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Abstract

A variety of ashes used as the binder in geopolymer concrete such as fly ash (FA), ground

granulated blast furnace slag (GGBS), rice husk ash (RHA), metakaolin (MK), palm oil fuel

ash (POFA), and so on, among of them the FA was commonly used to produce geopolymer

concrete. However, one of the drawbacks of using FA as a main binder in geopolymer con-

crete is that it needs heat curing to cure the concrete specimens, which lead to restriction of

using geopolymer concrete in site projects; therefore, GGBS was used as a replacement for

FA with different percentages to tackle this problem. In this study, Artificial Neural Network

(ANN), M5P-Tree (M5P), Linear Regression (LR), and Multi-logistic regression (MLR) mod-

els were used to develop the predictive models for predicting the compressive strength of

blended ground granulated blast furnace slag and fly ash based-geopolymer concrete

(GGBS/FA-GPC). A comprehensive dataset consists of 220 samples collected in several

academic research studies and analyzed to develop the models. In the modeling process,

for the first time, eleven effective variable parameters on the compressive strength of the

GGBS/FA-GPC, including the Activated alkaline solution to binder ratio (l/b), FA content,

SiO2/Al2O3 (Si/Al) of FA, GGBS content, SiO2/CaO (Si/Ca) of GGBS, fine (F) and coarse

(C) aggregate content, sodium hydroxide (SH) content, sodium silicate (SS) content, (SS/

SH) and molarity (M) were considered as the modeling input parameters. Various statistical

assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),

Scatter Index (SI), OBJ value, and the Coefficient of determination (R2) were used to evalu-

ate the efficiency of the developed models. The results indicated that the ANN model better

predicted the compressive strength of GGBS/FA-GPC mixtures compared to the other mod-

els. Moreover, the sensitivity analysis demonstrated that the alkaline liquid to binder ratio, fly

ash content, molarity, and sodium silicate content are the most affecting parameter for esti-

mating the compressive strength of the GGBS/FA-GPC.

1. Introduction

It is widely known that the production of Portland cement needs a considerable amount of

energy and at the same time contributes to generating a huge volume of the total carbon
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dioxide (around 7%) to the atmosphere, directly and indirectly, the heating of limestone

releases CO2 directly which is called calcination (50%), while the burning of fossil fuels to heat

the kiln indirectly results in CO2 emissions, this is around 40 percent of cement emissions and

finally around 10% for quarrying and transporting [1, 2]. Also, approximately 2.8 tons of raw

materials are needed to manufacture one ton of cement; this is a resource-exhausting process

that consumes many natural resources such as limestone and shale to produce clinkers cement

[3]. Furthermore, approximately one trillion liters of mixing water are required to be used in

the concrete industry annually [4]. In the same context, after the steel and aluminum industry,

cement is one of the most energy-exhaustive construction materials that used around 110–120

kWh to produce one ton of cement in a typical cement plant alone [5]. Nevertheless, the

majority of the cementing materials for concrete production are Portland cement (PC). There-

fore, to decrease the environmental impact of PC, many researchers have been carried out to

develop a new material to be an alternative to the PC [6]; among them, geopolymer technology

was developed first by Davidovits in France, 1970 [7]. The green gas emission of geopolymer

concrete (GC) is around 70% lower than the PC concrete due to the high consumption of

waste materials in the mixed proportions of the GC [8, 9]. The applicability of the water film

thickness (WFT) model to the rheological properties of SCPB was briefly assessed.

Additionally, an improved dynamic yield stress model considering the water content within

flocs was proposed for contributing to an in-depth understanding of the rheological behavior

of SCPB or CPB. It is found that despite the significant reduction in dynamic, static yield stress

and equivalent plastic viscosity of SCPB with SP incorporation, there is a Critical Micelle Con-

centration that makes the characteristic time of the destructuration exhibit first an increasing

and then decrease trend. Under steady-state shearing (100 s−1), the shear stress can be divided

into three stages with time regardless of SP dosage. An exponential relationship is observed

between the rheological parameters of SCPB and WFT. The proposed model can achieve high

prediction accuracy and applicability. Moreover, the model’s effective solid concentration and

packing density can be considered the important parameters of high integration [10, 11].

Geopolymers are one of the parts of mineral alumino-silicate polymers that generated from

alkaline activation of different source materials that are rich in aluminosilicate materials, such

as natural source materials like metakaolin, by-product industrial source materials like fly ash

(FA), and the by-product of agro source materials such as rice husk ash (RHA) [12]. The

microstructure of geopolymer materials is amorphous, and their chemical constituents are

similar to the natural zeolitic materials. The mineral composition of the ash-based geopolymer

and alkaline activators are the factors that affect the final product of the polymerization pro-

cess. Also, the high temperature has usually accelerated the polymerization process [13, 14]. So

it can be concluded that geopolymer is the third generation of cementing materials after lime

and cement [15]. The mixed proportions of the geopolymer concrete are consist of aluminosil-

icate binder, fine and coarse aggregates, alkaline solutions, and water; the polymerization

between these ingredients produces a solid concrete almost like normal concrete [16]. Binder

source materials of the geopolymer concrete are those rich in alumino-silicates such as FA,

GGBS, RHA, metakaolin, POFA, or any hybridization between these ashes with or without

Portland cement. Of these, fly ash is the most commonly used as source material for making

geopolymer concrete due to its low cost, abundance availability, and higher potential for prep-

aration geopolymers [17]; also, FA has been used by researchers to replace Portland cement in

different types of concrete and cementitious composites [18]. However, one of the drawbacks

of using FA as a single source binder material for the production of the geopolymer concrete is

required high temperature and oven or steam curing to active and accelerate the polymeriza-

tion process to set and harden the concrete specimens, on the other hand, FA-based geopoly-

mer concrete cured at the ambient condition has been showing low reactivity [19]. In
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addition, pure FA utilization for the preparation of geopolymer concrete leads to limited usage

of this technology in precast construction [20] because most of the engineering applications

are executed in the ambient environmental condition. Therefore, the researches have been car-

ried out to tackle these problems, among of them using GGBS [21–24] as a partial replacement

of FA to the production of geopolymer concrete since GGBS has a higher content of calcium

oxide (CaO) as compared to FA which it is responsible for the strength gain of geopolymer

concrete at ambient curing conditions. Moreover, strength improvement was reported in the

literature with GGBS and FA-based geopolymer concrete [25, 26].

The polymerization mechanism could be briefly explained as follows; in the first stage, dis-

solution of the silicate and aluminum elements of the binder inside the high alkalinity aqueous

solution produces ions of silicon and aluminum oxide. In the second stage, a mixture of sili-

cate, aluminate, and aluminosilicate species, through a contemporary operation of poly-con-

densation-gelation further condensation, finally produces an amorphous gel [27]. Several

factors could influence the performance of GC, such as type of binder, the concentration of the

alkaline solution, the molarity of sodium hydroxide, sodium silicate to sodium hydroxide

ratio, extra water, mix proportion, and curing method [28].

The compressive strength of all concrete composites, including GC, is one of the most

remarkable mechanical properties. Usually, it gives a general performance about the quality of

the concrete composites [29]. The compressive strength test is conducted by following the

standard test methods of ASTM C39 [30] or BS EN 12390–3 [31]. In the literature, various

studies have been conducted to investigate the influence of several mixture proportion param-

eters and curing conditions on the mechanical properties of GGBS/FA-GPC. For instance,

Nath and Sarker [23, 32, 33] reported that the GGBS replacement level, content, and type of

alkaline solution influence the fresh and hardened properties of GGBS/FA-GPC. One factor

affecting the polymerization process is the type and quantity of the alkaline liquids by influenc-

ing the release of Si4+ and Al3+ from the base binders. Alkaline liquids of greater concentration

are usually beneficial for increasing compressive strength up to an optimal range [34]. Further-

more, a variety of (Na2SiO3/ NaOH) ratios was used to prepare geopolymer concrete, for

instance, a research study was carried out by Topark-Ngarm et al. [35], who used a different

ratio of Na2SiO3/ NaOH, and they reported that with the increasing of Na2SiO3/ NaOH, com-

pressive strength was increased.

Another important parameter that affects the performance of GGBS/FA-GPC is the curing

condition of the samples. Generally, there are various types of curing regimes, namely, ambi-

ent curing [20, 36], heat curing [37, 38], and steam curing [39–41]. The polymerization process

is rapidly increased with the increment of curing temperature, which makes the GC gain up to

70% of its final strength when the specimens are cured inside an oven at 65˚C for 24 hr.

beyond which there is a peripheral enhance in the compressive strength after 28 days of matu-

rity [42, 43]. Further, heat curing regimes give higher compressive strength than the ambient

curing condition for the same GC mixture [44–47].

Achieving an authoritative model for predicting the compressive strength of GC is essential

regarding saving in time, energy, and cost-effectiveness and gives guidance about scheduling

for the construction process and removal of framework elements [48]. The modeling of the

compressive strength characteristic of the GGBS/FA-GPC is essential regarding the possibility

of changing or validating the GC mix proportions [49]. By selecting appropriate mixing pro-

portions, economical and efficient designs will be accomplished. Therefore, various researches

have been tried to shorten the time of choosing a proper mix of proportions to get the targeted

properties; among them is modeling with developing empirical equations. There are different

ways to model construction materials’ characteristics, including statistical techniques, compu-

tational modeling, and nowadays developed techniques such as regression analysis [50, 51]. A
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variety of factors affect the compressive strength of the GGBS/FA-GPC; this leads to different

compressive strength results; as a consequence, predicting compressive strength is a challeng-

ing task for researchers and engineers. Therefore, there is a need for numerical and mathemat-

ical models [52]. Due to the good ability of machine learning regarding prioritization,

optimization, forecasting and planning were widely used in the various engineering fields [48].

In the literature, machine learning systems were used to model the various characteristics of

different types of concrete composites such as compressive strength of green concrete [53],

splitting tensile and flexural strength of recycled aggregate concrete [54], modulus of elasticity

of recycled concrete aggregate [55, 56], the compressive strength of high volume fly ash con-

crete [57], the compressive strength of eco-friendly GC containing natural zeolite and silica

fume [58], splitting tensile strength of fiber-reinforced concrete [59], compressive strength of

self-compacting concrete modified with nano-silica [60], and so on.

There is a lack of measuring effects of several mixture proportion parameters and different

curing regimes on the compressive strength of GGBS/FA-GPC at the 28 days in the literature.

Also, according to the comprehensive and systematic review on the GGBS/FA-GPC, an

authoritative and developed model that used various parameters to predict the compressive

strength of GGBS/FA-GPC is very rare to be used by the construction industry. The majority

of efforts have concerned a single-scale model without covering broad laboratory work data or

various parameters. Moreover, more than one parameter affects the compressive strength of

GGBS/FA-GPC. Therefore, in this study, for the first time, in a single developed model, influ-

ences of eleven parameters, such as alkaline solution/binder (l/b), fly ash (FA) content, SiO2/

Al2O3 (Si/Al) of fly ash, ground granulated blast furnace slag (GGBS) content, SiO2/CaO of

GGBS, fine aggregate (F) content, coarse aggregate (C) content, sodium hydroxide (SH) con-

tent, sodium silicate (SS) content, (SS/SH) ratio, and molarity (M) were investigated and quan-

tified on the compressive strength of GGBS/FA-GPC by using different model techniques,

namely Linear Regression (LR), Multi-logistic Regression (MLR), Artificial Neural Network

(ANN), and M5P-Tree (M5P). They were used as predictive models for predicting the com-

pressive strength of green GGBS/FA-GPC at 28 days by using 220 samples from the literature

studies.

1.1 Research significance

Providing multiscale models to predict the compressive strength of GGBS/FA-GPC is the

main scope of this study. Thus, a wide range of laboratory work data, about 220 tested speci-

mens with various l/b, FA, Si/Al, GGBS, Si/Ca, F, C, SH, SS, SS/SH, and M were considered

with different analysis approaches aiming: (i) to guarantee the construction industry to use the

provided models without any theoretical; (ii) to carry out statistical analysis and recognize the

influence of various parameters on the compressive strength of GGBS/FA-GPC; (iii) to quan-

tify and provide a systematic multiscale model to predict the compressive strength of GGBS/

FA-GPC with the mixture propositions containing a various range of parameters; (iv) to dis-

cover the most authoritative model to predict the compressive strength of GGBS/FA-GPC

from different model techniques (LR, MLR, ANN, and M5P-Tree) using statistical assessment

tools.

2. Materials and methods

At the age of 28 days, 220 datasets were collected from previous GGBS/FA-GPC, and refer-

ences are cited in this paper. There is a wealth of information on geopolymer concrete with

various curing settings, specimen ages, and base source materials in the literature. On the

other hand, the authors of this work utilize the measured compressive strength after 28 days of
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curing at room temperature. Those publications employed GGBS and fly ash (FA) as base

source materials to manufacture the geopolymer concrete. The authors could incorporate

additional datasets in the created models since the models required eleven input parameters.

For example, if the mix proportions and any other model parameters of the investigation were

not supplied, such studies were disregarded. The models were created using a bigger dataset

collection, which contained 150 datasets. The second group consists of 35 datasets used to test

the suggested models, and the third group consists of 35 datasets used to validate the supplied

models [48, 60]. Table 1 shows the dataset ranges, including all significant parameters and the

observed compressive strength of GGBS/FA-GPC at 28 days. The input dataset contains the

following values: l/b ranges from 0.25 to 0.8, FA ranges from 0–639.4 kg/m3, Si/Al ranges from

1.41 to 7.77, GGBS ranges from 0–450 kg/m3, Si/Ca ranges from 0.66–2.04, F ranges from

459–756 kg/m3, C ranges from 915–1345 kg/m3, SH ranges from 34–122 kg/m3, SS ranges

from A flow chart depicting the data gathering and modeling activity is shown in Fig 1.

3. Statistical assessment

a) Alkaline solution/binder (l/b)

According to the dataset, which contains 220 data samples from past researches, the l/b ratio of

the GGBS/FA-GPC was varied from 0.25 to 0.80 with an average variance, standard deviation,

skewness, and kurtosis of 0.45, 0.007, 0.085, 0.92, and 0.78, respectively. Skewness has belonged

to distortion or asymmetry in a symmetrical normal distribution in a dataset. If the curve is

moved to the right or the left side, it is stated to be skewed. Also, skewness could be quantified

as an impersonation of the range to which a given distribution differs from a normal distribu-

tion. For instance, the skew of zero value was measured for normal distribution, while, right

skew is an indication of lognormal distribution [96]. The relationship between compressive

strength and l/b with the Histogram of GGBS/FA-GPC mixtures at the age of 28 days is pre-

sented in Fig 2.

b) Fly ash (FA)

The content of FA in the mixture proportions of different GGBS/FA-GPC for the collected

data varied from 0 to 639.4 kg/m3. The FAs have different chemical compositions and different

specific gravities, ranging from 1.92 to 2.55. The FA’s average, standard deviation, variance,

skewness, and kurtosis were 341.7 kg/m3, 99 kg/m3, 9812.5, -0.67, and 2.05. The kurtosis is a

statistical indicator that explains how heavily the tails of a distribution of a set of data differ

from the tails of the normal distribution. In addition, the kurtosis finds the heaviness of the

distribution tails, while skewness measures the symmetry of the distribution. Moreover, the

variation between compressive strength and FA content and the Histogram of GGBS/FA-GPC

mixtures at 28 days is reported in Fig 3.

C) Si/Al of FA

Based on the dataset, which contains 220 data samples from literature, the Si/Al ratio of the fly

ash was varied from 1.41 to 7.7 with an average of 3.18, the variance of 5.2, the standard devia-

tion of 2.28 skewness of 1.48, and kurtosis of 0.29. The variance informed of the degree of

spread in the dataset; the greater the spread of the data, the greater the variance is about the

mean. The variation between compressive strength and Si/Al, as well as the histogram analysis

of GGBS/FA-GPC at the age of 28 days, are shown in Fig 4. As can be seen from the figure, a

very poor relationship existed between compressive strength and the Si/Al ratio.
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Table 1. Summary of different GGBS/FA-GPC mixes.

Ref. (l/b) FA (kg/m3) (Si/Al) GGBS (kg/m3) (Si/Ca) F (kg/m3) C (kg/m3) SH (kg/m3) SS (kg/m3) (SS/ SH) M fc0 (MPa)

[61] 0.4 300 2.07 150 0.97 742.7 1058 51.43 129 2.5 10–16 23–36

[62] 0.4–0.5 100–200 1.54 200–400 0.87 708–716 1050–1068 54–76 144–185 1.9–3.3 5.5–9 31–65

[63] 0.35–0.45 - - 400–450 0.8 625–636 1154–1169 52–53 106–128 2.5 12–14 36–66

[64] 0.35 102–205 2.03 204–409 0.84 554 1293 41 102 2.5 10 46–60

[44] 0.38–0.46 350–450 2.16 - - 540–575 1265–1343 38–52.5 95–131 2.5 16 13–14

[65] 0.45 266–380 2.36 38–114 1.01 660 1189 48.85 122 2.5 8 30–40

[66] 0.45 350–400 2.16 - - 505–533 1178–1243 45–51 112–128 2.5 16 22–41

[67] 0.35 204–409 2.34 102–204 0.89 549 1290 41 102 2.5 10 24–54

[68] 0.4 394.3 2.31 - - 646.8 1201.2 45.06 112.64 2.5 16 46.8

[22] 0.35–0.4 320–400 1.97 40–80 0.66 651–658 1209–1222 40–56 84–114 1.5–2.5 14 27–54

[69] 0.25–0.5 400–475 1.58 - - 529–547 1235–1280 34–57 85–142 2.5 14 18–34

[70] 0.35 102–205 2.34 204–409 0.89 554 1293 41 102 2.5 10 53–58

[39] 0.35 408 1.65 - - 647 1202 41 103 2.5 14 27–32

[71] 0.45 180 2.13 180 1 746 1120 46–64 81–115 1–2.5 6–14 8–18

[72] 0.6 390 1.61 - - 585 1092 67 167 2.5 8–18 23–30

[73] 0.43 95–318 2.08 67–264 0.67 721–753 1111–1160 61–77 75–94 1.2 10 29–70

[74] 0.38 408 2.17 - - 660 1201 41 103 2.5 10–16 25–33

[75] 0.4 274–437 1.41 43–206 1.22 740–767 915–948 69 171 2.5 8 28–71

[76] 0.45 500 2.4–2.9 - - 575 1150 64.3 160.7 2.5 14 44–52

[77] 0.4–0.45 266–380 2.37 30–114 1.01 660 1178 45–69 103–131 1.5–2.5 8 31–43

[45] 0.4 350 0.48 - - 650 1250 41 103 2.5 8 19

[78] 0.4–0.8 175–350 2.2 75–150 1.04 628–742 1007–1190 80 120 1.5 14 32–66

[23] 0.4 400 1.97 - - 651 1209 45.7 114.3 2.5 14 26.5

[79] 0.36 106–382 2.11 42–318 1.01 577.54 1346 47 106 2.25 10 29–36

[46] 0.4 424.8 1.58 - - 585.6 1183 63.36 95 1.5 14 32–46

[80] 0.35 168–420 1.95 168–420 0.98 617.23 1084 42 105 2.5 8 22–53

[81] 0.4 410 5.67 - - 530.6 1044 67 117 1.74 10 10

[33] 0.35–0.4 340–400 1.97 40–60 0.66 651–655 1209–1218 40–46 100–114 2.5 14 25–47

[35] 0.5 414 2.27 - - 588 1091 69–104 104–138 1–2 10–20 33–47

[82] 0.45 237 2.32 158 0.89 547 1277 52 129 2.5 8 28

[83] 0.4 394.3 1.95 - - 554.4 1293 45 113 2.5 12 22

[84] 0.35–0.4 320–360 1.97 40–80 0.66 651–655 1209–1217 40–46 100–114 2.5 14 27–46

[85] 0.4–0.6 345–394 7.77 - - 554 1294 45–83 94–148 1.5–2.5 8–16 7–22

[20] 0.35–0.4 300–400 2.02 40–100 0.98 637–671 1184–1246 46–53 93–114 1.5–2.5 10–12 21–56

[36] 0.4 394.3 1.8 - - 554.4 1293 45 113 2.5 8 17.69

[86] 0.5 240–432 2.47 48–240 0.88 590 1090 69 171 2.5 10 27–70

[87] 0.4 350 1.82 - - 483 1081 40 100 2.5 14 23.4

[88] 0.35 245–408 1.53 40–163 0.88 554 1294 41 103 2.5 8 16–45

[37] 0.65 639.4 2.67 - - 639.4 959.4 121.8 304.5 2.5 8–12 20–32

[89] 0.4 197–355 3.54 39–197 2.04 554.4 1294 45 113 2.5 10 15–49

[90] 0.35 500 1.6 - - 623 1016 70 105 1.5 14–16 22–27

[91] 0.4 350 2.13 - - 645 1200 41 103 2.5 8 15–20

[92] 0.4–0.55 - - 390–500 0.98 675–685 1031 60 150 2.5 12–16 42–55

[26] 0.45–0.6 359–523 2.2 - - 459–525 1124–1298 108–118 108–118 1 10–15 15–37

[93] 0.3 - - 415 1.02 784 1039 46 71 1.5 10 39.5

[32] 0.35–0.45 280–400 1.77 40–120 0.75 651 1209 40–64 96–114 1.5–2.5 14 26–56

[94] 0.6 192–347 2.43 38–192 0.95 602 1204 66.2 166 2.5 12 58–72

(Continued)
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d) Ground granulated blast furnace slag (GGBS)

The statistical analysis for the total collected data of the 220 dataset shows that the range of the

GGBS content was varied from 0 to 450 kg/m3, with an average of 57.67 kg/m3 and standard

deviations of 83.3 kg/m3. Besides, the variance, skewness, and kurtosis were 6935, 1.89, and

4.29, correspondingly. The relationship between compressive strength and GGBS content with

a Histogram of GGBS/FA-GPC mixtures at the age of 28 days is shown in Fig 5.

e) SiO2/CaO (Si/Ca) of GGBS

Another independent variable gathered from previous research investigations was the GGBS’s

silicon oxide to calcium oxide ratio. The statistical analysis indicated that the collected data

set’s minimum Si/Ca was 0, and the maximum Si/Ca was 2.04. Furthermore, the average Si/Ca

ratio was found to be 0.45. Fig 6 shows the relationship between compressive strength and the

Si/Ca of GGBS/FA-GPC.

Table 1. (Continued)

Ref. (l/b) FA (kg/m3) (Si/Al) GGBS (kg/m3) (Si/Ca) F (kg/m3) C (kg/m3) SH (kg/m3) SS (kg/m3) (SS/ SH) M fc0 (MPa)

Remarks 0.25 0 1.41 0 0.66 459 915 34 75 1 5.5 8

- - - - - - - – - - - -

0.8 639.4 7.77 450 2.04 756 1345 122 305 3.3 20 72

https://doi.org/10.1371/journal.pone.0265846.t001

Fig 1. The flow chart diagram process followed in this study.

https://doi.org/10.1371/journal.pone.0265846.g001
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f) Sand content (F)

The fine aggregate used in the past studies was a river and crushed sand with a maximum

aggregate size of 4.75 mm and specific gravity ranging between 2.60–2.75. Also, its gradation

satisfied the limitations of ASTM C 33. Fine aggregate content for the collected 220 datasets

varied from 459 to 756 kg/m3 for the mixtures of GGBS/FA-GPC, and it has an average of 606

kg/m3, a standard deviation 74.8 kg/m3, a variance of 5603. Other statistical variables for the

fine aggregate content in the GGBS/FA-GPC mixtures, such as skewness and kurtosis, are 0.28

and 0.8. The relationship between compressive strength and fine aggregate content with a His-

togram of GGBS/FA-GPC mixtures at the age of 28 days is illustrated in Fig 7.

G) Coarse aggregate (C)

Crushed stone or gravel with a maximum aggregate size of 20 mm was used as coarse aggregate

for GGBS/FA-GPC in the literature. Based on the 220 datasets available from various GGBS/

FA-GPC admixture proportions, the coarse aggregate concentration varied from 915 to 1345.7

kg/m3. According to the statistical analysis of the present dataset, the average coarse aggregate

content was 1202 kg/m3. The skewness was -0.83, and the kurtosis was 0.66. The range was 7303,

and the skewness was -0.83. The variance was 7303, the skewness was -0.83, and the kurtosis was

Fig 2. Relationship and a histogram of compression strength and alkaline solution/binder of GGBS/FA-GPC mixtures.

https://doi.org/10.1371/journal.pone.0265846.g002

Fig 3. Relationship and a histogram of compression strength versus fly ash content of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g003
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0.66. The standard deviation was 85.45 kg/m3, the variance was 7303, the skewness was -0.83,

and the kurtosis was 0.66. Fig 8 uses a Histogram of GGBS/FA-GPC mixtures at 28 days to dem-

onstrate the connection between compressive strength and coarse aggregate content.

h) Sodium hydroxide (SH)

The sodium hydroxide (NaOH) content for the collected 220 datasets varied from 34 to 121.8

kg/m3, with an average of 62.5 kg/m3, the standard deviation of 21.96 kg/m3, and a variance

of 482. The skewness and kurtosis were 1.31 and 0.95, respectively. The purity of the SH was

above 97% of all the GGBS/FA-GPC mixtures, and pellets and flakes were the two main states

of the SH in all the mixtures. The relationship between compressive strength and sodium

hydroxide with the Histogram of GGBS/FA-GPC mixtures at the age of 28 days is illustrated

in Fig 9.

i) Sodium silicate (SS)

The amount of SS was changed between 75 and 304.5 kg/m3 based on the dataset, which com-

prises 220 data samples from literature. SiO2, Na2O, and water were the main components of

Fig 4. Relationship and a histogram of compression strength and Si/Al of fly ash.

https://doi.org/10.1371/journal.pone.0265846.g004

Fig 5. Relationship and a histogram of compression strength and curing temperature of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g005
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the SS. SiO2 concentrations ranged from 28 to 37 percent, Na2O concentrations from 8 to 18

percent, and water content in the SS from 45 to 64 percent. The average SS content in the

GGBS/FA-GPC was 117.1 kg/m3, the standard deviation was 30.2 kg/m3, the variance was

911.8, the skewness was 3.48, and the kurtosis was 18.48, according to the statistical analysis

(Fig 10).

j) SS/SH

The ratio of Na2SiO3 to NaOH in the obtained data ranged from 1 to 3.3, with an average of

2.03. Standard deviation, variance, skewness, and kurtosis, respectively, were 0.58, 0.33, -0.62,

and -1.15. Fig 11 shows the connection between compressive strength and SS/SH with the His-

togram of GGBS/FA-GPC mixes after 28 days.

k) Molarity (M)

The sodium hydroxide concentration (molarity) ranged from 5.5 to 20 M in 220 datasets from

prior research investigations (Table 1), with an average of 11.7 M, a standard deviation of 2.8

M, a variance of 7.6, a skewness of 0.3, and kurtosis of -0.7. Fig 12 depicts the relationship

between compressive strength and molarity of GGBS/FA-GPC after 28 days.

Fig 6. Relationship and a histogram of compression strength and curing duration of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g006

Fig 7. Relationship and a histogram of compression strength versus fine aggregate content of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g007
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l) Compressive strength (fc0)
The compression strength of the GGBS/FA-GPC was tested in the range of 8 to 72 MPa, with

an average of 34.34 MPa, according to data obtained from published research (Table 1).

According to the statistical analysis, the standard deviation, variance, skewness, and kurtosis

for the other dataset distribution were 14.45 MPa, 208.84, 0.32, and -0.47, respectively.

4. Modeling

The models proposed in this work are used to predict GGBS/FA-GPC and choose the best

solution that provides a better compressive strength estimate than the experimentally obtained

compressive strength. The datasets were divided into three categories at random: training, test-

ing, and validating datasets [48, 60]. The LR, MLR, ANN, and M5P-tree models are trained

with 150 training datasets to get the best weights and biases, while the suggested models are

tested with 35 testing datasets. Furthermore, 35 validation datasets are utilized to investigate

the models’ generality and prevent the over-fitting problem plaguing traditional training tech-

niques. The following evaluation criteria were used to compare model predictions: The model

should be scientifically correct, with reduced RMSE, OBJ, SI, and R2 values, as well as a

decreased fraction of error between observed and predicted data.

Fig 8. Relationship and a histogram of compression strength versus coarse aggregate content of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g008

Fig 9. Relationship and a histogram of compression strength and sodium hydroxide content of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g009
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a) Linear model (LR)

One of the most common methods to predict the compressive strength of concrete is the linear

regression model (LR) [95–97], as shown in Eq.1, and it is considered as a general form of the

linear regression model [57, 60, 96].

fc0 ¼ aþ bðl=bÞ ð1Þ

Where fc0, l=b, a and b represents compressive strength, liquid to binder ratio, and equation

parameters, respectively. However, other components of GGBS/FA-GPC mixtures that influ-

ence the compressive strength, such as fly ash content and GGBS content, and other mix pro-

portions, are not included in the equation above. Therefore, in order to have more reliable and

scientific observations, Eq.2 is proposed to include all other mix proportions and variables that

may impact the compressive strength of GGBS/FA-GPC.

fc0 ¼ aþ b
l
b

� �

þ c FAð Þ þ d
Si
Al

� �

þ e GGBSð Þ þ f
Si
Ca

� �

þ g Fð Þ þ h Cð Þ þ i SHð Þ þ j SSð Þ

þ k
SS
SH

� �

þ l Mð Þ ð2Þ

Fig 10. Relationship and a histogram of compression strength and sodium silicate content of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g010

Fig 11. Relationship and a histogram of compression strength and (SS/SH) ratio of GGBS/FA-GPC.

https://doi.org/10.1371/journal.pone.0265846.g011
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Fig 12. Relationship and a histogram of compression strength and molarity with a histogram of GGBS/FA-GPC mixtures.

https://doi.org/10.1371/journal.pone.0265846.g012

Table 2. The tested ANN architectures.

No. of (HL) Hidden layers No. of Neurons R2 MAE (MPa) RMSE (MPa)

1 1 0.9528 4.28 5.36

1 2 0.9648 3.09 4.06

1 3 0.9742 3.28 4.05

1 4 0.9792 2.42 3.14

1 5 0.9846 2.49 3.14

1 6 0.9855 2.75 3.37

1 7 0.9851 2.8406 3.5044

1 8 0.9829 3.82 4.5525

2 2 0.9503 4.4414 5.6781

2 3 0.9516 4.4791 5.6041

2 3 0.9679 3.3809 4.3152

2 4 0.9708 2.7214 3.623

2 5 0.9684 3.311 4.2624

2 5 0.9747 3.1049 3.8942

2 6 0.9713 2.9421 3.7988

2 7 0.9703 3.222 4.0899

2 7 0.9794 2.9247 3.5783

2 8 0.9776 3.1316 3.9178

2 9 0.9728 3.3017 4.0494

2 10 0.9813 2.5421 3.2451

2 11 0.9796 2.5518 3.2376

2 12 0.9881 1.8723 2.478

2 13 0.9785 3.0593 3.7905

2 14 0.981 2.6014 3.2927

2 18 0.9795 3.4181 4.0444

2 24 0.9788 3.1395 3.9741

2 13 0.9783 3.6006 4.3096

2 11 0.9785 3.5253 4.2822

2 10 0.9791 3.4389 4.1613

https://doi.org/10.1371/journal.pone.0265846.t002
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Where: l/b is the alkaline solution to the binder ratio, FA is the fly ash (kg/m3) content, Si/
Al is the ratio of SiO2 to Al2O3 of the fly ash, GGBS is the ground granulated blast furnace slag

(kg/m3) content, Si/Ca is the ratio of SiO2/CaO of GGBS, F is the fine aggregate (kg/m3) con-

tent, C is the coarse aggregate (kg/m3) content, SH is the sodium hydroxide (kg/m3) content,

SS is the sodium silicate (kg/m3) content, SS/SH is the ratio of sodium silicate to the sodium

hydroxide, and M is the sodium hydroxide concentration (Molarity). While a, b, c, d, e, f, g, h,

i, j, k, and l are the model parameters. This developed equation is a unique equation that

involves a wide range of independent variables to produce GGBS/FA-GPC that may be very

useful for the construction industry. The proposed Eq.2 can be considered as an extent for

Eq.1 since all variables can be adapted linearly.

b) Multi-logistic regression model (MLR)

Same as the former models, the multi-logistic regression analysis model was carried out for the

collected datasets. The general form of the MLR is shown in Eq 3 based on the research studied

conducted by Mohammed et al. [57] and Faraj et al. [60]. MLR is used to clarify the difference

between a nominal predictor variable and one or more independent variables.

fc0 ¼ a �
l
b

� �b

�
�
FA
�c
�

Si
Al

� �d

�
�
GGBS

�e
�

Si
Ca

� �f

� ðFÞg � ðCÞh � ðSHÞi � ðSSÞj �
SS
SH

� �k

� ðMÞl ð3Þ

Where: l/b is the alkaline solution to the binder ratio, FA is the fly ash (kg/m3) content, Si/
Al is the ratio of SiO2 to Al2O3 of the fly ash, GGBS is the ground granulated blast furnace slag

(kg/m3) content, Si/Ca is the ratio of SiO2/CaO of GGBS, F is the fine aggregate (kg/m3) con-

tent, C is the coarse aggregate (kg/m3) content, SH is the sodium hydroxide (kg/m3) content,

SS is the sodium silicate (kg/m3) content, SS/SH is the ratio of sodium silicate to the sodium

hydroxide, and M is the sodium hydroxide concentration (Molarity). While a, b, c, d, e, f, g, h,

i, j, k, and l are the model parameters.

c) Artificial neural network model (ANN)

ANN is a powerful simulation software designed for data analysis and computation to think like a

human brain in processing and analyses. This machine learning tool is widely used in construction

engineering to predict several numerical problems’ future behavior [51, 98, 99]. ANN model is

generally divided into three main layers: input, hidden, and output layers. Each input and output

layer can be one or more layers depending on the proposed problem. However, the hidden layer is

usually ranged for two or more layers. Although the input and output layers are generally depend-

ing on the collected data and the designed model purpose, the hidden layer is determined by rated

weight, transfer function, and the bias of each layer to other layers. A multi-layer feed-forward net-

work is built based on a mixture of proportions, weight/bias, several parameters, including (l/b, F,

Si/Al, GGBS, . . .) as inputs, and output ANN here is compressive strength. There is no standard

approach to designing the network architecture. Therefore, the number of hidden layers and neu-

rons is determined based on a trial and error test. One of the main objectives of the training pro-

cess of the network is to determine the optimum number of iterations (epochs) that provide the

minimum mean absolute error (MAE), root mean square error (RMSE), and best R-value that

close to one. The effect of several epochs on reducing the MAE and RMSE has been studied.

The collected data set (a total of 220 data) has been divided into three parts for the training

purpose of the designed ANN. Around 70th percent of the collected data was used as trained
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data for training the network. The 15th percent of overall data was used to test the data set,

and the rest of the remaining data was used to validate the trained network [98]. The designed

ANN was trained and tested for various hidden layers to determine optimal network structure

based on the fitness of the predicted compressive strength of GGBS/FA-GPC with the com-

pressive strength of the real collected data. It was observed that the ANN structure with two

hidden layers, twelve neurons, and a hyperbolic tangent transfer function was a best-trained

network that provides a maximum R2 and minimum both MAE and RMSE (shown in

Table 2). As a part of this study, an ANN model has been used to predict the future value of the

compressive strength of GGBS/FA-GPC. The general equation of the ANN model is shown in

Eq.4, Eq.5, and Eq.6.

From linear node 0:

fc0 ¼ Thresholdþ
Node 1

1þ e� B1

� �

þ
Node 2

1þ e� B2

� �

þ � � � ð4Þ

From sigmoid node 1:

B1 ¼ Thresholdþ S ðAttribute � VariableÞ ð5Þ

From sigmoid node 2:

B2 ¼ Thresholdþ S ðAttribute � VariableÞ ð6Þ

d) M5P-tree model

The M5P model tree is a reconstruction of Quinlan’s M5P-tree algorithm [100] that is based

on the conventional decision tree with the addition of a linear regression function to the leaves

nodes. The decision tree represents the algorithms by a tree form trained through data to form

nodes. The decision tree nodes are divided into root, internal, and leaves nodes. Nodes are

interconnected through branches until the leaves are reached [101–107]. Furthermore, M5P-

tree, introduced by [99], is a robust decision tree learner model to study regression analysis.

This learner algorithm puts linear regression functions at the terminal nodes. It places a multi-

variate linear regression model to each sub-space by classifying all data sets into multiple sub-

spaces. The M5P-tree works on continuous class problems rather than discrete segments and

can handle tasks with high dimensional features. It reveals the developed information of each

linear model component constructed to estimate the nonlinear correlation of the data sets.

The information about division criteria for the M5-tree model is obtained through the error

calculation at each node. At each node, errors are analyzed by the standard deviation of the

class entering that node. The attribute that maximizes the reduction of estimated error at each

node is used to evaluate any task of that node. As a result of this division in the M5P tree, a

large tree-like structure that leads to overfitting will be created. The enormous tree is trimmed

in the followed step, and linear regression functions restore the pruned subtrees. The general

equation form of the M5P-tree model is the same as the linear regression equation, as shown

in Eq. 7

fc0 ¼ aþ b
l
b

� �

þ c FAð Þ þ d
Si
Al

� �

þ e GGBSð Þ þ f
Si
Ca

� �

þ g Fð Þ þ h Cð Þ þ i SHð Þ þ j SSð Þ

þ k
SS
SH

� �

þ l Mð Þ ð7Þ
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5. Model performance assessment criteria

coefficient of determination;R2 ¼

Pp
p¼1
ðtp � t0Þðyp � y0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
Pp

p¼1
ðtp � t0Þ2�½
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p¼1
ðyp � y0Þ2�
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@
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ð8Þ

Root Mean Squared Error; RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp

p¼1
ðyp � tpÞ

2

n

s

ð9Þ

Mean Absolute Error; MAE ¼
Pp

p¼1
jðyp � tpÞj
n

ð10Þ

SI ¼
RMSE

t0
; Scatter Index ð11Þ
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ntr
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�
RMSEtr þMAEtr

R2
tr þ 1

� �

þ
ntst

nall
�
RMSEtst þMAEtst

R2
tst þ 1

� �

þ
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nall
�
RMSEval þMAEval

R2
val þ 1

� �

ð12Þ

Where: yp and tp are the estimated and the tested compressive strength values, and t0 and y0 are

the averages of the experimentally tested and the predicted values from the models, respec-

tively. tr, tst, and val are training, testing, and validating datasets, respectively, and n is the

number of datasets.

Except for the R2 value, zero is the optimal value for all other evaluation parameters. How-

ever, one is the highest benefit for R2. When it comes to the SI parameter, a model has bad per-

formance when it is > 0.3, acceptable performance when it is 0.2 SI 0.3, excellent performance

when it is 0.1 SI 0.2, and great performance when it is 0.1 SI 0.1 [48, 60, 103]. Furthermore, the

OBJ parameter was employed as a performance measurement parameter in Eq 12 to measure

the efficiency of the suggested models.

6. Results and analysis

a) LR model

Based on the linear regression analysis model, it was discovered that the l/b, SS/SH, and M of

the GC mixture have a significant impact on the compressive strength of the GGBS/FA-GPC,

which is consistent with experimental data published in the literature. [20, 22, 66, 92, 104–

107]. The equation for the LR model with different weight parameters can be written as follows

(Eq 13) and Fig 13.

fc0 ¼ 148:56 � 120:3
l
b

� �

� 0:179 FAð Þ � 2:24
Si
Al

� �

� 0:074 GGBSð Þ þ 3:33
Si
Ca

� �

� 0:0018 Fð Þ � 0:0289 Cð Þ þ 0:2734 SHð Þ þ 0:2218 SSð Þ � 3:779
SS
SH

� �

þ 0:992 Mð Þð13Þ

For all of the training, testing, and validation datasets, there is a 20 percent error line. None-

theless, the generated model somewhat underestimated GGBS/FA-GPC and slightly overesti-

mated low strength GGBS/FA-GPC mixtures. In addition, utilizing the training, testing, and

validating datasets, the residual compressive strength between the predicted and observed

compressive strength for the LR model was evaluated, as shown in Fig 14. The R2, RMSE, and
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MAE evaluation variables for this model are the same as 0.9022, 4.65 MPa, and 3.60 MPa. Fur-

thermore, as shown in Figs 15 and 16, the current model’s OBJ and SI values for the training

dataset are 2.96 and 0.134, respectively.

b. MLR model

Eq 14 shows the generated models for the MLR model with various variable parameters. The

most significant independent factors that impact the compressive strength of the GGBS/

FA-GPC in the MLR model were replacement level of GGBS content, SS content, and SS/SH,

which are matched with experimental studies published in the literature [22, 32, 33, 61, 62, 73,

75, 86, 92]. Fig 16(A) depicts the correlations between anticipated and measured compressive

strength in the GGBS/FA-GPC training data set. Furthermore, similar to the previous models,

this model was tested using two sets of data (testing and validating datasets) to demonstrate its

efficacy for variables not included in the model data (training data). The findings indicate that

by substituting the independent variables into the established equation, this model can predict

Fig 13. Comparison between measured and predicted compressive strength of GGBS/FA-GPC mixture using LR model, (a) training data, (b) testing data, (c)

validating data.

https://doi.org/10.1371/journal.pone.0265846.g013

Fig 14. Barchart of OBJ values of the models used.

https://doi.org/10.1371/journal.pone.0265846.g014
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the compressive strength of GGBS/FA-GPC, as illustrated in Fig 16(B) and 16(C).

fc0 ¼ 643:334 �
l
b

� �� 0:5

�
�
FA
�� 0:086

�
Si
Al

� �� 0:329

� ðGGBSÞ0:174
�

Si
Ca

� �� 0:002

� ðFÞ� 0:147
� ðCÞ� 0:4

�ðSHÞ� 9:22
� ðSSÞ9:5 �

SS
SH

� �� 9:53

� ðMÞ0:084
ð14Þ

The examined datasets, like another model, contain a 20% error line for all training, testing,

and validating datasets, suggesting that nearly all tested findings were within 20% error lines.

Finally, utilizing training, testing, and validating datasets, the residual compressive strength

for the MLR model for predicted and observed compressive strength was displayed in Fig 14.

C) ANN model

In this study, the authors tried a lot to get the high efficiency of the ANN by applying different

numbers of the hidden layer, neurons, momentum, learning rate, and iteration. Lastly, they

observed that when the ANN has two hidden layers, 12 neurons (6 for the left side and 6 for

the right side as shown in Fig 17, 0.2 momentum, 0.1 learning rate, and 2000 iteration give

Fig 15. Scatter index (SI) performance for the models used in this study.

https://doi.org/10.1371/journal.pone.0265846.g015

Fig 16. Comparison between measured and predicted compressive strength using MLR model, (a) training data, (b) testing data, and (c) validating data.

https://doi.org/10.1371/journal.pone.0265846.g016
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best-predicted values of the compressive strength of the GGBS/FA-GPC. The ANN model was

equipped with the training datasets, testing and validating datasets to predict the compression

strength values for the correct input parameters. The comparison between predicted and mea-

sured compressive strengths of GGBS/FA-GPC for training, testing, and validating datasets

are presented in Fig 18(A)–18(C). The studied datasets have a +10% and -15% error line for

the training data, ±10% error lines for testing data, and +5% and -10% for the validating data-

sets, which is better than the other developed models. Furthermore, this model has a better

performance compared to other models to predict the compressive strength of GGBS/

FA-GPC based on the value of OBJ and SI that illustrated in Figs 14 and 15, also, the value of

R2 = 0.9881, MAE = 1.8723 MPa, and RMSE = 2.478 MPa. Finally, the residual compressive

strength for the ANN model was shown in Fig 19 for the predicted and measured compressive

strength by using training, testing, and validating datasets.

Fig 17. Optimal network structures of the ANN Model.

https://doi.org/10.1371/journal.pone.0265846.g017

Fig 18. Measured-predicted compressive strength of GGBS/FA-GPC using ANN model, (a) training data, (b) testing data, and (c) validating data.

https://doi.org/10.1371/journal.pone.0265846.g018
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d) M5P-tree model

The predicted and observed compressive strengths of GGBS/FA-GPC for training, testing, and

validating datasets are shown in Fig 20(A)–20(C). Similar to other models, it was discovered

that the alkaline liquid to binder ratio (l/b) and the sodium silicate to sodium hydroxide ratio

of the GGBS/FA-GPC mixture has a significant impact on the compressive strength of the

GGBS/FA-GPC, which agrees with experimental findings in the literature [66, 104–107]. The

model parameters are provided in Eq 15, and the model variables will be chosen using the lin-

ear tree registration function.

fc0 ¼ 145:1378 � 119:7338
l
b

� �

� 0:1773 FAð Þ � 2:2382
Si
Al

� �

� 0:0729 GGBSð Þ

þ 3:2516
Si
Ca

� �

� 0:028 Cð Þ þ 0:2796 SHð Þ þ 0:2178 SSð Þ � 3:5201
SS
SH

� �

þ 0:9866 Mð Þ ð15Þ

For all of the training, testing, and validation datasets, there is a 20 percent error line.

Finally, for all datasets, the residual compressive strength for the M5P model was displayed in

Fig 19. Relationship between Residual error and compressive strength of GGBS/FA-GPC mixtures.

https://doi.org/10.1371/journal.pone.0265846.g019

Fig 20. Comparison between measured and predicted compressive strength of GGBS/FA-GPC mixture using M5P model, (a) training data, (b) testing data,

(c) validating data.

https://doi.org/10.1371/journal.pone.0265846.g020
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Fig 19 for both predicted and observed compressive strength. Furthermore, this model’s R2,

RMSE, MAE, OBJ, and SI evaluation criteria are 0.9498, 4.6557 MPa, 3.7864 MPa, 4.278, and

0.134, respectively, for the training datasets.

6. Developed models performance

As mentioned previously, five different statistical tools, RMSE, MAE, SI, OBJ, and R2, were

used to evaluate the efficiency of the developed models. The ANN model has higher R2 with

lower RMSE and MAE values among the four different models compared to LR, MLR, and

M5P models. Also, Fig 21 presents the comparison between model predictions of the compres-

sive strength of GGBS/FA-GPC mixtures using testing data. Moreover, Fig 19 shows the resid-

ual error for all models using training, testing, and validating datasets. It can be noticed from

both figures that the predicted and measured values of compressive strength are closer for the

ANN model, which indicates the superior performance of the ANN model compared to other

models.

The OBJ values for all proposed models are given in Fig 14. The value of OBJ for LR, MLR,

ANN, and M5P is 4.685, 6.605, 1.929, and 4.278. The OBJ value of the ANN model is 142.8%

less than the LR model, 242.4% lower than the MLR, and 121.7% lower than the M5P models.

This also demonstrates that the ANN model is more efficient for predicting the compressive

strength of GGBS/FA-GPC mixtures. Furthermore, the SI assessment parameter values for the

proposed models in training, validating, and testing phases are presented in Fig 15. As shown

in Fig 15, for all models and all phases (Training, testing, and validating), the SI values were

between 0.1 and 0.2, indicating good performance for all models. However, similar to the

other performance parameters the ANN model has lower SI values than other models. The

Fig 21. Model projections of compressive strength of GGBS/FA-GPC mixtures using testing data.

https://doi.org/10.1371/journal.pone.0265846.g021
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ANN model has 88.7%, 174.6%, and 88.7% lower SI values than LR, MLR, and M5P models.

This also illustrated that the ANN model is more efficient and performed better compared to

LR, MLR, and M5P models for predicting the compressive strength of GGBS/FA-GPC.

7. Sensitivity of the models

A sensitivity comparison was carried out for the LR and MLR models in order to discover and

analyze the most critical input parameter that impacts the compressive strength of GGBS/

FA-GPC [57, 60]. In Excel, Solver created the training dataset for the models. Several alterna-

tive training data sets were employed in the sensitivity analysis. According to the obtained

results (Table 3), the most important variables for the prediction of the compressive strength

of GGBS/FA-GPC for the above stated two models are l/b, FA content, and M, and this is con-

sistent with a number of studies [33, 35, 44, 66, 68, 69, 74, 85, 105–109].

8. Conclusions

Predicting of compressive strength of GGBS/FA-GPC by the reliable and accurate model can

save time and cost. In this paper, linear regression (LR), multi-logistic regression (MLR), artifi-

cial neural network (ANN), and M5P-tree (M5P) models were used to propose predictively

models for the compression strength of GGBS/FA-GPC. Based on the 220 collected datasets

from previous research works and the simulation of the compressive strength of the GGBS/

FA-GPC at the age of 28 days and ambient curing conditions, the following conclusion can be

drawn:

1. All the used models LR, MLR, ANN, and M5P could be successfully used to develop predic-

tive models for predicting the compressive strength of the GGBS/FA-GPC. The predicted

compressive strengths matched well with the corresponding measured experimental com-

pressive strengths of GGBS/FA-GPC.

2. The ANN model performs better than the other three models based on the statistical assess-

ment and sensitivity analysis. The R2 values for this model are 0.988, 0.995, and 0.998 for

the training, testing, and validating datasets, respectively. In addition, other sensitivity indi-

cators for the training dataset for the ANN model are 2.478 MPa, 1.872 MPa, 1.929, and

0.071 for the RMSE, MAE, OBJ, and SI, respectively. So, the ANN model possesses a higher

Table 3. Sensitivity analysis using LR and MLR models.

LR Model MLR Model

R2 RMSE (MPa) MAE (MPa) OBJ SI R2 RMSE (MPa) MAE (MPa) OBJ SI

Removed Parameter None 0.902 4.655 3.604 2.960 0.134 0.806 6.621 5.171 4.504 0.193

l/b 0.876 5.235 3.968 3.344 0.150 0.802 6.686 5.225 4.506 0.192

FA 0.875 5.253 3.972 3.354 0.151 0.764 7.297 5.481 4.938 0.209

Si/Al 0.896 5.843 4.914 3.867 0.172 0.799 7.875 6.602 5.323 0.231

GGBS 0.898 4.748 3.664 3.021 0.136 0.778 7.082 5.465 4.811 0.203

Si/Ca 0.898 4.766 3.725 3.051 0.137 0.806 6.625 5.171 4.454 0.190

F 0.897 4.778 3.763 3.070 0.137 0.802 6.698 5.226 4.513 0.192

C 0.896 4.793 3.765 3.077 0.138 0.800 6.722 5.248 4.534 0.193

SH 0.897 4.785 3.771 3.076 0.138 0.775 7.134 5.406 4.817 0.204

SS 0.893 4.877 3.732 3.101 0.140 0.776 7.113 5.380 4.796 0.204

SS/SH 0.901 4.678 3.592 2.966 0.134 0.773 7.160 5.171 4.741 0.205

M 0.880 5.150 4.082 3.348 0.148 0.804 6.658 5.209 4.485 0.191

https://doi.org/10.1371/journal.pone.0265846.t003
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generality and predictive capability and is appropriate to practice in the preliminary design

of GGBS/FA-GPC.

3. This study reported that the two-layer ANN model with 6 neurons in each layer is the suit-

able model combination for predicting GGBS/FA-GPC compressive strength.

4. The assessment and comparison of statistical parameters R2, RMSE, MAE, OBJ, and SI for

all the training, testing, and validating datasets correctly validate the developed models’

accuracy.

5. The predicted compressive strengths with the ANN model were within +10% and -15% of

the measured compression strength for the training datasets. However, this value was

increased to ±20% for the other remaining models.

6. The obtained results show that the l/b, FA content, and M are the most significant variable

parameters for predicting the compressive strength of GGBS/FA-GPC.

7. The proposed models could provide a detailed and practical foundation for increasing the

re-use of waste GGBS and FA for construction practices instead of disposal in landfill sites.

8. The eco-efficient GGBS/FA-based geopolymer concrete studied here can participate in sus-

tainable development because it is a cementless concrete and uses industrial or agro by-

product ashes as a binder material; these mixture properties lead to a reduction of the car-

bon dioxide percent in the air, energy consumption, as well as waste disposal and the cost

of the construction.
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