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Abstract

Diagnostic pathology, historically dependent on visual scrutiny by experts, is essential for disease detection. Advances
in digital pathology and developments in computer vision technology have led to the application of artificial
intelligence (Al) in this field. Despite these advancements, the variability in pathologists’ subjective interpretations of
diagnostic criteria can lead to inconsistent outcomes. To meet the need for precision in cancer therapies, there is an
increasing demand for accurate pathological diagnoses. Consequently, traditional diagnostic pathology is evolving
towards “next-generation diagnostic pathology”, prioritizing on the development of a multi-dimensional, intelligent
diagnostic approach. Using nonlinear optical effects arising from the interaction of light with biological tissues,
multiphoton microscopy (MPM) enables high-resolution label-free imaging of multiple intrinsic components across
various human pathological tissues. Al-empowered MPM further improves the accuracy and efficiency of diagnosis,
holding promise for providing auxiliary pathology diagnostic methods based on multiphoton diagnostic criteria. In
this review, we systematically outline the applications of MPM in pathological diagnosis across various human diseases,
and summarize common multiphoton diagnostic features. Moreover, we examine the significant role of Al in
enhancing multiphoton pathological diagnosis, including aspects such as image preprocessing, refined differential
diagnosis, and the prognostication of outcomes. We also discuss the challenges and perspectives faced by the
integration of MPM and Al, encompassing equipment, datasets, analytical models, and integration into the existing
clinical pathways. Finally, the review explores the synergy between Al and label-free MPM to forge novel diagnostic
frameworks, aiming to accelerate the adoption and implementation of intelligent multiphoton pathology systems in
clinical settings.

Introduction

Pathology often provides the “gold standard” for disease
diagnosis’. Historically, this discipline has relied on the
keen eyes of pathologists to make clinical judgments
based on visual examinations of stained tissue sections
under a microscope to classify diseases and determine
their prognoses. The advent of whole slide imaging (WSI)
scanners in the last decade has transformed how these
images are collected and examined, ushering in a new era
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for pathology’. WSIs have become a cornerstone for
remote pathology consultations, routinely facilitating
diagnosis, research, and education in pathology, offering
unprecedented convenience to practitioners. However,
the reliance on the extensive expertise of experienced
pathologists persists, whether reviewing slides under a
microscope or analyzing WSIs. The training cycle for
professional pathologists remains lengthy and demanding.
This factor, coupled with the growing number of cases
needing diagnosis annually, poses an escalating challenge
for medical institutions striving to maintain high-quality
diagnostic services.

Artificial intelligence (Al), predominantly driven by
deep learning, has shown its superiority in various com-
puter vision applications including image enhance-
ment>~>, classification®, detection’, and segmentation by
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automatically recognizing and extracting complex fea-
tures from images®. Simultaneously, the availability of
large-scale WSI datasets rich in pixel-level detail has
allowed the expansion of deep learning techniques, tra-
ditionally applied to natural images, to the realm of
microscopic imagery. The digital transformation of clin-
ical pathology has led to the automation of various aspects
of the field, integrating supportive diagnostic techniques
such as diagnosis®, biomarker identification'®, and pre-
diction"!, which combinedly to be computational
pathology.

The WSI-based intelligent pathology not only alleviates
the burden on pathologists but also provides both patients
and clinicians with more objective tools for diagnosis and
prognosis. Nevertheless, diagnostic procedures within
pathology still face a “gray zone”, where varying inter-
pretations of diagnostic criteria among pathologists can
lead to discrepancies in the diagnosis of certain condi-
tions. The precision required for personalized cancer
therapy further escalates the need for accurate tissue
pathology marker diagnosis, whereas misdiagnoses can
lead to misguided treatments and can also hinder the
progress of drug development. Consequently, to develop a
new generation of pathological diagnostic paradigms, it is
essential not only to create an Al-assisted diagnostic fra-
mework but also to incorporate innovative multimodal
imaging techniques that enhance conventional pathology.

The most commonly pathological staining method is
hematoxylin and eosin (H&E) staining. Irrespective of
intraoperative frozen sections or postoperative paraffin
sections, the production of H&E slides involves intricate
histological procedures such as biopsy, fixation, section-
ing, and staining. With the advancement of label-free
optical microscopy'>'?, techniques such as quantitative
phase imaging (QPI)**'>, photoacoustic microscopy
(PAM), optical coherence tomography (OCT)*, and sti-
mulated Raman scattering (SRS) microscopy have com-
plemented traditional pathology. They offer unique
insights into cellular physical parameters in vitro, func-
tional imaging in vivo, and tissue molecular character-
istics. Notably, multiphoton microscopy (MPM) enables
simultaneous imaging of multiple intrinsic components
within biological tissues. Moreover, it attains imaging
contrast and resolution comparable to traditional histo-
pathology, directly extracting qualitative microstructure
and quantitative spectral features for pathological diag-
nosis'’. Enabled by deep learning methodologies, OCT
facilitated the automated detection of geographic atrophy
in age-related macular degeneration'®. QPI allowed for
virtual quantitative fluorescent imaging of live orga-
noids'’, while PAM allowed intraoperative histology of
bone tissue*’. Additionally, SRS provided near real-time
intraoperative diagnosis of brain tumors, creating a
complementary diagnostic pathway independent of
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traditional pathology laboratories*'. These technologies
significantly enhance the accuracy and efficiency of
diagnosis. For Al-empowered MPM, comprehensive
exploration of multiphoton feature patterns, such as
tumor infiltration patterns®> > and vascular collagen
deposition'”***”, has been integrated to achieve dis-
tinctive auxiliary diagnosis®®™*' and prognosis predic-
tion*” capabilities, holding great promise for clinical
translation.

In this review, we first provide a concise overview of
multiphoton physics mechanisms and multiphoton
microscopic instrument. Subsequently, we systematically
summarize pathological applications of MPM in various
human diseases. Drawing on multiphoton pathological
imaging, we explore the positive impact of artificial
intelligence — extending from machine learning to deep
learning — in advancing diagnostics assisted by multi-
photon pathology. Finally, considering the current status
of multiphoton intelligent pathology and the require-
ments for precision diagnostics, we discuss the challenges
and future perspectives associated with the integration of
MPM and Al We anticipate that this review will con-
tribute to the clinical translation and intelligent applica-
tions of multiphoton microscopy, fostering progress in
“next-generation diagnostic pathology”.

Label-free multiphoton microscopy

Label-free optical microscopy exploits the interaction of
light with biological tissues, such as refractive index,
molecular vibrations, scattering, or absorption, to achieve
various imaging contrasts. Table 1 provides a comparative
overview of the capabilities and applications of common
label-free biomedical microscopy. The diverse imaging
mechanisms of these techniques render them suitable for
different clinical applications. QPI measures phase chan-
ges to obtain contour and morphology information of
in vitro cell samples. This computational-based optical
system is both simple and cost-effective. PAM and OCT
achieve imaging depths at the millimeter scale. Although
they sacrifice some spatial resolution, there in vivo vas-
culature and ophthalmology applications are also clini-
cally recognized.

To obtain high-resolution, high-contrast images
resembling those produced by traditional pathology, two
nonlinear optical microscopies, MPM and SRS have been
widely applied in label-free pathological diagnosis. SRS
not only acquires pathological images but also enables
selective Raman spectral analysis of components such as
lipids and proteins. However, the complexity of the
excitation light source module in current SRS systems has
hindered its widespread commercial adoption, and further
exploration is needed to fully establish its indications for
pathological diagnosis. In contrast, commercial multi-
photon microscopes, based on SHG and TPEF, have
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reached a high level of maturity and availability since their
inception in 1997. MPM has been applied to examine
tumor pathology in as many as 16 human organs, such as
brain tumors'”**~, breast cancer’>***~>3 and colorectal
cancer’>**~*”. Consequently, MPM was highlighted as one
of the significant advancements in label-free histopathol-
ogy in the 2016 research highlights of Nature Methods>®.

The principle of multiphoton microscopy

MPM requires high peak power from ultra-short pulse
lasers. To capture a multiphoton image of a single field of
view, the excitation light scans the specimen point-by-
point and line-by-line via scanning system and objective.
When multiple low-energy photons simultaneously reach
the fluorophores or specific structures in specimen, they
interact to produce multiphoton optical signals, including
two-photon/three-photon excited fluorescence and sec-
ond/third harmonic generation. These signals are typi-
cally collected in an epi-detection configuration by the
objective and guided onto the photomultiplier tubes,
which convert the optical information into electrical sig-
nals. By utilizing an XY translation stage to sequentially
capture images from each position within the specimen, a
large-scale stitched image can be constructed.

TPEF

TPEF is a third-order nonlinear absorption process. In
this process, a fluorescent molecule or atom simulta-
neously absorbs two photons of the same frequency.
During the absorption process, electrons in the ground
state are first excited to an intermediate “virtual state” by
one photon and then further excited to the final excited
state by another photon. In other words, absorption of two
photons of the same frequency excites electrons to a higher
energy level. Following a certain relaxation time, electrons
in the excited state spontaneously transition back to the
ground state, emitting fluorescence with a frequency
slightly lower than twice the incident light frequency.

SHG

SHG is a second-order nonlinear optical phenomenon,
also known as “frequency doubling”. It refers to the out-
put photons having twice the frequency of the incident
photons when two photons of the same frequency interact
with a nonlinear medium. The output second harmonic
wave is termed the second harmonic. In the process of
second harmonic generation, an electron in the ground
state absorbs two photons of the same frequency, is
excited to a virtual state, and then emits a second har-
monic photon before returning to the ground state.

Endogenous signal sources
In biological tissues, numerous biomolecules exhibit
TPEF and SHG signals. For instance, TPEF can image
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endogenous fluorophores such as nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide
(FAD)*®. SHG occurs in non-centrosymmetric mole-
cular structures like collagen60, microtubules®’, and
myosin®®>. Thus, SHG and TPEF endogenous signals
provides a comprehensive characterization of tissue
structure and multi-parameter functional metabolism.
This approach overcomes the influence of labeled bio-
logical processes or toxicity, offering a crucial tool for
studying pathological samples. Taking the example of
multiphoton imaging of cerebral vascular malforma-
tions, Fig. la illustrates images from the SHG and two
TPEF detection channels, along with a schematic
representation of endogenous signal sources'”. Detailed
endogenous signal sources have been summarized in
previous references®>®*,

Multiphoton microscopic instrument

Figure 1b illustrates the representative history of Al-
empowered label-free MPM®~73, In 1931, Maria
Goeppert-Mayer proposed the concept of TPEF’% Thirty
years later, the invention of the laser facilitated the first
experimental verification of TPEF’>. In 1974, Robert
Hellwarth introduced the SHG microscope, utilized for
observing spatial structural changes in ZnSe crystals’®. In
1990, the Webb group introduced the concept of two-
photon excitation fluorescence microscopy, marking
DNA in pig kidney cells and observing chromosome
morphology in live cells®®. In 1997, the Bio-Rad company
produced the first commercial multiphoton laser scanning
microscope. Currently, globally microscope companies
are continually innovating desktop multiphoton laser
scanning microscopy, greatly advancing the life
sciences””’®,

The commercial research-grade multiphoton micro-
scopes, designed to meet the needs of most researchers,
typically can simultaneously image both labeled and
unlabeled specimens. However, the large equipment
footprint of such microscopes requires placement on
laboratory optical platforms, and their high cost dis-
courages some users. Therefore, researchers have been
devoted to developing more portable and economical
multiphoton microscopes. Although the miniaturized
design and integration technology may sacrifice image
resolution or field of view, this trade-off makes the
instrument more portable, suitable for applications in on-
site pathology diagnosis and other widespread diagnosis
scenarios. In 2017, fast high-resolution miniature two-
photon microscopy was successfully applied to brain
imaging in freely behaving mice®”. In 2018, the multi-
modal label-free nonlinear imaging system was imple-
mented to intraoperatively characterize the tumor
microenvironment®®. Excitingly, in 2023, the space
station-level two-photon microscope achieved the first
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Fig. 1 The development history of Al-empowered label-free multiphoton microscopy. a Schematic diagram of label-free multiphoton imaging,
representative SHG/TPEF images, and corresponding endogenous signal sources'”. b Historical timeline of multiphoton microscopic
instruments®>©>~°%, multiphoton pathological applications®?”**~", and Al-empowered multiphoton intelligent pathology®'*"#%/#73 TPEF two-
photon excited fluorescence, 3PEF three-photon excited fluorescence, SHG second-harmonic generation, THG third-harmonic generation
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three-dimensional images of astronauts’ skin. For future
challenges in the development of multiphoton micro-
scopic instrument from research-grade to pathological-
grade, please refer to Section 6.3.

With the continuous development of multiphoton
instruments, there has been a significant emergence of
pathological applications in MPM. Meanwhile, the rise of
artificial intelligence technology enables multiphoton
intelligent pathology. Section 4 introduces the applica-
tions of multiphoton pathology, while Section 5 focuses
on Al-empowered multiphoton pathology diagnosis.

Applications of multiphoton microscopy in
pathological diagnosis

Label-free MPM, with its specific identification of cel-
lular cytoplasm, extracellular matrix, and their interac-
tions, has opened a novel perspective in pathological
research. This section summarizes the applications of
MPM in pathological diagnosis through the exploration of
multiphoton diagnostic features.

Firstly, multiphoton imaging of the cytoplasm reveals
rich cellular morphological information, such as cancer
cells”®, hyperplasia®**°, and necrosis**, which is crucial for
determining the grading and prognosis of tumors. Addi-
tionally, through the analysis of specific features of cancer
nests, different tumor growth patterns®® can be dis-
tinguished, providing a basis for the formulation of clin-
ical treatment plans. It is noteworthy that MPM can also
quantitatively reflect cellular metabolic activity by mea-
suring the ratio of NADH to FAD in the cytoplasm®'. In
addition to cancer cell identification, MPM can differ-
entiate other cell types, such as myoepithelial cells®?,
lymphocytes®”, and glandular cells®’, based on differences
in cytoplasmic morphology and signal intensity. Taking
myoepithelial cells as an example, this provides crucial
features for challenging diagnoses such as microinvasive
breast cancer.

Secondly, MPM exhibits high sensitivity to the extra-
cellular matrix, especially collagen fibers®* and basement
membrane®. By analyzing the morphology of collagen
fibers, different vascular patterns in tumors can be dis-
tinguished*’, aiding in the assessment of malignancy and
progression of tumors. For instance, observations of glo-
meruloid vessels in glioblastomas®®, hyaline degeneration
and collagen aging in cerebral cavernous malformations'”.
Furthermore, the quantification of fibrosis*® and pro-
liferative reactions® can be facilitated by extracting fea-
tures of collagen fibers, which provides crucial evidence
for disease progression. More importantly, combining
information from the cytoplasm and extracellular matrix,
MPM can observe diverse spatial distribution patterns,
such as tumor-associated collagen signatures (TACS)*?
and tumor-infiltrating lymphocytes (TILs)**, offering a
unique perspective on the occurrence and development of
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infiltrating tumors such as gastric cancer, colorectal
cancer, and breast cancer.

Figure 2 presents a representative multiphoton patho-
logical atlas of different diseases (2013-2023), encom-
passing both  tumor®®?”**¥=%  and  non-tumor
components**?*%7, We prioritized articles that included
corresponding pathological staining images for multi-
photon images. Figure 3 illustrates typical multiphoton
diagnostic features of breast cancer’®®®, Besides, Table 2
provides a detailed summary of the imaging parameters
and typical multiphoton pathological characteristics of
MPM applied to both tumor'®~*'* and non-tumor'*>~*!
diseases.

Al-empowered multiphoton pathological
diagnosis

Prior to the application of AI in multiphoton images,
conventional digital image processing algorithms, such as
collagen fiber analysis’>* and saliency detection', were
already in existence for the quantitative assessment of
tumor-specific multiphoton diagnostic features. In this
section, as shown in Fig. 4, we specifically focus on the
work related to machine learning and deep learning,
providing a brief overview of their empowered capabilities
in pathological diagnosis, including image preprocessing,
disease diagnosis, and prognosis prediction.

The quality of multiphoton images serves as a pre-
requisite for ensuring the accuracy of disease diagnosis
and prognosis prediction. Therefore, before using multi-
photon images for disease diagnosis, researchers often
employ image preprocessing techniques, such as image
restoration’>'**!3® and image super-resolution mod-
els'7138  to enhance the image textural details and
restore hidden pathological features. For instance, to
address image quality caused by uneven sample or system
instability, adaptive sampling driven by the uncertainty of
predicted pixels can be employed to reduce noise'**. For
stitched multiphoton images, stripe self-correction net-
works based on proximity sampling scheme can effec-
tively correct stripes or artifacts in the stitched
positions'®®.  Additionally, a self-alignment dual-
attention-guided super-resolution network can produce
high-quality multiphoton images while mitigating the risk
of photobleaching'®®. These preprocessed high-resolu-
tion, high-contrast multiphoton images can further
enhance the accuracy of downstream diagnostic tasks,
such as cell segmentation and counting, and improve the
precision of prognostic tasks related to the extraction of
collagen features.

On the other hand, as multiphoton imaging gradually
enters the field of pathology, virtual image generation
techniques serve as a complementary form of preproces-
sing that enhances the acceptance of multiphoton
pathology images. Virtual image generation encompasses
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Tumor

Non-tumor

Fig. 2 Representative multiphoton pathological atlas of different diseases. Multiphoton microscopy can be used for a variety of diseases in
different tissues of the human body. These include tumor diseases such as glioblastoma, liver cancer’’, hilar cholangiocarcinomags, breast cancer®,
ovarian cancer peritoneal metastases®, prostate cancer®, colorectal cancer®®, oncocytoma®, intramural metastasis in esophageal squamous cell
carcinoma”’, ductal adenocarcinoma in the pancreatic head®?, gastric cancer®, nonpapillary urothelial carcinoma®, and squamous cell carcinoma of
the lung®’. Additionally, it can be utilized for non-tumor conditions like morphea®, myocardial fibrosis”, and atherosclerotic lesions®. Schematic
diagram of human body structure and organs are drawn by Figdraw. Adapted with permission from ref. °"** @ Optical Society of America

the transformation from label-free multiphoton images to
virtual pathological staining images'””>'?*°, as well as
the generation of virtual multiphoton images from H&E-
stained images'*. For instance, virtual staining models
based on generative adversarial networks (GANs)'” or
convolutional neural networks (CNNs)’>'3%71  can
transform multi-channel multiphoton images into H&E
staining or specific staining images. Although virtual
staining images may sometimes deviate in detail from real
stained images, these pathology-styled images assist
pathologists in interpreting multiphoton images more
effectively. Moreover, CNN architectures with pixel-

shuffle layers can generate virtual SHG images directly
from H&E-stained images'*’, eliminating the need for
additional staining agents or equipment. This provides a
cost-effective method for quantitatively extracting col-
lagen fiber directionality and alignment features. These
preprocessing steps provide the foundation for sub-
sequent pathological analysis, facilitating more accurate
diagnosis and prognosis.

Currently, diagnostic challenges persist in con-
temporary pathology, with specific scenarios proving
particularly difficult to interpret with precision. Notable
examples include the differentiation between glioblastoma
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Fig. 3 Typical multiphoton pathological diagnostic features of breast cancer. Multiphoton microscopy can identify cellular-level features, such
as tumor cells, blood cells, adipose cells, myoepithelial cells, and lymphocytes on a small scale. These correspond to phenomena such as blood
vessels invaded by tumor, microvessel proliferation98, tumor invasion of adipose tissue, microinvasive carcinoma®, and tumors surrounded by
lymphocytes®® on a larger scale. Additionally, it is possible to identify extracellular matrix-level features, such as collagen fibers and basement
membrane on a small scale, which correspond to collagen fibrosis® and tumor breakthrough the basement membrane®® on a larger scale

and primary lymphoma'*?, and between ductal carcinoma
in situ and microinvasive carcinoma of the breast®”. These
diagnostic challenges share similarities, often cannot be
addressed through conventional pathological techniques.
For instance, H&E staining struggles to differentiate or
accurately quantify vascular-related elastic fibers and
collagen fibers. Additionally, specialized cells such as
myoepithelial and basal cells are prone to confusion with
neighboring proliferative fibroblasts in the stroma. Excit-
ingly, MPM offers a promising solution that aids in the
identification of ambiguous cells, which helps mitigate the
subjective differences among pathologists. More impor-
tantly, the integration of Al introduces a level of objec-
tivity, supplying auxiliary information that enhances the
subjective visual diagnosis performed by human experts.
Researchers commonly utilize machine learning methods
and deep learning models to automatically extract distinct
features of cellular cytoplasm and extracellular matrix
from multiphoton images. For instance, segmentation
models based on U-Net are employed to extract multi-
photon features such as elastic fibers®® and cells™,
enabling rapid detection and quantification of pathologi-
cal regions. Besides, a novel diagnostic method has been
developed by fusing the H&E segmentation results of cell
nuclei with multiphoton images, leading to more accurate
diagnoses of microinvasion in ductal carcinoma in situ®”.
The method of combining feature extraction methods
with machine learning classifiers, such as support vector
machine (SVM)*? or stochastic gradient descent (SGD)*°
classifier, has shown superior performance in classifying
diseases, particularly on small datasets. In contrast, using

deep learning classification networks such as ResNet** or
VGG™ allows for the automatic learning of complex
pattern.

Prognostic prediction is of paramount significance for
understanding disease progression and guiding patient
treatment. A robust prognostic prediction model is often
associated with the accuracy of pathological diagnostic
results and the discovery of pathological novel insights.
For instance, based on the tumor-associated collagen
signature patterns revealed by MPM in invasive breast
cancer, the integration of graph neural networks has
facilitated a deeper interpretation of the spatial distribu-
tion of these patterns in tumor development**. This
approach also provides new clues for the precise classifi-
cation and treatment of different breast cancer subtypes.
With the gradual accumulation of multiphoton datasets,
Al-empowered MPM augments the dimensions and effi-
ciency of traditional pathology, elevating multiphoton-
assisted diagnosis to a more intelligent and precise level,
thereby assisting clinicians in improving the diagnostic
accuracy of intractable cases. Table 3 provides a detailed
summary of the model types, inputs, and outputs involved
in representative label-free multiphoton image pre-
processing and intelligent pathological diagnosis from
2013 to 202317:28-42.72,73,134-141

Challenges and future perspectives

Al-enhanced multiphoton pathology has markedly
advanced the integration of multiphoton microscopes into
practical clinical settings, and intelligent multiphoton
pathology diagnosis has reached a comparable
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Fig. 4 Representative multiphoton pathological diagnosis algorithms. a Preprocessing is a necessary step to improve the accuracy of
downstream diagnostic tasks, which is categorized into three types: virtual staining'”"*>'*! ‘image restoration
reconstruction'**'*®. b Diagnosis is divided into three categories: feature segmentation
prediction®. Classification and identification are further subdivided into using deep learning models and traditional machine learning models. These
categories encompass the input mode, model type, and output result. Adapted with permission from ref. **'3%14° @ Optical Society of America
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performance to human experts in certain tasks such as
conventional H&E diagnostics. However, only a handful
of these algorithms have been successfully integrated into
standard clinical processes. As a result, the realization of
effective artificial intelligence-based pathology diagnostics
using multiphoton imagery remains fraught with chal-
lenges. As illustrated in Fig. 5, we will address these
obstacles specifically associated with intelligent multi-
photon pathology, examining the aspects of multiphoton
imaging technologies, dataset acquisition, the develop-
ment of deep learning algorithms, and their integration
into clinical diagnostic procedures.

Accuracy
N/A

Accuracy, AUC  96.2%
Accuracy, AUC  79.0%
Accuracy, AUC  97.0%

Model

Supervised/
Unsupervised evaluation
Supervised

Supervised

Supervised

Unsupervised  AUC

Multiphoton digital pathological diagnostic instrument
High-speed and high-throughput capability

In comparison to clinical digital slide scanners, current
multiphoton microscopes are still limited by imaging
speed, cost, and image field of view. Particularly, there is
an urgent need for a novel pathology imaging instrument
with high-speed and high-throughput capabilities, similar
to that of a digital slide scanner. The imaging speed of
current multiphoton microscopes is primarily attributed
to the scanning speed of two-axis mechanical scanning
mirrors and the precision of motorized positioning stages.
However, compared to digital slide scanner, the primary
challenge lies in the sample preparation process for
unstained slices used in multiphoton imaging. This pro-
cess needs further optimization, such as adjusting slice
thickness and adhering to sealing standards. Therefore, it
is essential to standardize the quality of label-free slices
based on objective working distance or excitation power
of laser. This standardization is a prerequisite for
improving the imaging throughput of multiphoton
instruments. On the other hand, high-throughput simul-
taneously presents challenges in data transfer and storage.
Currently, there are variations in data formats of com-
mercial microscopes from different companies. Conse-
quently, standardizing the multiphoton file formats for
specific image compression protocols not only facilitates
large-scale data storage but also promotes image sharing
and consultation among pathologists.

Model

SGD
Classifier
FCN

ResNet
InceptionV3
IGNN

Disease
Keloid scar
Gliomas
Breast cancer
Breast cancer

Output
Normal, scar,
adjacent tissues
Prognosis score

1000 X 1000  Glioma, non-tumor tissue
tissue

N/A

size(pixel)
N/A

Miniaturized and portable design

Research-grade multiphoton imaging instruments typi-
cally feature multifunctional characteristics, such as tun-
able femtosecond lasers, high-resolution spectrometers,
and directly viewable eyepieces. However, some of fea-
tures may be redundant for clinical applications. There-
fore, multiphoton microscopes tailored for clinical
pathology need to simplify the functionalities of research-
grade desktop multiphoton microscopes. This simplifi-
cation not only enhances system usability but also effec-
tively reduces the overall system size, weight, and
manufacturing costs. It also makes multiphoton pathology

SHG/THG/ 256 % 256 x4 Cancer, normal

TPEF/3PEF
SHG/TPEF

Modalities Image
SHG/TPEF

Input
THG

Blokker et al. “°
You et al. *!
Qiu et al.

Authors
Meng et al. *°

Table 3 continued
(b)

Task

Prognostic
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Multiphoton pathological diagnosis platform

Fig. 5 Structural diagram of Al-empowered multiphoton pathology. The multiphoton instrument and multiphoton dataset serve as the
cornerstone of multiphoton pathological diagnosis, laying the foundation for the development of intelligent diagnostic tools. These tools are

tumor

developed based on advanced model architectures and training paradigms, possessing functions such as image preprocessing, disease diagnosis,
and prognosis prediction, ultimately integrated into an intelligent diagnostic platform. By integrating the multiphoton atlas and diagnostic criteria
into clinical workflow, Al-empowered multiphoton pathology promotes the establishment of a paradigm for multiphoton pathological diagnosis

J

microscopes more affordable and accessible to a broader
range of medical centers and researchers, promoting their
global adoption. Furthermore, miniaturized multiphoton
pathology microscopes offer enhanced mobility and flex-
ibility. In contrast to large-scale research-grade equip-
ment, portable multiphoton microscopes do not require
specific environments like cleanrooms for operation. This
makes them more suitable for various clinical environ-
ments and applications, such as postoperative diagnosis in
pathology departments, rapid intraoperative diagnosis in
operating rooms, and bedside diagnosis in hospital wards.
Notably, compared to conventional optical microscopes
in pathology departments, the expense of miniaturized
multiphoton microscopes remains considerable. This is

primarily attributed to the costs associated with precision
equipment, including femtosecond lasers, high numerical
aperture objectives, and photomultiplier tubes. Therefore,
although miniaturization facilitates the clinical integration
of MPM, the substantial upfront investment and ongoing
maintenance expenses frequently influence hospitals’
procurement decisions. Such factors may impede the
widespread adoption and collaborative utilization of
MPM within medical institutions, ultimately diminishing
its overall equipment utilization rates.

Multi-modality functionality
In clinical decision-making, the comprehensive utiliza-
tion of multi-modal information is crucial for a more
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holistic understanding of diseases, encompassing clinical
data and the combination of different imaging modalities
such as radiology and pathology. For multiphoton
microscopes, in addition to the four nonlinear optical
effects (SHG, THG, 2PEF, 3PEF), SRS and coherent anti-
stokes Raman scattering (CARS) also exhibits high spe-
cificity for different types of biomolecules. The integration
of MPM and SRS/CARS in multimodal microscopy
enables a more comprehensive characterization of the
distribution of pathological features in tissues'*>. This not
only aids in the discovery of novel pathological markers
but also provides insights into disease mechanisms. On
the other hand, H&E staining are one of the most used
diagnostic tools in pathology. Encouragingly, H&E-
stained specimen can also be excited to produce multi-
photon signals. Therefore, if H&E-stained imaging can be
integrated with multiphoton imaging at the image or
instrument level, it not only provides more comprehen-
sive information during diagnosis but also enhances the
reliability and accuracy of pathological diagnosis. Impor-
tantly, the integration of H&E staining establishes a more
solid foundation for the widespread application of mul-
tiphoton pathology instruments in clinical settings.

Task-oriented high-quality open-source multiphoton
datasets
Focusing on specific clinical tasks

As multiphoton instruments are not yet widely
employed in clinical pathology, the current scale of mul-
tiphoton image datasets is far smaller than that of digital
pathology datasets. However, the effectiveness and utility
of datasets are prerequisites for expanding dataset scale.
To harness the unique advantages of multiphoton
pathology diagnosis, it is imperative to establish task-
oriented multiphoton pathology datasets, such as those
for distinguishing brain tumors from pituitary tumors.
Driven by specific clinical tasks, surgeons, pathologists,
microscopists, and computer engineers need to colla-
boratively plan inclusion criteria, case numbers, image
dimensions, annotation rules from the early stages of
model development. This collaboration is essential to
avoid biases that may impact model training. These task-
oriented multiphoton datasets not only attract computer
vision researchers to improve model metrics, but also
draw more attention from clinical practitioners to the
auxiliary diagnostic potential of MPM.

Image quality of dataset

Due to influences from factors such as photomultiplier
gain, laser power, and sample preparation quality, even
the same tissue slices may exhibit resolution and color
discrepancies in images scanned by different multiphoton
instruments. Such differences in image quality pose
challenges to the transferability of the same model
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between two seemingly similar multiphoton datasets.
Despite the development of some style normalization or
style transfer models, these models often achieve optimal
performance only on specific datasets. Therefore, Al-
assisted multiphoton pathology diagnosis should empha-
size the rationalization of imaging parameters, standar-
dization of imaging processes and specimen preparation.
By exploring and establishing a consensus on the entire
process from specimen to imaging, we may be able to
control the quality of multiphoton image data from the
source, thus addressing the generalization gap caused by
inherent heterogeneity in histopathological data.

Open sourcing and sharing of dataset

Currently, acquiring multiphoton image still faces
challenges, primarily due to the high academic value of
multiphoton datasets and legal or ethical constraints
involving human samples. It is worth noting that the rapid
development of computer vision is closely related to the
open-source and large-scale natural image datasets. To
further propel the impact of multiphoton-assisted diag-
nosis, high-quality work should proactively release the
datasets required for training models as much as possible,
especially training data. This will prevent researchers from
overestimating the performance of the models. Further-
more, to promote the sharing of large-scale datasets, we
need to establish a network platform supporting online
preview and download of multiphoton image data. This
platform should include raw data, corresponding patho-
logical images, dataset descriptions, and task instructions.
On the other hand, to address challenges in sharing data
when constructing multicenter datasets across different
countries due to ethical and regulatory obstacles, feder-
ated learning and swarm learning can be attempted to
jointly train the models. Federated learning allows mul-
tiple institutions to collaboratively improve a global model
while preserving the confidentiality of their individual
data sets. In parallel, swarm learning enhances prediction
accuracy and robustness by integrating diverse models.
This approach effectively mitigates overfitting and
enhances the model’s generalization capabilities.

Custom-developed multiphoton deep-learned
diagnostic tool
Transitioning from supervised to unsupervised training
paradigm

Supervised, unsupervised, and semi-supervised learning
are the three main training paradigms in deep learning.
Supervised learning relies on experts annotating multi-
photon images, but obtaining paired ground truth can be
challenging. Computational constraints often lead to
training gigapixel or terapixel-level images with annotated
patches, which is time-consuming and expensive. More-
over, models trained on a single dataset usually lack
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strong generalization. Self-supervised learning addresses
this by designing supervision tasks that transform unsu-
pervised learning into a supervised problem without
requiring manual annotations, while semi-supervised
learning leverages a small amount of labeled data along-
side unlabeled data to reduce dependency on extensive
labeling. In segmentation tasks, a self-supervised domain
adaptation framework, based on target-specific fine-tun-
ing, adapts the original model to different target-specific
pathological tissues for cell segmentation. This domain
adaptation occurs across various tissues and multiple
medical centers without accessing the source dataset,
enhancing the model’s performance even with minimal
labeled data'**. Additionally, a semi-supervised semantic
segmentation network, SCANet, based on a three-branch
architecture, alternately trains a multi-scale recurrent
neural network branch, a consistency decoder branch, and
an adversarial learning branch. This achieves excellent
segmentation performance with a small amount of labeled
data and extensive unlabeled data'®®.

Weakly supervised learning harnesses imprecise or
incomplete weak label information to train models,
mapping input data to stronger labels, thereby reducing
reliance on precise annotations. In classification tasks, a
weakly supervised learning framework using Information
Bottleneck theory fine-tunes the backbone to create task-
specific representations from WSI-level weak labels,
addressing the limited annotation issue in pathological
image classification**®. Similarly, another weakly super-
vised learning framework based on RankMix data aug-
mentation, adapts sample quantities in the training set
according to task contributions and mix images of dif-
ferent sizes, mitigating issues of data scarcity and class
imbalance'®’. Ultimately, self-supervised or weakly
supervised learning holds promise in addressing chal-
lenges such as inadequate generalization, data scarcity,
and insufficient labeled data in multiphoton pathology
models.

Model architecture for general intelligence

Model performance metrics reflect their ability to per-
form tasks on specific datasets. From a diagnostic per-
spective, pathologists are equally concerned about the
intelligence of the model’s adaptability and handling of
boundary conditions. Firstly, introducing advanced model
architecture is crucial for the future of multiphoton
intelligent diagnostics. Unlike CNN models trained on
small patient cohorts, combining a pre-trained encoder
with a transformer network for patch aggregation has
been validated for end-to-end biomarker prediction on a
large multicenter cohort of over 13,000 colorectal cancer
patients'*®, On the other hand, the process of multi-
photon imaging is interpretable, where the pixel intensity
in the image represents the spectral characteristics of
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endogenous fluorescence signal sources. Thus, incorpor-
ating the physical principles of MPM into the model
ensures more effective capture of endogenous informa-
tion, potentially revolutionizing the interpretation of
multiphoton data and enhancing both generalizability and
efficiency.

Secondly, a single modality often fails to fully reveal the
complex mechanisms and diversity of diseases, medical
centers have established multidisciplinary teams for the
clinical treatment of major illnesses. Moreover, molecular
pathology laboratories equipped with technologies such as
genetic testing, protein analysis, and fluorescence imaging
are increasingly demonstrating their capacity for precise
diagnosis. Therefore, AI models that integrate multimodal
data can provide comprehensive and scientifically sound
diagnostic decisions. The histological and genomic fea-
tures are extracted using a multiple instance learning
network and a self-normalizing network, followed by
feature fusion through Kronecker product integration to
achieve cancer prognosis prediction’*’, The iStar model,
which is based on hierarchical image feature extraction,
combines spatial transcriptomics data with high-
resolution histological images to predict super-
resolution spatial gene expressionlso. Pan-cancer com-
putational histopathology represents image tile as 1536-
dimensional vectors and uses high-dimensional regression
methods to integrate histological, genomic, and tran-
scriptomic features, accurately discriminates 28 cancer
and 14 normal tissue types'”'. As a result, incorporating
multiphoton image features into the multimodal Al
models has the potential to offer unique new perspectives
on the interactions between cells and the extracellular
matrix within the tumor microenvironment.

Finally, foundational models like ChatGPT in natural
language processing demonstrate capabilities for general
intelligence, facilitating the development of multiphoton
diagnostic models with multitasking abilities. Future
advancements will enable tasks such as transforming
between multiphoton and H&E images, interpreting
multiphoton images alongside pathological reports, and
engaging in iterative question-and-answer sessions
involving pathological findings and doctor-patient inter-
actions'”>. A more challenging prospect is transforming
multiphoton microscopes into intelligent entities through
specialized models, allowing interaction with high-
throughput images in clinical pathology diagnostics.
This embodied intelligent learning paradigm will ulti-
mately lead to new emergences in MPM diagnostic cap-
abilities, providing opportunities to construct a general
intelligent model adaptive to diseases.

Interpretability, repeatability and reliability
Although some multiphoton diagnostic models perform
exceptionally well on datasets, even matching or
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surpassing human diagnostic tasks, the primary hurdle in
clinical application is the “black-box” nature of deep
learning, i.e., lack of interpretability. Pathologists express
concern about writing diagnostic reports when they lack
an understanding of how the model reaches its conclu-
sions. Despite interpretability of neural networks has been
a long-standing challenge, the methods like feature
visualization could provide an approximate explanation of
the model’s working process. These visualization results
enhance pathologists’ trust in model-assisted decision-
making. On the other hand, the reliability of auxiliary
diagnostics is also reflected in the model’s repeatability. In
the field of multiphoton medicine, while extensive work
has been done on medical statistical analysis or model
ablation experiments, open-source code contributions are
limited. For the open-source work, the training weights of
the model are particularly crucial for reproducing results.
Therefore, if we verify the repeatability of the model
through sufficient code access privileges and data
resources, thereby providing confidence intervals, cap-
ability boundaries, and computational consumption. This
will increase the reliability of the model for clinical
deployment. However, achieving breakthroughs in Al
interpretability poses significant challenges in the short
term. If guided by outcome-driven assessments of model
feasibility, clinical validation of deep learning methods
emerges as a crucial pathway to enhancing Al reliability,
particularly in healthcare settings. For instance, within
large-scale multicenter trials employing Al-empowered
MPM, despite lingering uncertainties regarding the
interpretability of the models, the accuracy metrics of
diagnostic tasks serve as robust indicators of their relia-
bility and stability. This, in turn, will also enhance patient
acceptance of this novel technology.

The clinical workflow of integrated multiphoton pathology
Multiphoton pathological diagnostic criteria

Pathologists, drawing upon years of accumulated
knowledge and experience, have established standard
criteria for conventional pathological diagnosis. Even
though MPM has demonstrated a series of advancements
in pathological applications, firstly, it is essential to
establish atlases tailored to multiphoton diagnosis. These
atlases should elucidate the diverse applications of mul-
tiphoton images across various pathological scenarios.
They ought to encompass multiphoton images alongside
corresponding images of fresh tissue, frozen sections,
paraffin-embedded sections, smears, and organoids for
comparative reference. Such comprehensive coverage will
assist pathologists in gaining deeper insights into MPM
indications and serve as an introductory guide for com-
puter vision researchers exploring multiphoton imaging.
Secondly, pathologists typically have minimal or no
training in the use of multiphoton-assisted diagnostic
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technologies. To facilitate a rapid understanding of mul-
tiphoton images by pathologists, a virtual staining model
can be employed. Multiphoton images can be transformed
into virtual H&E images, special stains, and even holds the
potential for conversion into immunohistochemistry or
immunofluorescence images'>. This capability allows
pathologists to engage in paired comparative learning,
assisting them in gradually incorporating multiphoton
features into their diagnostic workflow. With the growing
trust among pathologists in multiphoton diagnostics,
multi-center clinicians can continuously validate and
explore new multiphoton features in clinical practice.
This iterative process allows for the enhancement of
multiphoton diagnostic capabilities across various medi-
cal settings. Finally, combined with efficient Al analysis,
this approach can further aid in formulating compre-
hensive pathology workflows and improving diagnostic
precision. For instance, Pohlkamp et al. investigated the
use of machine learning to support microscopic differ-
ential counts of peripheral blood smears within a high-
throughput hematology laboratory setting'®*. Nasrallah
et al. utilized machine learning for cryosection pathology
to predict the 2021 WHO classification of glioma'®>. As
multiphoton diagnostic methods achieve consensus, it is
anticipated that clinicians and imaging experts will col-
laboratively integrate multiphoton diagnostic features into
clinical diagnostic guidelines or novel histological grading
systems for specific diseases.

Multiphoton pathological diagnosis platform

The prospect of multiphoton Al-assisted diagnostic
algorithms is exciting for pathologists. However,
pathologists typically a background in computer sci-
ence, and reproducing algorithms or configuring
environments can be labor-intensive for them. In the
pathology diagnostic workflow, pathologists prefer
“plug-and-play” intelligent diagnostic software for
decision support. Therefore, there is an urgent need to
integrate mature multiphoton diagnostic algorithms
into pathology diagnostic systems, such as picture
archiving and communication system, in the form of
software packages. Pathologists can seamlessly import
MPM-based diagnostic results into conventional diag-
nostic reports, facilitating easier integration into exist-
ing diagnostic workflows. Additionally, using cloud-
based interactions, pathologists can collaboratively
assess this novel multiphoton pathology report with
colleagues, with final decisions made by senior pathol-
ogists. For less mature models, there is a need for a
research-level specialized diagnostic platform for mul-
tiphoton images, similar to DeepImageJ'*°. This plat-
form should deploy and fine-tune pre-trained deep
learning models, creating a library of multiphoton
diagnostic algorithms. Based on various postoperative
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or intraoperative diagnostic requirements, algorithms
from the platform can be selectively deployed to edge or
cloud servers. Besides, a feedback mechanism should be
incorporated into the software process to iteratively
optimize the diagnostic performance of algorithms in
clinical trials.

Ethical security and Al risks

While interdisciplinary personnel have considered ethical
security concerns in constructing multiphoton image data-
sets, multiphoton images involve patient privacy informa-
tion. In the data management and analysis processes of
multiphoton diagnostic software, apart from pathologists, it
may also involve bioinformatics, statistics, and computer
vision researchers. This may inadvertently lead to risks
related to personal privacy or the illegal utilization of data.
To address these issues, it is essential to establish privacy
protection mechanisms and data protection regulations
concerning multiphoton-related data. Beyond ethical
security, Al risks also demand attention. Data poisoning and
adversarial sample attacks are common methods that
threaten the security of the model. Data poisoning involves
injecting malicious samples or altering data in the training
set to deceive the model, leading to incorrect predictions in
future tasks. Adversarial attacks, on the other hand, subtly
but purposefully modify input data to cause the model to
produce incorrect results. The augmentation of multiphoton
data significantly enhances the model’s inference cap-
abilities. However, this increased capability may introduce
false features that clinicians find challenging to identify. For
instance, the results of virtual staining, without a ground
truth for comparison, already poses challenges for patholo-
gists in distinguishing between authentic and synthetic
information. This uncertainty can introduce decision biases
for pathologists, with the impact on patient prognosis diffi-
cult to estimate. To mitigate these Al risks and reduce
uncertainty in diagnosis, perhaps there is no need to blindly
pursue the innovation and performance of the model;
instead, emphasis should be placed on the practicality and
stability of the model. Additionally, multiphoton diagnostic
software requires rigorous clinical validation and regulatory
approval. Through randomized clinical trials, it can deter-
mine the role of multiphoton diagnostic algorithms in the
entire diagnostic workflow. This ensures the provision of
more reliable, controllable, and secure diagnostic results.

Conclusion

Despite the hurdles in progressing multiphoton micro-
scopy (MPM) from traditional pathological uses to intel-
ligent diagnostics, the movement toward smart
multiphoton pathology is actively underway. As multi-
photon pathology tools evolve and the collection of rele-
vant datasets grows, we anticipate a marked enhancement
in both the breadth and depth of artificial intelligence
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applications within this field. Pathologists are beginning
to grasp the enhanced capabilities offered by multiphoton
technology. However, it is important to stress that the
successful implementation of such sophisticated tech-
nology hinges on synchronized collaborative efforts from
diverse, interdisciplinary teams across multiple centers.
This cooperation is vital for turning scientific discoveries
into actionable diagnostic criteria, for refining early-stage
prototypes into approved medical devices, and for evol-
ving open-source algorithms into accessible, user-
centered software interfaces. With these concerted
efforts, MPM is poised to become a cornerstone in the
future landscape of diagnostic pathology.
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