pregabalin bind to a2-d [154]. The
b subunit, on the other hand, is localized intracellularly and binds
to the a1 subunit interaction domain at the I-II linker [131,178]
(Fig. 1). It has been suggested that this subunit, by binding to the
a1 subunit, promotes the postranslational events that ensure the
insertion of only mature calcium channels into the lipid bilayer
of the plasma membrane [15]. In addition to its involvement in
trafficking, the b subunit has also been implicated in the modula-
tion of LTCCs via phosphorylation of PKA and calmodulin-
dependent protein kinase II (CaMKII). Finally, the c subunit was
initially not found in either Cav1.2 or Cav1.3 isoforms thus it was
thought to not present in neurons [3]. However, a c2 subunit asso-
ciated with neuronal Ca2+ channels was discovered later [5,80,94].
In contrast to b and a2-d subunits, c2 subunit suppresses a1 sub-
unit activation [80]. The mutation of c2 subunit is associated with
absence epilepsy [94]. A knock out mouse model suggested c sub-
unit may function to limit the amount of Ca2+ entry during stimu-
lation of skeletal muscle [62].
2.2. LTCC drug targeting and modulation

LTCCs can be targeted by three groups of drugs including
phenylalkylamines (PAAs), benzothiazepines (BTZs), and DHPs
[120,180]. Computational LTCC models created using the crystal
structure of the KvAP channel [162] have been instrumental in
drug targeting studies. These models have since been used to bet-
ter understand the binding of BTZs [162], DHPs [163] and PAAs
[32] to LTCCs. Using KvAP-based models, Zhorov’s group was able
to determine that all three ligands bind near the S5–S6 helices of
domains III and IV. However, the DHPs and BTZs bind to LTCCs
extracellularly whereas PAAs bind intracellularly through the open
activation gate [32,162–163].
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DHP derivatives including amlodipine, nifedipine, clevidipine,
felodipine, and isradipine, are most commonly used to treat cardio-
vascular diseases such as angina, vasodilation or hypertension
[150]. However, nimodipine, another DHP, readily passes the
blood–brain barrier, making it a therapeutic measure for neuronal
calcium dysregulation. The DHPs act on S6 by binding to Tyr1152,
Ile1153, Ile1156 and Met1161 of the third transmembrane domain
of the a1 subunit and to Asn1472 of the fourth transmembrane
domain [150]. These DHPs act as LTCC antagonists, and they bind
to the pore-forming a1 subunit in the inactivated state to prevent
calcium influx by shifting the LTCC towards the closed state [139].

The activity of LTCCs can not only be regulated by membrane
depolarization [69,89], but also by protein kinase phosphorylation
[29,52,56,66,73,93,122,179]. For example, LTCC activity is, in part,
modulated by interactions with calmodulin or calcium/CaMKII
[52,73,93,179]. Calcium-dependent inactivation (CDI) occurs when
the influx of calcium results in the binding of calcium to calmod-
ulin on the C-terminus and this leads to a change in channel con-
figuration [123,184]. This CDI phenomenon is a negative
feedback mechanism that acts as a safety mechanism to prevent
prolonged dangerous influx of calcium and it is crucial for post-
action potential (AP) repolarization [13,112]. However, CDI can
be impaired with age which results in AP prolongation. More
specifically, there is a prolonged post-burst slow afterhyperpolar-
ization (AHP) which is primarily a calcium-dependent potassium
current. Thus it takes longer for the cell to repolarize to baseline
[43,114,126,161]. This prolonged AHP is linked to deficits in
hippocampal-dependent learning and memory tasks
[106,113,161]. Furthermore, the prolonged slow AHP in aged ani-
mals can be rescued through the use of LTCC blockers such as
nimodipine [114]. This suggests that LTCCs are involved in age-
related prolongation of repolarization and limits further firing of
neurons. Alternatively, calcium-dependent facilitation (CDF), also
arises from the interaction of calcium ions, calmodulin and the
a1 subunit, yet has the opposite effect of enhancing the calcium
flux. CDF is mediated by the CaMKII-dependent phosphorylation
of Cav1.2 at Thr498 of the b2a subunit and the tethering of the
CaMKII to a1C subunit [2,52,73,93]. It plays an important role in
synaptic plasticity and excitation–contraction coupling
[21,41,47]. CaMKII is a kinase that is essential for learning and
memory [100] and the inhibition of CaMKII prevents phosphoryla-
tion, which, in turn, prevents CDF [179,185,186]. Its tethering to
the a1 subunit allows for control of the feedforward CDF mecha-
nism [73].

As indicated above, phosphorylation is an important process
that mediates LTCC function. Several other protein kinases besides
CaMKII are critical as well. It is well established that PKA and pro-
tein kinase C (PKC) mediated phosphorylation can affect pore
structure, thus affecting calcium influx [108,122,127,128]. Both
PKA and PKC can phosphorylate Cav1.2 at Ser1928 on the a1C sub-
unit. Phosphorylation of Cav1.2 on Ser1928 by PKA augments
Cav1.2 activity and synaptic plasticity [122,128]. Cav1.3 current
is also elevated by cAMP/PKA signaling in cardiac [183], endocrine
cells [103,167], and neurons [86]. The dominate phosphorylation
sites in Cav1.3 for PKA are Ser1964 and Ser1743 and PKA phospho-
rylation of Cav1.3 requires b subunit [167]. In the neonatal hip-
pocampus, PKC activation mediates GABAB enhancement of LTCC
currents, alongside PKA [22]. Additionally, in retinal epithelial
cells, PKC blockade reduces LTCC currents [148]. In contrast,
Cav1.2 and Cav1.3 are down-regulated by nitric oxide/cGMP/pro-
tein kinase G (PKG) pathway in cardiac and endocrine cells
[103,167]. The opposite modulations by PKA and PKG signaling
in these cells enable fine-tuning of cellular functions.

Moreover, protein tyrosine kinases, such as Src family kinases
(SFKs), also have the ability to regulate neurotransmitter release
via SFK-mediated phosphorylation of the a1C subunit [51]. Evans
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and Pocock (2009), using cultured rat cerebellar cells, demon-
strated that LTCC-mediated exocytosis requires tyrosine phospho-
rylation by a SFK and that inhibiting SFK through the use of PP1
prevents exocytosis [56]. While LTCC-mediated exocytosis is an
important process in response to oxidative stress in the hippocam-
pus, tyrosine phosphorylation of a1C over-enhances this process
which can lead to neuronal death. Hou et al. [71] demonstrated
that LTCCs are functionally upregulated in post-ischemic brains,
and this further enhances phosphorylation by SFKs and creates a
positive feedback loop leading to a dangerous intracellular calcium
overload [71]. However, how SFKs are activated and how they
modulate LTCCs are still not clear. One possibility is that SFKs, such
as Src, is activated by PKC via Pyk2 [42,95,135]. Stimulation of PKC
triggers dimerization and subsequent trans-autophosphorylation
of Pyk2, promoting binding and activation of Src [42].

Src increases LTCC currents in smooth muscle cells [65,72], reti-
nal pigment epithelial cells [148], and neurons [12,54]. Phosphory-
lation of Cav1.2 at tyrosine residue Y2122 is involved in the
upregulation of Cav1.2 activity by Src in rat neurons [12]. However,
the target sites for Src in Cav1.2 in other species including human
and rabbits are unknown, despite that Src activation enhances
LTCC currents in both species [72,148].
3. LTCC in synaptic plasticity and learning: Effects of aging and
implications in AD

3.1. LTCC-mediated plasticity changes in aging

With aging, the expression of LTCCs in the hippocampus
increases [107,116,159] which, subsequently, increases the cal-
cium current [28,46,159]. However, it is not simply the overall pro-
tein level of the Cav1 subunit that is overexpressed in aged
animals. In fact, Nunez-Santana et al. [116] demonstrated that pro-
tein levels in whole tissue lysates of Cav1.2 and Cav 1.3 subunits
are reduced in the aged CA1, CA3 and DG of the hippocampus in
comparison to adult animals. In addition, there are no changes in
Cav1.2 and Cav1.3 mRNA levels with age. The calcium dysregula-
tion occurs as a result of an increased surface ratio of Cav1.2 in
the CA1 and CA3 regions, and of Cav1.3 only in the CA3 region.
In addition, the immunoreactivity of Cav1.2 is heightened in the
somatic portion of these regions [116], which has been confirmed
by a recent study [107]. Furthermore, LTCC activity is increased
approximately 5-fold when they are phosphorylated
[81,141,142]. Cav1.2 phosphorylation at Ser1928 is increased with
age which enhances influx of calcium into the neuron [38]. How-
ever, the activation of LTCCs is phosphorylation site specific and
phosphorylation at other sites such as Ser533 inhibits LTCC activity
[77]. Another report showed increased expression of Cav1.3 in CA1
region was associated with working memory impairment in aged
rats [168].

There are two ways that LTCCs can affect plasticity. On the one
hand, LTCC activation can directly mediate long-term potentiation
(LTP) or long-term depression (LTD). N-methyl-d-aspartate recep-
tors (NMDARs) and LTCCs are the two major calcium mediators
for synaptic plasticity, which initiate diverse calcium-dependent
signaling cascades critical for memory formation. Changes in these
receptors/channels with age directly influence synaptic plasticity
and learning capacity across different developmental stages. In
hippocampal CA1 neurons, both the decreased tendency for LTP
and the increased tendency for LTD during aging are attributed
to LTCC hyperfunction and concomitant reduced functionality of
NMDARs [88,115]. Furthermore, the age-related increase in LTCCs
is associated with a shift in the forms of synaptic plasticity in aged
rats, which exhibit a reduced NMDAR-dependent and increased
LTCC-dependent LTP and LTD at CA3-CA1 synapses [19,92,144].
14
This age-related modification of the expression and function of
LTCCs in hippocampal neurons could contribute to dysregulated
calcium homeostasis, resulting in synaptic dysfunction and cogni-
tive decline [115], although a protective role of increased LTCC
plasticity in aging has also been proposed [19,92]. Recently, we
demonstrated that similarly to the hippocampus [19,92,134], there
is an age-dependent increase in the contribution of LTCCs to LTD in
the piriform cortex (PC), concurrent with a decreased role for
NMDARs [129]. Moreover, inhibition of LTCCs in the aged PC blocks
LTD [129] and could consequently enhance learning [107]. LTCC
dysregulation is suggested in models for age-related cognitive
decline [157] and is likely involved in AD.

On the other hand, LTCCs may directly influence learning and
memory formation by altering neuronal excitability. In hippocam-
pal CA1 neurons, calcium influx through LTCCs activates calcium-
activated potassium channels, increasing AHPs and reducing neu-
ronal excitability [44,46,107]. Consequently, the threshold for
NMDAR-dependent LTP may be elevated [60,61]. Aging augments
LTCC current, phosphorylation and AHP as aforementioned
[38,44,107,158,159]. Several studies have indicated that the LTCC
blockers can act by reducing the slow AHPs in the hippocampus
[98,114,126]. This reduction in CA1 AHP has been shown to
improve hippocampal-dependent learning [45,119].

3.2. LTCC modulation in Alzheimer’s disease

Disruption in calcium homeostasis has been extensively impli-
cated in aging and AD [4,43,83], where there is heightened calcium
influx into neurons via LTCCs [53,102,158,159,166,176]. Hyper-
function of LTCCs and resultant increased intracellular calcium
can impair neuronal function, adversely affecting synaptic function
and plasticity. Several lines of evidence support the notion that
LTCC hyperfunction contributes to AD pathogenesis. Coon et al.
[33] demonstrated that hippocampal neurons in AD brains show
significantly increased binding of isradipine, a DHP ligand, and
increased cell loss in AD brains compared to controls. This suggests
that the hippocampus, a primary memory center of the brain, is
more vulnerable to calcium dysregulation in AD [33]. LTCC block-
ers have shown beneficial effects in reversing neuronal dysfunction
and cognitive impairment in both humans and animal models
[34,43,97].

Despite that numerous studies have implicated chronic up-
regulation of LTCCs in the etiology of AD, a critical gap in knowl-
edge remains regarding how LTCCs are up-regulated during AD
and how LTCC hyperfunction relates to neuropathology. We dis-
cuss below emerging evidence of relationship between LTCCs,
amyloid and tau. The potential interaction pathways are summa-
rized in Fig. 2. It is noteworthy to point out that besides direct
effects on neurons, the LTCC dysregulation of brain vasculature is
likely involved in AD pathogenesis. Cerebral hypoperfusion is an
important contributor to the cognitive decline in AD [75]. Aging,
as the biggest risk factor for AD, is also associated with vascular
calcium dysregulation [67]. Heightened function of vascular LTCCs
via Ser1928 phosphorylation [104,117] and associated vascular
constriction may exacerbate AD pathology [156].

3.2.1. LTCC and b-amyloid
There is conflicting evidence linking Ab deposits to LTCC hyper-

function. In cell cultures, Ab peptide has been shown to increase
LTCC expression [39,85,166,173]. Ab was reported to directly asso-
ciate with a1C subunit and promote trafficking and insertion of
LTCC at the plasma membrane [140], or act on b3 subunit to facil-
itate Cav1.2 and Cav1.3 surface trafficking [85]. In rat cortical neu-
rons, the expression of human amyloid precursor protein is
sufficient to increase LTCC currents, however, the augment of
LTCCs is independent of Ab [137]. Interestingly, amyloid precursor



Fig. 2. LTCC modulations by Ab and tau. Ab and tau can interact with b subunits to facilitate Cav1.2 surface trafficking [85,169]. Additionally, Ab stimulates b2-adrenoceptor
(b2-ARs)-LTCC complex and enhances PKA phosphorylation of Cav1.2 at S1928 [170]. Tau could exert its effect through Pyk2 and Src/Fyn [14,91,96]. Elevated cytosolic
Ca2 + and calpain result in tau hyperphosphorylation via GSK-3b [78]. Calcium influx through LTCCs augments calcium influx into mitochondria, whereas abnormal tau
impairs calcium extrusion from mitochondria [23].
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protein expression in the cortical neurons enhances AHP and inhi-
bits spontaneous calcium oscillations, similar to the abnormal AHP
and disruption of neuronal excitability observed in hippocampal
neurons in aging [44,107,158]. However, direct measurement of
LTCC current in a transgenic APP/PS1 mouse model failed to show
elevation [160].

Besides direct association and interaction with LTCC subunits
[85,140], Ab can exert its effects on LTCCs through
b2-adrenoceptors (b2-ARs). Soluble Ab binds to N terminus of
b2-adrenoceptors to induce Gs/adenylyl cyclase (AC)/cAMP/PKA
signaling [170]. Cav1.2 forms a unique signaling complex with
the b2-ARs and its effector proteins Gs, AC and PKA [7,37], thus
b2-ARs signaling can potently up-regulate LTCC channel activity.
Phosphorylation at Ser1928 on Cav1.2 uncouples the b2-ARs from
Cav1.2 [122]. The existence of this complex suggests that Cav1.2
is a major target for b2-ARs, whereby Ab engages its effects. Nota-
bly, b2-ARs are increased in the brains of AD patients, especially
within the hippocampus [79]. Epidemiological studies showed
reduced incidence of AD correlated with non-selective b-AR antag-
onist administration [133]. In animal studies, chronic treatment
with b2-AR blockers reduces Ab production [182] and tau pathol-
ogy [177].

Furthermore, Ab stimulates glutamate release and glutamate
spillover contributing to perisynaptic activation of glutamatergic
receptors [155], which facilitates NMDAR-dependent LTCC den-
dritic Ca2+ spikes [175]. Ab-enhanced Cav1.2 activity likely medi-
ates synaptotagmin-3-mediated endocytosis of AMPARs at
perisynaptic endocytic zones and facilitates LTD [6]. Indeed, Ab42
oligomers application potently enhances LTD and impairs LTP in
rodent models [136,143]. Altered plasticity, such as enhanced
LTD, is correlated with forgetting [6].

Besides neurons, increased LTCC expression is associated with
Ab plaques in reactive astrocytes in a mouse model [36]. Particu-
larly, up-regulation of Cav1.2 a1 subunit is dependent on the pres-
ence of Ab plaques [36]. Blocking LTCCs increases angiogenesis in
organotypic brains slices of an Ab mouse model [35].
15
3.2.2. LTCC and tau
While the link between Ab and LTCCs requires further investi-

gation, the relationship between tau and LTCC expression is
becoming an exciting research avenue. Abnormal persistently
phosphorylated soluble tau, termed pre-tangle tau, can begin as
early as in childhood and first appears in the brain stem structure
locus coeruleus [20]. Pre-tangle tau spreads to the transentorhinal/
hippocampus memory pathway over decades before the onset of
clinical symptoms. Recent data suggest that soluble pre-tangle
tau is the more toxic forms among tau species [24,105]. Cell death
and synaptic dysfunction occur in pre-tangle tau mice preceding
NFT formation [125,181].

However, how pre-tangle tau drives neurotoxicity is not well
understood. There is some evidence that interaction between tau
and LTCCs may, at least partially, mediate synaptic dysfunction. In
hippocampal neuronal culture, tau mediates bridging integrator 1
(BIN1) association with LTCCs and the shuffling of LTCCs to the
plasma membrane [169]. Tau proline-rich domain interacts with
both BIN1 and LTCC-b1 SH3 domains. Recent evidence suggests that
LTCC hyperfunction occurs due to tau hyperphosphorylation. In the
3xTG mouse model, there is selective hyperphosphorylation of tau
in CA1 and widespread Ab [118]. Wang & Mattson [172] found that
LTCC amplitude and density were higher in the hippocampal CA1 of
aged 3xTG mice compared to wild-type mice [172]. However, in the
CA3 and DG regions of the hippocampus, where there is no increase
in hyperphosphorylated tau, LTCC amplitude and density does not
differ in 3xTG and wild-type mice. This study reinforces that the
CA1 is particularly vulnerable to tau pathology, which leads to
increased LTCC expression, and highlights the relationship between
pre-tangle hyperphosphorylated tau and LTCC hyperfunction in the
AD model. Increased LTCC activity is also associated with a mutant
tau which is linked to frontotemporal dementia and parkinsonism
in SH-SY5Y cell lines [63]. Mice expressing the mutant tau exhibits
a larger AHP in dorsal entorhinal neurons [17] and altered intrinsic
and synaptic properties in the hippocampus [18], likely due to LTCC
hyperfunction associated with the tau mutation.
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Interestingly, a recent study by Stan and colleagues [147] sug-
gested that specific human tau isoforms, such as 0N4R, enhance
LTCC currents in cultured hippocampal neurons. The resultant
increase in Ca2+ entry is associated with increased medium and
slow AHPs. The Cav1.2 and Cav1.3 b3 subunit that regulates traf-
ficking and biophysical properties of the channel directly associ-
ates with 0N4R isoform and is required for tau-induced LTCC
augmentation [147]. Similarly, expression of human 0N4R isoform
of tau in Drosophila mushroom body increases LTCC expression in
the neuronal membrane and results in odor memory deficiency
[70]. Correcting LTCC expression to the wild-type level with RNAi
knock-down restores memory in the human tau-expressing Droso-
phila [70].

Tau could influence both cytosolic and mitochondrial calcium
signaling. A link between tau and LTCCs may be through the SFKs.
Src and Fyn phosphorylation of Cav1.2 LTCC has been established
[12,54,71,101]. Tau interacts with Src kinases and their activator
Pyk2 [14,91,96] and could potentially enhance LTCC activation.
Mutant or hyperphosphorylated tau has been associated with
increased LTCC currents [63,172] and decreased mitochondrial bio-
genesis [165]. LTCC activation in turn mediates tau hyperphospho-
rylation via GSK-3b, which can be prevented by an LTCC blocker
in vitro [109]. Additionally, mitochondrial dysfunction and associ-
ated alteration in Ca2+ homeostasis have emerged as important fac-
tors in AD and tauopathy [1,55]. Elevation of cytosolic Ca2+ leads to
mitochondrial Ca2+ uptake via mitochondrial calcium uniporters
[1]. MAPT mutant tau inhibits mitochondrial calcium efflux via
inhibiting the Na+/Ca2+ exchanger and makes neurons more vul-
nerable to calcium-induced cell death [23], which critically con-
tributes to AD progression in humans and animal models [25–
26,27,76].
4. Summary and overview

The present review highlights the challenges of understanding
the biological function of LTCCs given their complexity. While their
structures are still being illuminated, it is apparent that function-
ally, they are very complex and only a fraction of their biological
functions have been revealed thus far. Despite their complexity,
drugs targeting LTCCs have been used clinically to regulate calcium
dysregulation in the heart and to manage pain. LTCC mediated cal-
cium dysregulation has been implicated in both aging and AD, with
overexpression and increased activity of these channels. However,
a critical gap in knowledge remains regarding how LTCCs are
upregulated in AD and how hyperfunction of LTCCs relates to neu-
rotoxicity. LTCC blockers such as nimodipine can ameliorate the
cognitive decline in animal models. However, LTCC blockers have
limited and variable effects in clinical studies. The clinical ineffec-
tiveness of LTCC blockers may be due to unfavorable side effects.
Alternately, the reversal of LTCC-mediated AD pathology could be
stage-dependent. Targeting early preclinical stages may prove to
be more beneficial.

While the complete mechanistic understanding of the effects of
Ab on LTCCs is still lacking, the role of pathological tau, especially
pre-tangle tau has drawn more attention given its early appear-
ance in human brains. One hypothesis is that SFKs, specifically
Src and Pyk2 kinase, are involved in pre-tangle tau mediation of
LTCC hyperfunction. As indicated earlier, LTCCs are functionally
up-regulated in diseased brains, and this further enhances phos-
phorylation by SFKs creating a positive feedback loop that leads
to a dangerous intracellular calcium overload. Besides LTCC over-
expression and hyperfunction-induced pathological changes,
LTCCs have numerous physiological functions. Thus, finding alter-
native therapeutic strategies that can specifically target patholog-
16
ical up-regulation of Cav1.2 in the brain may be a more
promising approach than targeting the channel itself.
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