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Abstract
Organ failure manifests severe symptoms affecting the whole body that may cause death. However, the number of organ
donors is not enough for patients requiring transplantation worldwide. Illegal transplantation is also sometimes conducted. To
help address this concern, primary hepatocytes are clinically transplanted in the liver. However, donor shortage and host
rejection via instant blood-mediated inflammatory reactions are worrisome. Induced pluripotent stem cell-derived
hepatocyte-like cells have been developed as an alternative treatment. Recently, organoid technology has been developed
to investigate the pathology and mechanism of organoids in cultures. Organoids can be transplanted with vascularization and
connected to host blood vessels, and functionally mature better in vivo than in vitro. Hepatic organoids improve pathology in
liver disease models. In this review, we introduce induced pluripotent stem cell- and organoid-based therapies against liver
diseases considering present and future perspectives.
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Introduction

Liver tissues can regenerate on being injured. Acute liver

failure has different etiologies, including drug overdose,

viral infection, ischemia, etc., and has a high mortality rate1.

In contrast, chronic liver injury results from viral infection,

alcoholism, nonalcoholic steatohepatitis, autoimmune disor-

ders, metabolic diseases, and promotes liver fibrosis2.

Although the liver has considerable regenerative potential,

it cannot regenerate when there is chronic fibrosis or cirrho-

sis. Early fibrosis can be reversible, whereas cirrhosis is

irreversible. In 2012, cirrhosis was the 14th leading cause

of death worldwide3. Moreover, it can cause hepatocellular

carcinoma, which is the most common metastatic liver can-

cer. Organ transplantation is the only treatment option for

both acute liver failure and end-stage liver disease. Trans-

plantation increases the chance of survival in patients with

acute-on-chronic liver failure (ALF) grades 2 and 34.

Another report showed that the hospital survival rate of

patients with ALF who underwent transplantation increased

from 16.7% to 62.2%5.

Progress of Organ Transplantation

Organ transplantation is the only treatment option for the

heart, kidney, and liver at the terminal state of organ failure.

Although the number of patients on the waiting list for organ

transplantation continues to increase, the supply of trans-

plantable organs cannot sufficiently meet the demand. Illegal

transplantation may be performed in 10% of all patients to

satisfy a large demand 6. One reason is that many deceased

organs are not transplantable because the donors are high

risk. For example, the donor was declared dead based on

cardiovascular criteria, as opposed to brainstem death

donors, or the donor was elderly with multiple comorbidities

(extended criteria donors)7. In addition, over about 30 years,

there has been no advancement in the methods of organ

preservation. Organs are usually stored in an icebox, called

1 Department of Regenerative Medicine, Yokohama City University School

of Medicine, Japan
2 Division of Regenerative Medicine, Center for Stem Cell Biology and

Regenerative Medicine, Institute of Medical Science, University of

Tokyo, Japan

Submitted: June 16, 2019. Revised: September 19, 2019. Accepted: October

6, 2019.

Corresponding Author:

Hideki Taniguchi, Department of Regenerative Medicine, Yokohama City

University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama

236-0004, Japan.

Email: rtanigu@yokohama-cu.ac.jp

Cell Transplantation
2019, Vol. 28(1S) 160S–165S
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0963689719888459
journals.sagepub.com/home/cll

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0
License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further
permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0001-8484-7265
https://orcid.org/0000-0001-8484-7265
mailto:rtanigu@yokohama-cu.ac.jp
https://sagepub.com/journals-permissions
https://doi.org/10.1177/0963689719888459
http://journals.sagepub.com/home/cll


static cold storage (SCS), to slow down the metabolism.

However, when the organ is transplanted, ischemia-

reperfusion generates reactive oxygen species, which

damage the transplanted organ. To resolve this, machine

perfusion was developed, and the first randomized con-

trolled trial was performed7,8. This novel technique increases

the duration of organ storage and maintains the physiological

function of the organ7,9,10. Compared with SCS, machine

perfusion increases the storage life of transplantable organs.

Moreover, an inadequate number of donors is predicted even

by using machine perfusion.

Hepatocyte Transplantation

An alternative approach to organ transplantation is trans-

plantation of hepatocytes. Hepatocytes are transplanted

because they can repair and replace the host liver. They are

obtained via patients autopsy then cryoprotected11–16. Trans-

plantation of hepatocytes is optimal for liver tissue; how-

ever, donor shortages and instant blood-mediated

inflammatory reaction (IBMIR) are difficulties faced by

medical professionals during hepatocyte transplanta-

tion17,18. IBMIR recognizes transplanted hepatocytes and

rejects them through the activation of both complement and

coagulation pathways18. Moreover, hepatocytes have low

viability and little proliferation capability in cultures

despite recent improvement in culture methods19. Cryopre-

servation tends to be deleterious in viability, attachment,

and engraftment20. Despite their functionality, hepatocytes

show low engraftment and are difficult to preserve, which

is a matter of concern.

Somatic Stem Cell Transplantation

As an alternative cell transplantation, several types of stem

cells have been reported as resources to restore liver func-

tions21. Bone marrow-derived cells differentiate into hema-

topoietic stem cells (HSCs), mesenchymal stem cells

(MSCs), and endothelial progenitor cells (EPCs)22. Several

studies have proven the feasibility of HSCs, MSCs, and

EPCs in restoring hepatic functions in liver injury mod-

els23–26. MSCs are beneficial for transplantation. They can

be obtained from many tissues including bone marrow,

umbilical cord blood, adipose tissue, and placenta, and are

easily cultured ex vivo27. Moreover, they have immunomo-

dulatory properties28–30. In fact, the safety and short-term

efficacy of transplantation of bone marrow-derived MSCs

was reported to significantly improve Child–Pugh and model

for end-stage liver disease (MELD) scores in 20 patients31.

In total, 40 registered trials targeting liver cirrhosis or acute

liver diseases have used different types of MSCs32. How-

ever, the results of most of these trials showed only tempo-

rary effects and need to be further investigated with large

cohorts31. Furthermore, MSCs cannot reconstitute the host

liver.

Pluripotent Stem Cell Transplantation

Embryonic stem (ES) cells are pluripotent and can differ-

entiate into hepatocyte-like cells. They demonstrate mature

hepatocyte-like properties31. ES cell-derived hepatocyte-like

cells contribute to liver repair by cell replacement33,34. The

generation of induced pluripotent stem (iPS) cells by Taka-

hashi and Yamanaka35 has resulted in the expansion of iPS

cell-based research. Diverse types of cells in the body are

differentiated from iPS cells, and each cell shows specific

morphology and gene and protein marker expressions and

functions36.

Research in clinical applications such as cell replacement,

disease model or disease-specific iPS cell model (genetic

mutation), and drug screening is progressing. Autologous

transplantation of iPS cell-derived retinal pigment epithe-

lium was performed for treating neovascular age-related

macular degeneration in the eyes, and no serious side effect

was reported at 25 months of follow-up in one patient37.

Moreover, a clinical trial was started for Parkinson’s disease.

In 2018, Kikuchi et al. implanted 2.4 million dopamine pre-

cursor cells into the brain of a patient with Parkinson’s dis-

ease. They reported that the transplanted dopamine precursor

cells were functional in the primate brain model of Parkin-

son’s disease38. iPS-based clinical application has pro-

gressed to confirm its safety and efficacy.

In a basic research study, transplantation of human iPS

cell-derived hepatocyte-like cell sheets was reported39. This

sheet was made using temperature-responsive culture dishes,

which is a scaffoldless technology with clinical applica-

tions39,40. Sheet transplantation ameliorates the lethal acute

liver injury induced by carbon tetrachloride in mice39.

Furthermore, recently, iPS cells have been reported to gen-

erate liver-specific endothelial (sinusoidal) cells and stellate

cells41. Moreover, liver parenchymal and non-parenchymal

cells can be induced from iPS cells in two-dimensional cul-

tures. The differentiation of ES or iPS cells to hepatocytes

in vitro is successful and iPS-hepatocyte like cells show

therapeutic effect in vivo39. However, two-dimensional

hepatocytes cannot be produced in sufficient numbers, and

are not sufficient to reconstitute the liver, which is a complex

and large tissue with different cell types.

Functional Three-Dimensional Organoids

The liver is a complex tissue mainly composed of hepato-

cytes, liver sinusoidal cells, stellate cells, and Kupffer cells

and has different functions, such as the production of bile,

albumin, cholesterol, and immune factors; glucose storage

and release; processing of hemoglobin; and clearance of

ammonia and bilirubin. The other organs also have several

functions. Therefore, to generate multifunctional tissues,

such as liver tissues, three-dimensional (3D) sphere or orga-

noid technology has been developed.

Recent advances show the self-organization of neural

cells into multiple layers in the eyes and brain42,43. This
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suggests that complex tissues can be reproduced using orga-

noids. However, these organoids are similar to fetal organs

but not to adult organs44. Functional and mature organoids

are preferable for organ replacement. Novel techniques per-

mit expansion of hepatocytes in long-term culture embedded

in Matrigel. Some growth factors or TNF-a enable prolifera-

tion of hepatocyte organoids in vitro and the repopulation of

human hepatocytes after engraftment into a liver injury

mouse model45,46.

Another interesting topic of research is organ-on-a-chip

technology. This technology enables moderate perfusion and

organ–organ interactions in a microfluidic device47. Primary

human hepatocytes form microtissues with hepatic functions

such as albumin secretion and metabolic activity48.

To create a complex organ system, researchers have tried

to combine organoids with different organs, such as vascu-

lature and nerves49,50. One of the breakthroughs is the gen-

eration of vascularized organoids. Takebe et al. created the

vascularized and functional human liver bud (LB) from

human iPS cells50–52. iPS cell-derived hepatic cells self-

organize into 3D iPS-LB by recapitulating interactions dur-

ing organogenesis with endothelial (human umbilical vein

endothelial) and mesenchymal (mesenchymal stem) cells. In

2017, three types of cells, hepatic endoderm, endothelial,

and mesenchymal cells, were successfully differentiated

from iPS cells and self-organized into LB52. Human

endothelial cells in iPS-LB become functional blood vessels

when connected to the host vessels. Although iPS-LB resem-

bles fetal liver tissue in vivo, LB matures after in vivo trans-

plantation and blood perfusion into LB to escape

hypoxia50,52,53. Moreover, gene expressions in 3D culture

are different to those in 2D culture, and gene expressions

in the former are similar to those in fetal hepatocytes53. A

mouse model with lethal liver failure could be treated by

transplanting iPS-LB50. This demonstrates the generation

of a functional human organ-like tissue from iPS cells. Its

effects have spread further. This organ bud formation is also

driven by mesenchymal cells from other organs such as

intestines, lungs, heart, kidneys, and brain, and even cancer

cells51. Therefore, this universal technology is useful for

Table 1. Comparison of culture and transplantation properties of each discussed method to produce liver tissue.

Cell Cell sheet Organ-on-chip 3D organoid

Generation
method

Obtained from donor; culture and/or
differentiation on coating dish

Differentiation on temperature-
responsive culture dishes

Cultured in
chambers

Cultured in or on
Matrigel or matrix-
free

Cell proliferation
and expansion

Almost none Almost none Proliferate but
limited in size

Proliferate and expand

Maturation High High Low maturation Low but mature in vivo
Technical

accessibility
Easy Easy Hard Relatively easy

Vascularization Absent Absent Present Present
Perfusion Absent Absent Present Absent
Transplantation Easy Easy Hard (or

impossible)
Relatively easy

3D: three dimensional.

Figure 1. Overview of the culture process from cell to organ. In two-dimensional cultures, primary hepatocytes, embryonic stem (ES), or
induced-pluripotent stem (iPS)-hepatocyte-like cells and iPS-hepatocyte-like cell sheets are developed. In three-dimensional cultures, the
functional and vascularized organoid is advanced, and transplantation helps achieve maturation in vivo by blood perfusion.
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investigating the pathology and mechanism of various dis-

eases in each organ. The organ bud is also a potential ther-

apeutic option against some diseases. Moreover, the culture

system is continuously advancing, thus progressing from

cells to complex organoids (Table 1)44. Specially, organoid

technology is progressed by modifying the medium, scaf-

fold, and types of mixed cells. Liver organoid growth is

desired in vitro because the liver is a large tissue in the body.

Many researchers have partially achieved in vitro growth of

hepatocytes since 197645,46,50,54. Advances in organoid cul-

ture could lead to ex vivo hepatocyte growth, which may be

sufficient for the replacement of a host liver. However, there

are some hurdles such as low engraftment and high costs to

accomplish clinical applications55.

Conclusion and Perspectives

iPS cell-based research and organoid technology have rap-

idly advanced and aimed at the reconstitution of organs in

the past decade (Figure 1). Most recently, several types of

organoids have been transplanted to mature or to create a

disease model in vivo, even if they are not intended for

therapy56–58. Organoid technology is a powerful tool for the

establishment of disease models and drug screening. In addi-

tion, iPS cell-derived hepatocytes and hepatic organoids are

beneficial in the field of regenerative medicine50,52,59. An

organoid is particularly expected to become a functional

organ in the host tissue because it is more complex and

functional than a single cell population. In the liver, mass

production of organoids is essential for treating chronic

fibrosis and cirrhosis because most liver tissues cannot

regenerate under these conditions, although the recent iPS-

LB transplantation method can treat acute liver injury. Per-

haps one of the solutions to generating a more functional

organoid in vitro is the combination of organoid technolo-

gies and perfusion by organs-on-a-chip to reveal the com-

plex pathology and mechanisms60. Some technologies can

concertedly accelerate organoid growth and maturation for

clinical applications.
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Basak O, van Es J, Chuva de Sousa Lopes SM, Begthel H,

Korving J, et al. Long-term expansion of functional mouse and

human hepatocytes as 3D organoids. Cell. 2018;175(6):

1591–1606.

47. Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB,

Griffith L, Wells A. Liver organ on a chip. Exp Cell Res.

2018;363(1):15–25.

48. Schepers A, Li C, Chhabra A, Seney BT, Bhatia S. Engineering

a perfusable 3D human liver platform from iPS cells. Lab Chip.

2016;16(14):2644–2653.

49. Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL,

Sundaram N, Chang C, Schiesser J, Aubert P, Stanley EG,

Elefanty AG, et al. Engineered human pluripotent-stem-cell-

derived intestinal tissues with a functional enteric nervous sys-

tem. Nat Med. 2017;23(1):49–59.

50. Takebe T, Sekine K, Enomura M, Koike H, Kimura M,

Ogaeri T, Zhang R-R, Ueno Y, Zheng Y-W, Koike N,

Aoyama S, et al. Vascularized and functional human liver

from an iPSC-derived organ bud transplant. Nature. 2013;

499(7459):481–484.

51. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H,

Ueno Y, Matsuzaki T, Yamazaki T, Toyohara T, Osafune K,

Nakauchi H, et al. Vascularized and complex organ buds from

diverse tissues via mesenchymal cell-driven condensation. Cell

Stem Cell. 2015;16(5):556–565.

52. Takebe T, Sekine K, Kimura M, Yoshizawa E, Ayano S, Koido

M, Funayama S, Nakanishi N, Hisai T, Kobayashi T, Kasai T,

et al. Massive and reproducible production of liver buds

entirely from human pluripotent stem cells. Cell Rep. 2017;

21(10):2661–2670.

53. Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H,

Gac M, Kanton S, Kageyama J, Damm G, Seehofer D, Beli-

cova L, et al. Multilineage communication regulates human

liver bud development from pluripotency. Nature. 2017;

546(7659):533–538.

54. Mitaka T. The current status of primary hepatocyte culture. Int

J Exp Pathol. 1998;79:393–409.

55. Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A. The hope

and the hype of organoid research. Development. 2017;144(6):

938–941.

56. Daviaud N, Friedel RH, Zou H. Vascularization and engraft-

ment of transplanted human cerebral organoids in mouse cor-

tex. eNeuro. 2018;5(6).

57. Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B,

Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bag-

ley JA, Lindenhofer D, et al. Human blood vessel organoids as

a model of diabetic vasculopathy. Nature. 2019;565(7740):

505–510.
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