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One of the goal of computational aesthetics is to understand what is special about

visual artworks. By analyzing image statistics, contemporary methods in computer vision

enable researchers to identify properties that distinguish artworks from other (non-art)

types of images. Such knowledge will eventually allow inferences with regard to the

possible neural mechanisms that underlie aesthetic perception in the human visual

system. In the present study, we define measures that capture variances of features of a

well-established Convolutional Neural Network (CNN), which was trained on millions of

images to recognize objects. Using an image dataset that represents traditional Western,

Islamic andChinese art, as well as various types of non-art images, we show that we need

only two variance measures to distinguish between the artworks and non-art images with

a high classification accuracy of 93.0%. Results for the first variance measure imply that,

in the artworks, the subregions of an image tend to be filled with pictorial elements, to

which many diverse CNN features respond (richness of feature responses). Results for

the second measure imply that this diversity is tied to a relatively large variability of the

responses of individual CNN feature across the subregions of an image. We hypothesize

that this combination of richness and variability of CNN feature responses is one of

properties that makes traditional visual artworks special. We discuss the possible neural

underpinnings of this perceptual quality of artworks and propose to study the same

quality also in other types of aesthetic stimuli, such as music and literature.

Keywords: experimental aesthetics, visual art, statistical image properties, self-similarity, richness, CNN feature

responses, aesthetic perception

1. INTRODUCTION

In experimental aesthetics, researchers try to understand the perceptual basis of aesthetic
experience and its neural correlates in the human brain. On the one hand, in neuroaesthetics,
modern brain imaging methods have been used to investigate which brain regions are involved
in the processing of aesthetic stimuli (Pearce et al., 2016). On the other hand, by analyzing image
statistics, contemporary methods in computer vision enable researchers to identify properties in
images of artworks that distinguish them from other (non-art) types of images (Graham and Redies,
2010). Eventually, these two areas of experimental aesthetics will have to be joined to reach a deeper
understanding of where and how the physical structure of esthetically pleasing images is processed
in the human brain, and how such brain responses can be modeled.
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In the present work, we focus on the second goal of
experimental aesthetics, which is to understand what is
special about the structure of aesthetic stimuli. Computational
aesthetics, a subfield of computer vision, has contributed various
tools and algorithms to tackle this question. For a long time,
work in this field was dominated by features that reflected
common a priori knowledge about aesthetic principles. Such
hand-crafted features were used mainly to predict aesthetic
ratings of photographs (Datta et al., 2006; Dong et al., 2015).

For example, Datta et al. (2006) collected 3,581 photographs
together with their aesthetic ratings from the online community
Photo.net. They defined a set of multiple features, which were
then used with an SVM classifier to predict high vs. low ratings
for their set of photographs with an accuracy of 70.12% using a set
of 15 different features. The feature set included low-level features
like color saturation and hue, as well as more abstract features,
such as the adherence to the Rule of Thirds, which is popular
among photographers. Ke et al. (2006) proposed a method to
distinguish high-quality images and low-quality snapshots, using
features like the spatial distribution of edges, contrast and hue,
as well as blur. Following this idea, several researchers have
proposed other measures in order to predict aesthetic quality
ratings (Luo and Tang, 2008; Wong and Low, 2009; Nishiyama
et al., 2011).

A different approach was taken by Marchesotti et al. (2011),
who did not design features by hand, but adopted generic
image descriptors to predict the quality of photographs. The
authors used multiple SIFT (Lowe, 2004) descriptors to encode
gradient information, as well as a color descriptor for capturing
color; their method outperformed their predecessors significantly
(classification accuray of 89.90% compared to 75.85% with the
features proposed by Datta et al., 2006, and to 76.53% with the
features proposed by Ke et al., 2006).

Visual artworks, such as paintings and artistic drawings,
have been studied to a lesser extent (Graham and Redies,
2010). For example, Li and Chen (2009) applied the idea of
extracting multiple features for quality assessment to paintings
and proposed a set of 40 different features in order to capture art
concepts like harmony and balance.

There have also been various attempts to characterize visual
artworks by focusing on single or very few image properties.
For example, Taylor (2002) investigated the drip paintings of
the American abstract painter Jackson Pollock and found that
he painted fractals similar to those found in nature. Moreover,
large subsets of visual artworks and natural scenes share a similar
scale-invariant power spectrum (Graham and Field, 2007; Redies
et al., 2007). Redies et al. (2012) investigated the distribution
of luminance edges in artworks and found that it is rather
uniform and about as self-similar as that of natural scenes.
Together, these studies indicated that large subsets of visual
artworks share specific statistical properties with natural scenes
(Graham and Redies, 2010). Because the human visual system
is adapted to process images of our natural habitat efficiently,
it has been suggested (Taylor, 2002; Redies, 2007) that aesthetic
quality of visual stimuli relates to the adaptation of the human
visual system to natural scenes (Simoncelli and Olshausen,
2001).

More recently, we analyzed the layout of edge orientations
in images of diverse sets of artworks from various cultural
backgrounds by comparing pairwise the orientation of each
edge in an image with the orientations of all other edges in
the same image (Redies et al., 2017). Results revealed that the
artworks are characterized by a lack of correlations between edge
orientations across an image. A promising research question
in computational aesthetics therefore seems to be how much
variability there is in the pictorial elements of images in general
and how this variability is distributed across images of artworks.
A more intuitive insight into this question is that visual artworks
display a harmonious arrangement of their pictorial elements,
which has also been called “good Gestalt” (Arnheim, 1954) or
“visual rightness” (Locher et al., 1999). We hypothesize that this
type of aesthetic quality can manifest itself in the distribution
of variability in colors, edges and other visual features across an
artwork. In the present work, we investigate this variability by
using features from Convolutional Neural Networks (CNNs).

Due to recent progress in object recognition, CNNs have
gained a huge popularity (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; He et al., 2015), although the basic idea
underlying CNNs was already proposed more than thirty years
ago (Fukushima, 1980; LeCun and Bengio, 1995). Part of the
present success can be explained by advancements in computing
technology and the availability of a huge amount of data for
training (LeCun et al., 2015). CNNs learn a hierarchy of filters,
which are applied to an input image in order to recognize
image content. While lower-level features are very general and
resemble those found in human early vision (Yosinski et al.,
2014), higher-level features learn rich semantic representations
(Donahue et al., 2014). The training of a CNN is done in a
supervised manner using backpropagation, an algorithm that
compares the current output of the model to a target output. This
procedure allows propagating the calculated error back through
the network and changing the parameters of each filter according
to its contribution.

With the growing popularity of CNNs, these models have also
been applied to image rating tasks (Dong et al., 2015; Lu et al.,
2015) and proved to be well-suited to predict aesthetic quality
as well. For example, CNNs were used to distinguish colored
paintings of Western provenance from non-artistic images by
using an SVM classifier (Denzler et al., 2016). The downside
of deploying deep models and end-to-end feature learning,
however, is that a model’s performance does not always allow
drawing conclusions on how the model’s features bring about
this performance. In other words, while it is possible to predict
whether an image will be considered to be aesthetic or an artwork,
it is not easy to understand why this might be the case. In
another line of studies, CNNs have been used to transfer the
visual characteristics of particular artistic styles to photographs
(Gatys et al., 2015).

Typically, CNNs are trained on datasets containing thousands
of categories and millions of example images to recognize objects
or scenes. The learned features were shown to be suitable for
generic recognition tasks (Donahue et al., 2014; Hertel et al.,
2015). Here, we exploit this property and apply the CNN features
to artworks and, for comparison, to other types of images.
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However, because CNNs are trained to recognize objects or
scenes, the training approach may not be feasible to study the
nature of artworks because artworks can depict almost any
object or scene. We therefore decided to ask how artworks are
processed by CNN filters, rather than to use CNNs to detect
specific image content in artworks. We focus our study on
features at lower levels of CNNs because that is where generic
(i.e., content-independent) responses are found (Yosinski et al.,
2014). Moreover, higher levels may not be suitable because
the content displayed in artworks may be different from the
images that the CNNs were trained on and therefore provide
indifferent activations by these stimuli. Similar approaches using
low-level generic CNN features have recently been proposed for
detection of the left/right symmetry in images (Brachmann and
Redies, 2016), for quality assessment of image reproductions
(Amirshahi et al., 2016), and for measuring self-similarity in
images (Brachmann and Redies, in press).

With regards to the variability of visual features in artworks,
there has been no comprehensive and systematic analysis by
the computational approach to date. Rather, as stated above,
individual aspects of image structure, such as color distribution,
edge orientation and the spatial frequency spectrum, were
analyzed separately without assessing overall similarities in their
variance or distribution. The present study represents a first
attempt to overcome this problem.

To carry out a comprehensive study, CNN features are
particularly useful because they resemble the human visual
system in how they encode input images. Notably, CNN features
from lower layers reflect several primordial neural mechanisms of
human vision (Wurtz and Kandel, 2000). In parallel, they process
information on luminance gradients and their orientation, color
and spatial frequency, and thus allow us to link the CNN
features to several different processes underlying human visual
perception.

To carry out a systematic study, we calculate three types of
variance (total variance, variance across features, and variance
across image patches) for a wide range of spatial scales. Results
for artworks are compared to various other categories of man-
made stimuli and natural patterns and scenes. Based on only
two of the variance measures, we succeed in defining a feature
space, in which colored artworks can be discriminated with
an accuracy of 93% from other types of colored images, in
particular photographs of man-made and natural patterns and
scenes. Our findings hold for colored traditional artworks from
diverse provenances (Western, Islamic and East Asian cultures),
suggesting that the here-defined features space can be applied
across cultures.

In conclusion, there have been two seemingly divergent
approaches in computational aesthetics. On the one hand, the
usage of multiple image features, including diverse CNN features,
has allowed predicting the aesthetic quality of photographs and
artworks with reasonable accuracy, but the interpretability of
this success in terms of the underlying visual processes remains
limited. On the other hand, particular visual properties have
been identified in visual artworks and were related to the
visual processing of natural patterns and scenes; however, these
properties are not unique to artworks. In the present study,

we combine these two approaches. By using multiple lower-
level CNN filters, we study particular statistical measures, i.e.,
the variability of the CNN features, to ask whether there is a
particular pattern of features that distinguishes colored artworks
from diverse types of real-world photographs.

2. METHODS

2.1. Variance of CNN Features
In order to discriminate visual artworks from other image
categories, we use the features of the well-established AlexNet
model, which was first introduced in Krizhevsky et al. (2012) and
is provided in the CaffeNet Library (Jia et al., 2014). A schematic
diagram of the model along with a visualization of the first-layer
filters is shown in Figure 1. The original input dimension of the
network is 227 × 227 pixels, which proved to be sufficient for
object recognition. However, much detail of the original image
is lost when it is scaled down to such low resolution. In order
to preserve the amount of detail that may be required for a
full aesthetic evaluation, we drop the fully-connected layers and
rescale the input dimension to 512 × 512 pixels, while keeping
the filter sizes and parameters as defined in the original model.
A similar upscaling was carried out by Gatys et al. (2015) who
showed that information on image style and content is preserved
after upscaling.

We measure variances of features as follows: For a given
convolutional layer l, we divide each filter response map into
n × n equally sized subregions and record the highest responses
for each subregion and every filter on that layer, i. e., we perform
a max-pooling operation over the response maps. This provides
us with a max-pooling map Ml,n, which has three dimensions:
two positional parameters defining the position of the regions,
over which the max-pooling is performed, and a third dimension
for each filter, with k being the total number of filters on the
respective layer l.

After a normalization of the histograms of each subregion,
which assured that all filter responses of every subregion summed
are equal to one, we measure three different variances:

1. The total variance over all entries of all histograms:

pa(Ml,n) = var(Ml,n) (1)

2. The median variance of the histograms of the n×n subregions
of the grid:

vg(Ml,n) = (var(Ml,n(x, y, i)|i ∈ 1..k)|x, y ∈ 1..n) (2)

pg(Ml,n) = median(vg(Ml,n)) (3)

3. The median over the variance of each f ilter:

vf (Ml,n) = (var(Ml,n(x, y, i)|x, y ∈ 1..n)|i ∈ 1..k) (4)

pf (Ml,n) = median(vf (Ml,n)) (5)

For convenience, we will denote pV (Ml,S) as PV (S) for a given
convolutional layer l, so that Pa(12) would stand for pa(Ml,12).
We calculate each of the above variance measures for different

Frontiers in Psychology | www.frontiersin.org 3 May 2017 | Volume 8 | Article 830

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Brachmann et al. Feature Variances in Visual Artworks

FIGURE 1 | (A) A schematic representation of the AlexNet CNN, which we use in our experiments. The layers that are output of a filtering operation are shown in gray

(conv: convolutional layers, fc: fully-connected layers). Filter operations between the layers are represented by dashed blue lines. The numbers at the bottom indicate

the total number of different filter maps at each layer. A hierarchic, consecutive filtering of the input image, which is decomposed into its red, green, and blue channel

(see data layer), allows to extract features that are well suited to recognize objects in an image and to assign a class label. In our experiments, we dropped the

fully-connected layers above the last convolutional layer (conv5) in order to be able to rescale the network to a higher resolution of the convolutional layers. The

normalization layers and pooling layers of the model are not shown. For a detailed description of the model, see Krizhevsky et al. (2012). (B) A visualization of the 96

filters on the first convolutional layer, which detect oriented luminance edges at different frequencies as well as opponent color gradients.

numbers of subimages n ranging from 2 to 30 in steps of 2.
This provides us with 45 values in total, which describe the
overall variance of features of a given image. The choice of the
above variance measures was motivated by our aim to capture
abstract aesthetic concepts like “visual rightness” (Locher et al.,
1999) in terms of the distribution of colors and edges distributed
across the image. With respect to the hypothesis formulated in
the Introduction, we are interested in the question of which
subset of these values is the most discriminating for artworks
compared to other categories of images. To answer this question,
we test subsets of different sizes from the pool of variances for
their discrimination power and used them as input features for
a Support Vector Machine (SVM) with a Radial Basis Function
(RBF) kernel that is trained to assign the labels art and non-art for
a given image. SVMs separate classes by maximizing the margin
between a hyperplane and the nearest training examples, called
the support vectors (for an introduction to SVMs, see Bishop,
2006). To avoid overfitting, we carry out 5-fold cross-validation
and take the mean of all five test sets as our final classification
value for a given feature set.

2.2. Image Datasets
In our study, a total of nine different image categories are
compared. Three categories comprise artworks and six categories
contain non-art images. One of the artwork categories, the
JenAesthetics dataset, consists of a total of 1629 images of
traditional oil paintings of Western provenance (Amirshahi
et al., 2013). The images from this dataset cover different
art periods like Renaissance, Baroque, Romanticism, Realism,
Impressionism and Expressionism, ranging from the fifteenth to
the twentieth century. Moreover, images are annotated according
to subject matters (e. g., portrait, landscape, still life).

In order to expand our analysis to artworks from other
cultures, we also include a dataset of illustrations from traditional
Islamic illuminated books and miniatures (251 images) and
traditional colored brush paintings from China (210 images) in
our study (Redies et al., 2017). All images were downloaded
from the Wikimedia Commons database (https://commons.

wikimedia.org). A particular effort was made to select images
with well-preserved colors and sufficiently high resolution. A list
of all images with the individual links to the Wikimedia database
can be obtained from the authors.

To compare results for artworks with images of other
man-made scenes and objects, the non-artistic categories
include photographs of buildings (511 images), urban scenes
(219 images) and simple objects (207 images). Moreover,
previous studies demonstrated that some statistical properties
are shared between artworks and natural scenes and images, in
particular with large-vista natural scenes (see Section 2). As a
particular challenge in the classification task, we therefore include
photographs of large-vista natural scenes (473 images), of plant
patterns (331 images) and of vegetation (458 images) in our
analysis. All non-art images were taken with a Canon EOS 500D
camera by one of the authors (Redies et al., 2012; Braun et al.,
2013). The photographs were taken and processed in RAW or
TIF format to avoid compression artifacts. Example images are
shown in Figure 2. In total, we thus use 4,289 images (2,090
images as examples for artworks and 2199 images of non-artistic
content). This distribution is roughly balanced and entails a best-
guessing probability of 0.513 when always choosing the same
class. We also report results from a set of photographs of lichen
growth patterns (244 images), which are extremely self-similar
and complex (Redies et al., 2012). Finally, to address the question
whether the analysis might possibly be biased by camera artifacts,
we also included the first 2,090 images of the ImageNet test set in
the analysis (Russakovsky et al., 2015).

3. RESULTS

We calculated the three variance measures proposed in
Section 2 for all images in our dataset. Figure 3 shows different
variance plots calculated on convolutional layer conv1, the first
convolutional layer of the AlexNet model. All three measures
increase in value with more patches and therefore smaller patch
sizes, as more and more detail of an image is taken into account.
For different image categories, different slopes are observed.
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FIGURE 2 | Example images of the datasets used in present study. (A) Examples of artworks (from left to right: Islamic art, Chinese art, and Western art from

the JenAesthetics dataset). (B) Examples of non-art images from the categories Buildings, Urban Scenes, Objects, Large Vistas, Plant Patterns and Vegetation. See

Table 2 for values of Pf (12) and Pa(22) for each image.

FIGURE 3 | Plots of median variances Pa (A), Pg (B), and Pf (C) for each category on convolutional layer 1. Values for artworks (larger symbols) are similar, but

differ from those of the other image categories (smaller symbols).
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Objects, for example, show a much steeper slope than most of
the other categories for all three values. The categories containing
art, namely images from the JenAesthetics dataset (Western art)
as well as Islamic art and Chinese art, show similar slopes for all
measures. For Pa, the curves for art are similar to those for Plant
Patterns and Vegetation, whereas for Pf , they are similar to Large
Vistas for smaller patch sizes, while values for Plant Patterns and
Vegetation are lower.

In order to test whether the different variance measures can be
used to discriminate art images vs. non-art images, we trained an
SVM classifier, as described in Section 2. We apply 5-fold cross-
validation and define the average accuracy on the test samples
of all five models as the classification accuracy of the respective
subset. The higher this accuracy is, the more specific the chosen
feature set is for artworks. We test sets that contain one feature,
two features or three features in combination. Each set defines a
space, in which image categories form clusters.

Figure 4 shows the maximum classification performance
when discriminating traditional art vs. non-art images for
different set sizes and on different layers. As expected, the
classification performance decreases with less features in a set
and correspondingly lower dimensions of the feature space. The
best classification performances are obtained with three features
on the first convolutional layer, yielding a maximum accuracy
of 0.938 ± 0.007 SD, compared to a correct guessing probability
of 0.513. Notably, the second best performance is obtained with
a features set containing only two features: Combining features
Pf (12) and Pa(22), an SVM classifier is able to discriminate
art from non-art images with an accuracy 0.930 ± 0.009 SD.
In the remainder of this article, we will focus our analysis
on features obtained on the first convolutional layer. For this
analysis, classification results are listed in Table 1 for the different
categories of art images.

For comparison, we provide two different baselines. First, we
tested the classification of a linear SVM on the raw red, green,
and blue pixel values of a downscaled version (227 × 227 pixels,
as the input of the unmodified AlexNet model) of the images
in our experiment. This downscaling was necessary because of
computing power limitations and reduced the input dimensions
of the resulting features space to a total of 3 · 2272 = 154, 587
dimensions. Here, we obtained amean classification performance
of 0.722± 0.014 SD (see black line in Figure 4). Second, we tested
the classification performances of a linear SVM on the raw filter
maps that were obtained from processing it with the AlexNet
model. Here, dimensions are even higher: For example on the
first convolutional layer, the input dimension amounts to a total
of 290,400 (96 filters at a resolution of 55×55 pixels). Results for
the baselines are shown in Figure 4.

Figure 5 visualizes the space defined by the two features
and makes intuitively accessible why the classification can be
done with such high accuracy. Figure 6 shows extreme cases of
images embedded in this space. The variance values for each
image are listed in Table 2. In this feature space, different image
categories form clusters, which overlap to some extent, but
overall, art images are separated from non-art images. To put this
separation into perspective and rule out a possible artifactual bias
in our dataset of photographs, we also calculated classification
performances for comparing art with the equivalent amount of
images from the ImageNet (Russakovsky et al., 2015) test set
of photographs. Here, features Pf (10) and Pa(16) result in a
top classification accuracy of 0.861 when combined. With a set
of three features (Pa(10), Pf (18), and Pf (30)), we reach a top
classification accuracy of 0.871 for the first convolutional layer.

Figure 4 shows that, from the first to the second convolutional
layer, the maximum accuracy of classification drops for all sizes
of feature sets, but rises again for the third convolutional layer.

FIGURE 4 | Best classification performances for different layers, using sets of features that define spaces of different dimensions (1d–3d feature sets;

blue, green and red, respectively). As expected, a higher dimensionality yields a better classification accuracy. Interestingly, on the first convolutional layer (conv1)

of the AlexNet model, a two-dimensional set of features performs almost as well as a three-dimensional one. The values represent means and the error bars SDs from

a 5-fold cross-validation experiment. Two baselines as provided for comparison. First, a linear SVM on the raw CNN responses of each respective layer (cyan), and

second, a linear SVM on the raw image data (black).
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TABLE 1 | Mean classification scores (±SD) for art images vs. non-art

images, according to different categories of artworks.

Category Accuracy Precision Recall

Western art (m = 1629) 0.939 ± 0.008 0.931 ± 0.005 0.926 ± 0.017

Chinese art (m = 210) 0.851 ± 0.012 0.354 ± 0.018 0.852 ± 0.038

Islamic art (m = 251) 0.957 ± 0.015 0.726 ± 0.083 0.964 ± 0.008

All combined (m = 2,090) 0.930 ± 0.004 0.942 ± 0.009 0.913 ± 0.010

While for Western art (JenAesthetics dataset) and Islamic art, the classification score

is above 90%, it drops to 85% for Chinese art. Here, the mean precision is low, due

to an overall lower richness (i.e., higher values of Pa (22)). Results are from a 5-fold

cross-validation experiment. m, number of images in the dataset.

This means that, while variances of features are distinctive for art
on the first and the third convolutional layer, they are less specific
for artworks compared to other image categories on the second
and fourth layer.

Figure 7 shows values for Pa(22) and Pf (12) for artworks
grouped by genre and subject matter, compared to non-artworks.
For Pa, artworks show similar mean values and distributions,
independent of subject matter or art genre (Figure 7 top). This
similarity holds true also for images of other cultural provenances
(Islamic and Chinese artworks). Feature Pf (12), which is plotted
in Figure 7 bottom, shows more variable distributions for subject
matter and art genres. Neoclassicism, for example, shows higher
values than other genres. Nevertheless, this feature contributes
to the high classification accuracy because all genres and subjects
have higher values than the non-art categories Plant Patterns and
Vegetation, which are similar to art with regard to feature Pa
(Figure 7 top).

4. DISCUSSION

The aim of the present study was to identify characteristics
of traditional artworks by focusing on the variances of CNN
features. In the present study, we restrict our analysis to color
images because the filters that we use were trained on color
images and, as a result, developed features for color processing.
We chose to analyze variances (for a definition, see Section 2)
because we speculated that such measures could help us to
capture the distribution of color and luminance edges across an
image, which seems to be an important characteristic of artworks
(see Introduction). Our results show that features derived from
different layers are suitable to discriminate art from non-art
images (see Figure 4 for a comparison), with lower-layer features
having the highest discriminatory power.

We compared our classification performances to two different
baselines. First, we find that, for the first convolutional layer, sets
of one, two, or three features are higher than for a classification
done on the raw pixel channels (data in Figure 1). Second,
we determined the classification performances on the raw filter
responses on different layers of the AlexNet model and found
that the performance is always above 90% (Figure 4). Keeping
in mind that, in these experiments, the dimensionality is orders
of magnitudes higher than in our original experiment (290,400
dimensions vs. 1, 2, or 3 dimensions), our results can be

considered a success in terms of distilling relevant information
from this high-dimensional stream of data. Furthermore, we
gain interpretability, which is nearly impossible in the high-
dimensional case.

4.1. Interpretation of the Variances Pa
and Pf
The feature set Pa(22) and Pf (12) is the two-dimensional set
that is best suited for classification of traditional art vs. non-art
images in our study; it yields an overall classification rate of 0.930.
While the interpretation of responses from higher-layer feature
remains problematic and is a matter of ongoing research (Zeiler
and Fergus, 2014; Yosinski et al., 2015), first-layer features, such
as those analyzed in the present work, are more accessible to
analysis and interpretation. By interpreting what these features
measure, we can distill two main characteristics of artworks.

First, the mean overall variance of all filter responses in all
patches, as measured by feature Pa, is significantly lower for the
artworks than for Buildings, Large Vistas, Objects and Urban
Scenes, but comparable to that of Plant Patterns and Vegetation
(Figure 7). We interpret Pa as a measure for the degree of
sparseness in filter responses in an image and of their distribution
in all image subregions. The value is high if, for any given patch,
only one or a few of filters respond, that is, if the histogram
of the patch contains only one or a few bins that reach high
values, while most other bins show low values. High Pa values
are observed in images that are homogeneous in many of their
subregions, for example, in images that show a large blue sky
or large objects with uniformly colored surfaces (for example,
see Figure 6B). Conversely, low values, as observed for artworks,
Plant Patterns, Vegetation and lichen growth patterns, indicate
that a large number of filters respond to a similar degree in each
patch. As a consequence, the variance between filter responses
decreases. Theoretically, Pa approaches zero if all filters in all
patches are activated to the same degree. We therefore interpret
low Pa values as an indication of the richness of filter responses
across an image.

Second, our interpretation of Pf is that it measures the inverse
of self-similarity in an image because it represents the median
variance of the responses of each filter across all subregions. We
here call this property variability. When specific features in an
image are very similar across all subregions, self-similarity is high
and the median variance (or variability) is low. A low Pf thus
indicates that a low number of subregions have filter responses
that diverge from the other subregions. To confirm this relation,
we also calculated self-similarity with the method proposed by
Brachmann and Redies (in press) for all images used in our
experiment. In this alternative method, self-similarity measures
the degree to which features repeat themselves over the entire
image. Specifically, image features are measured by performing
a max-pooling operation over the entire image, which we refer
to as the ground level. Then, a feature vector is build that
holds the maximum responses of all features. Subsequently, as
described for the present method, the image is split into 64
equally sized subregions, for which the max-pooling operation
is carried out as well. The resulting feature vectors are then
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FIGURE 5 | The figure visualizes the space defined by the two features Pa(22) and Pf (12), which were calculated on the first convolutional layer. All four

panels show art categories (blue, yellow, and cyan), which form a distinct cluster. On the top row, art categories are compared to categories that show man-made

scenes, and on the bottom row, art is compared to natural scenes and patterns. The left-hand side of the figure shows the entire space, while the right-hand side

magnifies the central region of interest of the space. Categories overlap only partly, which is reflected in the high classification accuracy that we obtain in our

experiment. The example images shown in Figure 6 are marked by uppercase letters A, B, C, and D, the respective values are given in Table 2.

compared to the ground-level responses in order to measure the
similarity between the entire image and its parts. Comparing
feature Pf (12) and the alternative self-similarity value for the first
layer, we found a Spearman’s correlation coefficient of −0.81,
which corroborates the notion that Pf (12) represents the inverse
of self-similarity (i.e., variability).

Interestingly, images of artworks, plant patterns, vegetation
and lichen growth patterns share similarly low Pa(22) values
(Figure 7), but they differ in their Pf (12) values. Plant patterns,
vegetation and lichen growth patterns are both rich in filter
responses (low Pa(22)) and show low variability (low Pf (12); i.e.,
high self-similarity). Perceptually, this lack of variability results
in the subjective impression that similar pictorial elements (e.g.,
blossoms, leaves or branches) are rather evenly distributed across
the image (see Figure 6A). Although artworks show a similar
richness of filter responses (low Pf (12)), their filter responses are
much more variable across the image (higher Pf (12)). Images of

objects, buildings and urban scenes also result in high variability
of filter responses (high Pf (12)), but their filter responses are
more sparse overall (high Pa(22) values).

In conclusion, CNN filter responses are relatively rich and
variable across the images of artworks. We speculate that the
richness of filter responses across visual artworks corresponds to
the subjective impression that most artworks contain a wealth
of pictorial structure. In other words, artists tend to fill most
parts (here defined by the grid we use for the calculation of the
histograms) of their artworks with structure, such as luminance
edges or different colors. Indeed, most of the artworks studied
here display relatively few areas that are large, homogeneous or
blank (i.e., areas of high Pa; for an exception, see Figure 8B).
This finding distinguishes artworks from all of the other
categories in our experiment, except for photographs of plant
patterns, vegetation and lichen growth patterns (Figure 7). We
also found that the structural variability is high in artworks
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FIGURE 6 | Extreme cases of images that serve to illustrate the space

that best separates art images from non-art images (Figure 5).

(A,B) show non-art images, while (C,D) show artworks. The image of the plant

pattern in (A) is rich in structure (low Pa (22)) but is highly self-similar with little

variability across the image (low Pf (12)). The large vista scene in (B) represents

a highly homogeneous image that lacks structure like edges or different colors

(high Pa(22)). The painting in (C) (A. R.Mengs, 1769) is atypical in that it

contains large, relatively homogeneous regions (high Pf (12)), similar to objects.

The painting in (D) (Monet, 1891) has a very rich structure (low Pa(22)) but it is

not as self-similar (higher Pf (12)) as most images of plant patterns, vegetation

or lichen growth patterns. See Table 2 for values of Pf (12) and Pa(22).

so that their structure does not become monotonous (as in
most plant patterns and vegetation). Possibly, this variability—
in combination with the richness of filter responses—might
contribute to what has been called “good Gestalt” and “visual
rightness” of artworks (see Introduction). Moreover, variability
might sustain the observer’s attention to the various details
distributed over an artwork. Here, we call this model the
richness/variability model.

For an even better understanding of our model, Figure 8
shows examples of misclassified images. The variance values
for each image are listed in Table 2. The left columns depicts
non-art images classified as art, and the right column shows
artworks misclassified as non-art images. While the images on
the left side are easily recognized as regular photographs, the
images on the right side are easily recognized as paintings. These
examples indicate that the classification is not simply based
on the recognition of painting technique, for example brush-
stroke patterns. Rather, the distinction between artworks and
non-art images relates to image features, such as the variance of
colors and edges over subregions of the image (see the legend
to Figure 8 for further details). The most strongly misclassified
images are shown in Figure 9.

The present results can be compared to findings from two
previous studies, which focused on the distribution of luminance
edge orientations in large subsets of traditional artworks. First,
anisotropy of luminance gradient orientations is low (Redies
et al., 2012) and first-order entropy of edge orientations is high

TABLE 2 | Values of features Pa(22) and Pf (12) for the images shown in

Figures 2, 6, 8, 9.

Figures Image Pa(22) (1e−4) Pf (12) (1e−5)

2A Islamic art by Bashdan Qara 1.05 1.48

2A Chinese art by Yun Shouping 2.40 2.21

2A Western painting by J. DeArellano 0.93 1.26

2B Buildings 2.04 1.28

2B Urban scene 7.03 2.42

2B Objects 3.78 5.03

2B Large vista scene 2.98 1.87

2B Plant pattern 1.33 1.06

2B Vegetation 0.94 0.57

6A Plant pattern (flowers) 1.38 0.23

6B Large vista scene (lake) 9.73 0.24

6C Western painting by A.Mengs 1.42 3.35

6D Western painting by C.Monet 0.57 0.66

8A Plant pattern 1.24 1.35

8B Western painting by M.Chase 3.65 1.32

8C Large vista scene 1.02 1.02

8D Western painting by P.Cezanne 0.98 0.75

9A Plant pattern (moss) 1.02 1.07

9A Plant pattern (flowers) 1.24 1.35

9A Large vista scene (waterfall) 1.08 1.16

9A Large vista scene 1.41 1.78

9A Vegetation (poppy flowers) 0.99 1.10

9A Vegetation (pond) 1.03 1.20

9A Vegetation (forest) 0.94 1.21

9A Large vista scene (river) 1.05 1.39

9A Large vista scene (rocks) 0.93 1.21

9B Chinese art by Lang Shining 2.47 1.31

9B Western painting by H. Avercamp 2.55 1.33

9B Chinese art by Xu Yang 0.98 0.54

9B Western painting by E.Manet 0.98 0.52

9B Western painting by C.Monet 1.37 0.74

9B Western painting by H. LeSidaner 1.45 0.78

9B Western painting by C.Monet 0.90 0.46

9B Western painting by C.Hassam 1.22 0.64

9B Western painting by E. Boudin 1.93 0.98

in the artworks (Redies et al., 2017). Both findings imply that
the orientations of luminance gradients tend to be distributed
uniformly across orientations in large subsets of artworks. This
result is compatible with the present finding that filter responses,
which include features that respond to luminance edges of
various orientations, are rich in images of artworks. Second,
by comparing edge orientations pairwise across artworks, we
demonstrated that edge orientations tend to be independent of
each other across artworks (Redies et al., 2017). At least for
the CNN features that respond to luminance edges, we would
therefore predict that the filter responses are not only variable
but also distributed randomly across the artworks.

It should be stressed that the above findings are restricted
to the sets of color images analyzed in the present study.
For monochrome artworks, the color components of the CNN
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FIGURE 7 | The plots show the two features Pa(22) (top) and Pf (12) (bottom). The horizontal line repesents the median of all values in both plots. Art images are

grouped according to subject matter (left section) and art genre (middle section). For Pa(22), all subsets of artworks show a similar distribution, regardless of genre

and subject matter, which are similar to the non-art categories Plant Patterns, Vegetation and Lichen. The distributions for feature Pf (12) among categories of art are

more diverse compared to Pa(22), but nevertheless distinctly different from Plant Patterns, Vegetation and Lichen. The numbers in parentheses indicate the number of

images in each dataset.
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FIGURE 8 | Examples of non-art images misclassified as art (A,C) and

art images misclassified as non-art (B,D). Both the photographs of flowers

(A) and the large vista scene (C) have variances of features (edges and color)

typical for artworks. The image “First Touch Of Autumn” by American painter

W.M.Chase (B) is untypical for artworks in its homogeneity of the sky and the

ground. The artwork “The Bathers” painted by P.Cezanne (D) is untypically

self-similar for an artwork. See Table 2 for values of Pf (12) and Pa(22) for each

image.

filters will not be as responsive and the model may require
modifications. Moreover, the richness/variability model can be
expected to fail for many (post-)modern and contemporary
artworks. For example, the monochrome paintings by Yves Klein
(e.g., Untitled Blue Monochrome [IKB 82], 1959) or the simple
geometrical artworks by Kasimir Malevich (e.g., Black Square,
1915) are neither rich nor variable in their visual structure. In
future studies, it will be of interest to investigate the differences
between traditional art styles, which were analyzed in the present
study, and (post-)modern artworks in more detail.

Last but not least, the richness/variability model is general
enough to be applied to aesthetic stimuli in other sensory or
cognitive modalities, such as music (Brattico et al., 2017) or
literature. Prerequisite for such an application would be a set
of physiologically plausible filters that can be used to extract
perceptually meaningful structural information from the stimuli,
and computer-based algorithms to calculate (i) the overall
variance of all filter responses across the subparts of the stimuli
(similar to Pa in Equation 1), and (ii) the mean variance of each
filter response across the subparts (similar to Pf in Equation 5).

4.2. Possible Underlying Neural
Mechanisms
Converging evidence from neuroimaging studies suggests that
multiple brain regions are involved in aesthetic experience.
Examples are the orbitofrontal cortex, the cingulate cortex, the
insula, the nucleus accumbens and the caudate nucleus (Brown
et al., 2011; Cela-Conde et al., 2011; Vartanian and Skov, 2014).
Some of these brain regions respond not only to visual artworks

but also to aesthetic stimuli of other sensory and cognitive
modalities, extending from the visual arts to music and even
mathematics (Ishizu and Zeki, 2011, 2013; Zeki et al., 2014).

On the one hand, it has been argued that such brain responses
provide a universal neural basis for aesthetic experience (Zeki,
2013). Indeed, a multiregional representation of aesthetic
experience is suggested by the three pillars on whichmost current
models of aesthetic experience are based: cognition, perception
and emotion (Leder et al., 2004; Chatterjee and Vartanian, 2014).
Moreover, there is a significant overlap between brain regions
that are involved in aesthetic experience and neural mechanism
of reward (Ishizu and Zeki, 2011), moral judgement (Zaidel and
Nadal, 2011) and introspection (Vessel et al., 2013), all of which
are mediated by specific networks in the human brain.

On the other hand, the present and previous results suggest
that the physical structure of large subsets of visual artworks may
follow relatively basic physical principles (see Introduction). It is
therefore possible that basic mechanisms of aesthetic perception
may already be implemented in lower cortical visual areas.
However, most of the statistical image properties that have been
associated with aesthetic stimuli to date reflect global statistical
image properties that are likely to be based on long-distance
interactions in the human visual system. For the primary visual
cortex, very long-range interactions that extend beyond the
surround of the classical receptive field (“association field”; Field
et al., 1993) are not well established. We therefore speculated
(Redies, 2015; Redies et al., 2017) that aesthetic perception may
be mediated at visual cortical areas beyond the primary visual
cortex, where contextual processing becomes more prominent,
for example, in scene-sensitive brain regions.

Fundamental to visual aesthetics is that artworks can be
created in many different styles and in almost any visual
modality. Therefore, the various types of visual artworks are
likely to stimulate visual channels differentially. Examples are
monochrome graphic artworks (presumably addressing the
luminance channel), Impressionist paintings (color channel), or
artistic videos (movement channel). It is therefore conceivable
that aesthetic experience is based on a neural mechanism that
is implemented in most, if not all, visual channels (Redies,
2015), rather than by a mechanism that is found in only
one of a few higher cortical brain regions. The detection of
richness and variability of sensory information, which is the
focus of the present work, might be such a general neural
mechanism. The same (or a similar) mechanism might be
implemented also in other sensory systems, the motor system or
in cognitive neural circuits (see above). Consequently, it seems
reasonable to postulate the existence of a general mechanism
of aesthetic processing that is present in multiple sensory
and cognitive channels, as proposed previously for the visual
domain (“beauty-responsive mechanism”; Redies, 2015). If this
mechanism is activated, it may then interact with neural circuits
that process more specific emotional and cognitive aspects of
aesthetic experience, including cultural, contextual or individual
factors, which all contribute to aesthetic experience (Leder
et al., 2004; Zeki, 2013; Chatterjee and Vartanian, 2014; Redies,
2015).
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FIGURE 9 | The most strongly misclassified images, based on their distance to the decision boundary of the SVM classifier. The top half of the figure

shows non-art images misclassified as artworks, the bottom half shows artworks misclassified as non-art images. The Pa(22) and Pf (12) values of each image are

listed in Table 2.
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5. CONCLUSION

Motivated by a search to find statistical image properties that
are special for artworks, we present a relatively simple algorithm
that allows distinguishing artworks from other categories of
images. In order to capture loosely defined concepts, such as
visual rightness and good composition, we focused on variances
of CNN features in our analysis. We chose to focus on filters
that were obtained by training CNNs on millions of images
because these features are good models of human vision for
two reasons. First, the low-level CNN filters encode an image
by using oriented luminance edges and color in form of
opponent-color contrasts, similar to the human visual system.
Second, higher CNN layers capture more abstract image content
by combining low-layer features. Using a simple classification
scheme, we identified two main properties in our analysis that,
in combination, make artworks special. First, artworks tend
to be filled with structure over the entire image (richness),
which separates them from almost all image categories in our
analysis, except for some natural patterns. Second, artworks
show more variability of the features across the image than
the natural patterns, such as plant patterns and vegetation.
Finding these systematic variances helps us to understand how

aesthetic quality of artworks may be reflected in simple statistical
properties. Many current efforts in computational aesthetics,
particularly those that use large sets of image features to infer
aesthetic ratings (Lu et al., 2015; Kao et al., 2016), lack this
interpretability. While mimicking aesthetic judgment by training
a deep network might provide useful insights, we here model
the structure of artworks based solely on the activation of low-
level features, which are known to work well for a variety
of inputs. This approach might help to understand activation
patterns and their relation to aesthetic perception and its neural
underpinnings.
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