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We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an
asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from
neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general
oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the
filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements
of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth
and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results
hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification
results to noisy circuits.

1. Introduction

Signal distortions introduced by a communication channel
can severely affect the reliability of communication systems.
If properly utilized, knowledge of the channel response can
lead to a dramatic improvement in the performance of
a communication link. In practice, however, information
about the channel is rarely available a priori and the channel
needs to be identified at the receiver. A number of channel
identification methods [1] have been proposed for tradi-
tional clock-based systems that rely on the classical sampling
theorem [2, 3]. However, there is a growing need to develop
channel identification methods for asynchronous nonlinear
systems, of which time encoding machines (TEMs) [4] are a
prime example.

TEMs naturally arise as models of early sensory systems
in neuroscience [5, 6] as well as models of nonlinear samplers
in signal processing and analog-to-discrete (A/D) converters
in communication systems [4, 6]. Unlike traditional clock-
based amplitude-domain devices, TEMs encode analog
signals as a strictly increasing sequence of irregularly spaced
times (tk)k∈Z. As such, they are closely related to irregular

(amplitude) samplers [4, 7] and, due to their asynchronous
nature, are inherently low-power devices [8]. TEMs are also
readily amenable to massive parallelization [9]. Furthermore,
under certain conditions, TEMs faithfully represent analog
signals in the time domain; given the parameters of the TEM
and the time sequence at its output, a time decoding machine
(TDM) can recover the encoded signal loss-free [4, 5].

A general TEM of interest is shown in Figure 1. An analog
multidimensional signal u is passed through a channel with
memory that models physical communication links. We
assume that the effect of this channel on the signal u can be
described by a linear multidimensional filter. The output of
the channel v is then mapped, or encoded, by a nonlinear
asynchronous sampler into the time sequence (tk)k∈Z. A few
examples of samplers include asynchronous A/D converters
such as the one based on an asynchronous sigma/delta
modulator (ASDM) [4], nonlinear oscillators such as the van
der Pol oscillator in cascade with a zero-crossing detector
(ZCD) [6], and spiking neurons such as the integrate-and-
fire (IAF) or the threshold-and-fire (TAF) neurons [9]. The
above-mentioned asynchronous samplers incorporate the
temporal dynamics of spike (pulse) generation and allow one
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Figure 1: Modeling the channel identification problem. A known multidimensional signal u(t), t ∈ R, is first passed through a communi-
cation channel. A nonlinear sampler then maps the output v of the channel into an observable time sequence (tk)k∈Z.

to consider, in particular for neuroscience applications, more
biologically plausible nonlinear spike generation (sampling)
mechanisms.

In this paper, we investigate the following nonlinear iden-
tification problem: given both the input signal u and the
time sequence (tk)k∈Z at the output of a TEM, what is the
channel filter? System identification problems of this kind
are key to understanding the nature of neural encoding
and processing [10–14], process modeling and control [15],
and, more generally, methods for constructing mathematical
models of dynamical systems [16].

Identification of the channel from a time sequence
is to be contrasted with existing methods for rate-based
models in neuroscience (see [10] for an extensive review).
In such models the output of the system is taken to be its
instantaneous response rate and the nonlinear generation
of a time sequence is not explicitly modeled. Furthermore,
in order to fit model parameters, identification methods
for such models typically require the response rate to be
known [17]. This is often difficult in practice since the same
experiment needs to be repeated a large number of times to
estimate the response rate. Moreover, the use of the same
stimulus typically introduces a systematic bias during the
identification procedure [10].

The channel identification methodology presented in
this paper employs test signals that are neither white nor have
stationary statistics (e.g., Gaussian with a fixed mean/ vari-
ance). This is a radical departure from the widely employed
nonlinear system identification methods [10], including the
spike-triggered average [18] and the spike-triggered covari-
ance [19] methods. We carry out the channel identification
using input signals that belong to reproducing kernel Hilbert
spaces (RKHSs), and, in particular, spaces of bandlimited
functions, that is, functions that have a finite support in the
frequency domain. The latter signals are extensively used to
describe sensory stimuli in biological systems and to model
signals in communications. We show that for such signals
the channel identification problem becomes mathematically
tractable. Furthermore, we demonstrate that the choice
of the input signal space profoundly effects the type of
identification results that can be achieved.

The paper is organized as follows. In Section 2, we
introduce three application-driven examples of the system in
Figure 1 and formally state the channel identification prob-
lem. In Section 3, we present the single-input single-output
(SISO) channel identification machine (CIM) for the finite-
dimensional input signal space of trigonometric polynomi-
als. Using analytical methods and simulations, we demon-
strate that it is possible to identify the projection of the
filter onto the input space loss-free and show that the SISO

CIM algorithm can recover the original filter with arbitrary
precision, provided that both the bandwidth and the order of
the input space are sufficiently high. Then, in Section 4, we
extend our methodology to multidimensional systems and
present multi-input single-output (MISO) CIM algorithms
for the identification of vector-valued filters modeling the
channel. We generalize our methods to classes of RKHSs
of input signals in Section 5.1 and work out in detail chan-
nel identification algorithms for infinite-dimensional Paley-
Wiener spaces. In Section 5.2 we discuss extensions of our
identification results to noisy systems, where additive noise
is introduced either by the channel or the asynchronous
sampler. Finally, Section 6 concludes our work.

2. The Channel Identification Problem

We investigate a general I/O system comprised of a filter or
a bank of filters (i.e., a linear operator) in cascade with an
asynchronous (nonlinear) sampler (Figure 1). The I/O cir-
cuit belongs to the class of [Filter]-[Asynchronous Sampler]
circuits. In general terms, the input to such a system is a
vector-valued analog signal u = [u1(t),u2(t), . . . ,uM(t)]T ,
t ∈ R, M ∈ N, and the output is a time sequence (tk)k∈Z
generated by its asynchronous sampling mechanism. In the
neural coding literature, such a system is called a time
encoding machine (TEM) [4] as it encodes an unknown
signal u into an observable time sequence (tk)k∈Z.

2.1. Examples of Asynchronous SISO and MISO Systems. An
instance of the TEM in Figure 1 is the SISO [Filter]-[Ideal
IAF] neural circuit depicted in Figure 2(a). Here the filter is
used to model the aggregate processing of a stimulus per-
formed by the dendritic tree of a sensory neuron. The output
of the filter v is encoded into the sequence of spike times
(tk)k∈Z by an ideal integrate-and-fire neuron. Identification
of dendritic processing in such a circuit is an important
problem in systems neuroscience. It was first investigated
in [20]. Another instance of the system in Figure 1 is the
SISO [Filter]-[Nonlinear Oscillator-ZCD] circuit shown in
Figure 2(b). In contrast to the first example, where the input
was coupled additively, in this circuit the biased filter output
v is coupled multiplicatively into a nonlinear oscillator.
The zero-crossing detector then generates a time sequence
(tk)k∈Z by extracting zeros from the observable modulated
waveform at the output of the oscillator. Called a TEM with
multiplicative coupling [6], this circuit is encountered in
generalized frequency modulation [21].

An example of a MISO system is the [Filter]-[ASDM-
ZCD] circuit shown in Figure 2(c). Similar circuits arise
practically in all modern-day A/D converters and consti-
tute important front-end components of measurement and
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Figure 2: Examples of systems arising in neuroscience and communications. (a) Single-input single-output model of a sensory neuron. (b)
Single-input single-output nonlinear oscillator in cascade with a zero-crossing detector. (c) Multi-input single-output analog-to-discrete
converter implemented with an asynchronous sigma-delta modulator. M liner filters model M (different) communication links.

communication systems. Each signal um(t), t ∈ R, m =
1, 2, . . . ,M, is transmitted through a communication channel
and the effect of the channel on each signal is modeled
using a linear filter with an impulse response hm(t), t ∈
R, m = 1, 2, . . . ,M. The aggregate channel output v(t) =∑M

m=1 v
m(t) = ∑M

m=1(um ∗ hm)(t), where um ∗ hm denotes
the convolution of um with hm, is additively coupled into an
ASDM. Specifically, v(t) is passed through an integrator and
a noninverting Schmitt trigger to produce a binary output
z(t) ∈ {−b, b}, t ∈ R. A zero-crossing detector is then used
to extract the sequence of zero-crossing times (tk)k∈Z from
z(t). Thus, the output of this [Filter]-[ASDM-ZCD] circuit
is the time sequence (tk)k∈Z.

2.2. Modeling the Input Space. We model channel input
signals u = u(t), t ∈ R, as elements of the space of trigono-
metric polynomials H (see Section 5.1 for more general
input spaces).

Definition 1. The space of trigonometric polynomials H is a
Hilbert space of complex-valued functions

u(t) = 1√
T

L∑
l=−L

ul exp

(
jlΩt

L

)
, t ∈ [0,T], (1)

where ul ∈ C, Ω is the bandwidth, L is the order and T =
2πL/Ω, endowed with the inner product 〈·, ·〉 : H×H → C

〈u,w〉 =
∫ T

0
u(t)w(t)dt. (2)

Given the inner product in (2), the set of elements

el(t) = 1√
T

exp

(
jlΩt

L

)
, l = −L,−L + 1, . . . ,L, (3)

forms an orthonormal basis in H . Thus, any element u ∈H
and any inner product 〈u,w〉 can be compactly written as

u = ∑L
l=−L ulel and 〈u,w〉 = ∑L

l=−L ulwl. Moreover, H is a
reproducing kernel Hilbert space (RKHS) with a reproducing
kernel (RK) given by

K(s, t) =
L∑

l=−L
el(s)el(t) = 1

T

L∑
l=−L

exp

(
jlΩ

L
(s− t)

)
, (4)

also known as a Dirichlet kernel [22].

We note that a function u ∈ H satisfies u(0) = u(T).
There is a natural connection between functions on an
interval of length T that take on the same values at interval
end-points and functions on R that are T-periodic: both
provide equivalent descriptions of the same mathematical
object, namely a function on a circle. By abuse of notation,
in what follows u will denote both a function defined on
an interval of length T and a function defined on the entire
real line. In the latter case, the function u is simultaneously
periodic with period T and bandlimited with bandwidth Ω,
that is, it has a finite spectral support supp(F u) ⊆ [−Ω,Ω],
where F denotes the Fourier transform. In what follows we
will assume that ul /= 0 for all l = −L,−L + 1, . . . ,L, that is, a
signal u ∈H contains all 2L + 1 frequency components.

2.3. Modeling the Channel and Channel Identification. The
channel is modeled as a bank of M filters with impulse
responses hm, m = 1, 2, . . . ,M. We assume that each filter is
linear, causal, BIBO-stable and has a finite temporal support
of length S ≤ T , that is, it belongs to the space H = {h ∈
L1(R) | supp(h) ⊆ [0,T]}. Since the length of the filter
support is smaller than or equal to the period of an input
signal, we effectively require that for a given S and a fixed
input signal bandwidth Ω, the order L of the space H satisfies
L ≥ S · Ω/(2π). The aggregate channel output is given by
v(t) = ∑M

m=1(um ∗ hm)(t). The asynchronous sampler maps
the input signal v into the output time sequence (tk)nk=1,
where n denotes the total number of spikes produced on an
interval t ∈ [0,T].



4 Computational Intelligence and Neuroscience

+

b

1
C


dt

Voltage reset to 0

Asynchronous sampler: ideal IAF neuron 
    

Communication
channel

δ

v(t)u(t)
(Ph)(t)

(tk)k∈Z

(a) Conditional I/O equivalence

+

b

1
C


dt

Voltage reset to 0

Asynchronous sampler: ideal IAF neuron 
    

Communication
channel

δ

v(t)
u(t)

(Ph)(t)

(tk)k∈Z

(b) Duality

Figure 3: Conditional duality between channel identification and time encoding. (a) For all u ∈ H , the [Filter]-[Ideal IAF] circuit with an
input-filter pair (u,h) is I/O equivalent to a [Filter]-[Ideal IAF] circuit with an input-filter pair (u, Ph). (b) The input-filter pair (u, Ph) in
channel identification is dual to the (Ph,u) pair in time encoding.

Definition 2. A signal u ∈ HM at the input to a [Filter]-
[Asynchronous Sampler] circuit together with the resulting
output T = (tk)nk=1 of that circuit is called an input/output
(I/O) pair and is denoted by (u,T).

We are now in a position to define the channel identifica-
tion problem.

Definition 3. Let (ui), i = 1, 2, . . . ,N , be a set of N
signals from a test space HM . A channel identification
machine implements an algorithm that estimates the impulse
response of the filter from the I/O pairs (ui,Ti), i = 1, 2,
. . . ,N , of the [Filter]-[Asynchronous Sampler] circuit.

Remark 4. We note that a CIM recovers the impulse response
of the filter based on the knowledge of I/O pairs (ui,Ti),
i = 1, 2, . . . ,N , and the sampler circuit. In contrast, a time
decoding machine recovers an encoded signal u based on the
knowledge of the entire TEM circuit (both the channel filter
and the sampler) and the output time sequence T.

3. SISO Channel Identification Machines

As already mentioned, the circuits under investigation con-
sist of a channel and an asynchronous sampler. Throughout
this paper, we will assume that the structure and the
parameters of the asynchronous sampler are known. We start
by formally describing asynchronous channel measurements
in Section 3.1. Channel identification algorithms from asyn-
chronous measurements are given in Section 3.2. Examples
characterizing the performance of the identification algo-
rithms are discussed in Section 3.3.

3.1. Asynchronous Measurements of the Channel Output.
Consider the SISO [Filter]-[Ideal IAF] neural circuit in
Figure 2(a). In this circuit, an input signal u ∈ H is passed
through a filter with an impulse response (or kernel) h ∈ H
and then encoded by an ideal IAF neuron with a bias b ∈ R+,
a capacitance C ∈ R+, and a threshold δ ∈ R+. The output
of the circuit is a sequence of spike times (tk)nk=1 on the time
interval [0,T] that is available to an observer. This neural
circuit is an instance of a TEM and its operation can be
described by a set of equations

∫ tk+1

tk
(u∗ h)(s)ds = qk, k = 1, 2, . . . ,n− 1, (5)

where qk = Cδ − b(tk+1 − tk). Intuitively, at every spike time
tk+1 the ideal IAF neuron is providing a measurement qk of
the signal v(t) = (u∗ h)(t) on the time interval [tk, tk+1).

Definition 5. The mapping of an analog signal u(t), t ∈ R,
into an increasing sequence of times (tk)k∈Z (as in (5)) is
called the t-transform [4].

Definition 6. The operator P : H → H given by

(Ph)(t) =
∫ T

0
h(s)K(s, t)ds (6)

is called the projection operator.

Proposition 7 (conditional duality). For all u ∈ H , a
[Filter]-[Ideal IAF] TEM with a filter kernel h is I/O-
equivalent to a [Filter]-[Ideal IAF] TEM with the filter kernel
Ph. Furthermore, the CIM algorithm for identifying the filter
kernel Ph is equivalent to the TDM algorithm for recovering
the input signal Ph encoded by a [Filter]-[Ideal IAF] TEM
with the filter kernel u.

Proof. Since u ∈ H , u(t) = 〈u(·),K(·, t)〉 by the repro-

ducing property of the kernel K(s, t). Hence, (u ∗ h)(t)
(a)=∫

R h(w)u(t − w)dw
(b)= ∫ T

0 h(w)
∫ T

0 u(z)K(z, t −w)dz dw
(c)=∫ T

0 u(z)
∫ T

0 h(w)K(w, t − z)dw dz
(d)= ∫ T

0 u(z)(Ph)(t − z)dz
(e)=

(u ∗ Ph)(t), where (a) follows from the commutativity of
convolution, (b) from the reproducing property of the kernel
K and the assumption that supp(h) ⊆ [0,T], (c) from the
equality K(z, t − w) = K(w, t − z), (d) from the definition
of Ph in (6), and (e) from the definition of convolution
for periodic functions [23]. It follows that on the interval
t ∈ [0,T], (5) can be rewritten as∫ tk+1

tk
(u∗Ph)(s)ds

( f )=
∫ tk+1

tk
(Ph∗ u)(s)ds = qk, (7)

for all k = 1, 2, . . . ,n − 1, where ( f ) comes from the com-
mutativity of convolution. The right-hand side of (7) is the
t-transform of a [Filter]-[Ideal IAF] TEM with an input Ph
and a filter that has an impulse response u. Hence, a TDM
can identify Ph, given a filter-output pair (u,T).

The conditional duality between time encoding and
channel identification is visualized in Figure 3. First, we note
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the conditional I/O equivalence between the circuit in
Figure 3(a) and the original circuit in Figure 2(a). The
equivalence is conditional since Ph is a projection onto a
particular space H and the two circuits are I/O-equivalent
only for input signals in that space. Second, identifying the
filter of the circuit in Figure 3(a) is the same as decoding the
signal encoded with the circuit in Figure 3(b). Note that the
filter projection Ph is now treated as the input to the [Filter]-
[Ideal IAF] circuit and the signal u appears as the impulse
response of the filter. Effectively, we have transformed the
channel identification problem into a time decoding problem
and we can use the TDM machinery of [5] to identify the
filter projection (Ph)(t) on t ∈ [0,T].

3.2. Channel Identification from Asynchronous Measurements.
Given the parameters of the asynchronous sampler, the
measurements qk of the channel output v can be readily
computed from spike times (tk)nk=1 using the definition of
qk ((5) for the IAF neuron). Furthermore, as we will now
show, for a known input signal, these measurements can be
reinterpreted as measurements of the channel itself.

Lemma 8. There is a function φk(t) = ∑L
l=−L φl,kel(t) ∈ H ,

such that the t-transform of the [Filter]-[Ideal IAF] neuron in
(7) can be written as 〈

Ph,φk
〉 = qk, (8)

and φl,k =
√
T
∫ tk+1

tk ulel(t)dt for all l = −L,−L + 1, . . . ,L and
k = 1, 2, . . . ,n− 1.

Proof. The linear functional Lk : H → R defined by

Lk(w) =
∫ tk+1

tk
(u∗w)(s)ds, (9)

where w ∈H , is bounded. Thus, by the Riesz representation
theorem [22], there exists a function φk ∈ H such that
Lk(w) = 〈w,φk〉, k = 1, 2, . . . ,n − 1, and qk = Lk(Ph) =∫ tk+1

tk (u∗Ph)(s)ds=〈Ph,φk〉. Since φk ∈H , we have φk(t) =∑L
l=−L φl,kel for some φl,k ∈ C, l =−L,−L + 1, . . . ,L. To find

the latter coefficients, we note that φl,k = 〈φk, el〉 = 〈el,φk〉 =
Lk(el). By definition of Lk in (9), Lk(el) =

∫ tk+1

tk (u∗el)(t)dt=∫ tk+1

tk

∫ T
0

∑L
i=−L uiei(s)el(t − s)ds dt =

√
T
∫ tk+1

tk ulel(t)dt.

Since qk =
∫ tk+1

tk (u∗Ph)(s)ds = 〈v, P 1[tk ,tk+1]〉, the mea-
surements qk are projections of v = u ∗ Ph onto P 1[tk ,tk+1],
k = 1, 2, . . . ,n − 1. Assuming that u is known and there are
enough measurements available, Ph can be obtained by first
recovering v from these projections and then deconvolving
it with u. However, this two-step procedure does not work
when the circuit is not producing enough measurements
and one cannot recover v. A more direct route is suggested
by Lemma 8, since the measurements (qk)n−1

k=1 can also be
interpreted as the projections of Ph onto φk, that is, 〈Ph,
φk〉, k = 1, 2, . . . ,n − 1. A natural question then is how to
identify Ph directly from the latter projections.

Lemma 9. Let u ∈ H be the input to a [Filter]-[Ideal IAF]
circuit with h ∈ H . If the number of spikes n generated by the
neuron in a time interval of length T satisfies n ≥ 2L + 2, then
the filter projection Ph can be perfectly identified from the I/O
pair (u,T) as (Ph)(t) = ∑L

l=−L hlel(t), where h = Φ+q with
[q]k = qk and Φ+ denotes the Moore-Penrose pseudoinverse of
Φ. The matrix Φ is of size (n− 1)× (2L + 1) and its elements
are given by

[Φ]kl =

⎧⎪⎪⎨⎪⎪⎩
ul(tk+1 − tk), l = 0,

ulL
√
T(el(tk+1)− el(tk))

jlΩ
, l /= 0.

(10)

Proof. Since Ph ∈ H , it can be written as (Ph)(t) =∑L
l=−L hlel(t). Then from (8) we have

qk =
〈
Ph,φk

〉 = L∑
l=−L

hlφl,k. (11)

Writing (11) for all k = 1, 2, . . . ,n − 1, we obtain q = Φh
with [q]k = qk, [Φ]kl = φl,k and [h]l = hl. This system of
linear equations can be solved for h, provided that the rank
r(Φ) of the matrix Φ satisfies r(Φ) = 2L + 1. A necessary
condition for the latter is that the number of measurements
qk is at least 2L+1, or, equivalently, the number of spikes n ≥
2L + 2. Under this condition, the solution can be computed
as h = Φ+q.

Remark 10. If the signal u is fed directly into the neuron, then∫ tk+1

tk (u∗Ph)(t)dt = ∫ tk+1

tk u(t)dt, for k = 1, 2, . . . ,n− 1, that
is, (Ph)(t) = K(t, 0), t ∈ R. In other words, if there is no
processing on the input signal u, then the kernel K(t, 0) in H
is identified as the filter projection. This is also illustrated in
Figure 7.

In order to ensure that the neuron produces at least 2L+1
measurements in a time interval of length T , it suffices to
have tk+1 − tk ≤ T/(2L + 2). Since tk+1 − tk ≤ Cδ/(b − c) for
|v(t)| ≤ c < b, it suffices to have Cδ < (b − c)T/(2L + 2).
Using the definition of T = 2πL/Ω and taking the limit as
L → ∞, we obtain the familiar Nyquist-type criterion Cδ <
π(b− c)/Ω for a bandlimited stimulus u ∈ Ξ [4, 20] (see also
Section 5.1).

Ideally, we would like to identify the impulse response
of the filter h. Note that unlike h ∈ H , the projection
Ph belongs to the space H . Nevertheless, under quite
natural conditions on h (see Section 3.4), Ph approximates
h arbitrarily closely on t ∈ [0,T], provided that both the
bandwidth and the order of the signal u are sufficiently large
(see also Figure 9).

The requirement of Lemma 9 that the number of spikes
n produced by the system in Figure 2(a) has to satisfy
n ≥ 2L + 2 is quite stringent and may be hard to meet in
practice, especially if the order L of the space H is high. In
that case we have the following result.

Theorem 11 (SISO channel identification machine). Let
{ui | ui ∈ H}Ni=1 be a collection of N linearly independent
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Figure 4: SISO CIM algorithm for the [Filter]-[Ideal IAF] circuit. (a) Time encoding interpretation of the channel identification problem.
(b) Block diagram of the SISO channel identification machine.

stimuli at the input to a [Filter]-[Ideal IAF] circuit with h ∈ H .
If the total number of spikes n = ∑N

i=1 n
i generated by the

neuron satisfies n ≥ 2L+N+1, then the filter projection Ph can
be perfectly identified from a collection of I/O pairs {(ui,Ti)}Ni=1
as

(Ph)(t) =
L∑

l=−L
hlel(t), (12)

where h = Φ+q. Furthermore, Φ = [Φ1;Φ2; . . . ;ΦN ], q =
[q1; q2; . . . ; qN ] and [qi]k = qik with each Φi of size (ni − 1)×
(2L+ 1) and qi of size (ni−1)×1. The elements of matrices Φi

are given by

[
Φi

]
kl
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uil
(
tik+1 − tik

)
, l = 0,

uilL
√
T
(
el
(
tik+1

)
− el

(
tik
))

jlΩ
, l /= 0,

(13)

for all k = 1, 2, . . . ,n − 1, l = −L,−L + 1, . . . ,L, and i = 1,
2, . . . ,N .

Proof. Since Ph ∈ H , it can be written as (Ph)(t) =∑L
l=−L hlel(t). Furthermore, since the stimuli are linearly

independent, the measurements (qik)n
i−1
k=1 provided by the IAF

neuron are distinct. Writing (5) for a stimulus ui, we obtain

qik = 〈Ph,φik〉 =
L∑

l=−L
hlφ

i
l,k, (14)

or qi = Φih, with [qi]k = qik, [Φi]kl = φil,k and [h]l = hl.
Repeating for all i = 1, . . . ,N , we get q = Φh with Φ =
[Φ1;Φ2; . . . ;ΦN ] and q = [q1; q2; . . . ; qN ]. This system of
linear equations can be solved for h, provided that the rank
r(Φ) of matrix Φ satisfies r(Φ) = 2L + 1. A necessary con-
dition for the latter is that the total number n = ∑N

i=1 n
i of

spikes generated in response to all N signals satisfies n ≥
2L+N + 1. Then, the solution can be computed as h = Φ+q.

To find the coefficients φil,k, we note that φil,k = Li
k(el) (see

Lemma 8). Hence, the result follows.

The time encoding interpretation of the channel iden-
tification problem for a SISO [Filter]-[Ideal IAF] circuit is
shown in Figure 4(a). The block diagram of the SISO CIM
in Theorem 11 is shown in Figure 4(b). Note that the key
idea behind the SISO CIM is the introduction of multiple
linearly independent test signals ui ∈ H , i = 1, 2, ...,N .
When the [Filter]-[Ideal IAF] circuit is producing very few
measurements of Ph in response to any given test signal ui,
we use more signals to obtain additional measurements. We
can do so and identify Ph because Ph ∈ H is fixed. In
contrast, identifying Ph in a two-step deconvolving proce-
dure requires reconstructing at least one vi. This is an ill-
posed problem since each vi is signal-dependent and has a
small number of associated measurements.

3.3. Examples. We now demonstrate the performance of
the identification algorithms in Lemma 9 and Theorem 11.
First, we identify a filter in the SISO [Filter]-[Ideal IAF]
circuit (Figure 2(a)) from a single I/O pair when this circuit
produces a sufficient number of measurements in an interval
of length T . Second, we identify the filter using multiple
I/O pairs for the case when the number of measurements
produced in response to any given input signal is small.
Finally, we consider the SISO [Filter]-[Nonlinear Oscillator-
ZCD] circuit with multiplicative coupling (Figure 2(b)) and
identify its filter from multiple I/O pairs.

3.3.1. SISO [Filter]-[Ideal IAF] Circuit, Single I/O Pair. We
model the dendritic processing filter using the causal linear
kernel

h(t) = ce−αt
[

(αt)3

3!
− (αt)5

5!

]
, t ∈ [0, 0.1] s, (15)
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(a) Input signal u(t)

(b) Biased filter output v(t) + b

(c) Ideal IAF neuron response

(d) Output sequence (tk)nk=1

(e) Original filter versus the identified filter

(f) Fourier amplitude spectrum of K

(g) Fourier amplitude spectrum of h

(h) Fourier amplitude spectrum of Ph∗

Figure 5: Channel identification in a SISO [Filter]-[Ideal IAF] circuit using a single I/O pair. (a) An input signal u is bandlimited to 25 Hz.
The order of the space is L = 5. (b) The corresponding biased output of the filter v(t) + b. (c) The filter output in (b) is integrated by the
ideal IAF neuron. Whenever the membrane potential reaches a threshold δ, a spike is produced by the neuron and the potential is reset to 0.
(d) The neuron generated a total of 13 spikes. (e) The identified impulse response of the filter Ph∗ (red) is shown together with the original
filter h (dashed black) and its projection Ph (blue). The MSE between Ph∗ and Ph is −77.5 dB. (f)–(h) Fourier amplitude spectra of K , h
and Ph∗. Note that supp(F K) = supp(F Ph∗) = [−Ω,Ω] but supp(F h) ⊃ [−Ω,Ω]. In other words, Ph∗ ∈H but h /∈H .
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with c = 3 and α = 200. The general form of this
kernel was suggested in [24] as a plausible approximation
to the temporal structure of a visual receptive field. Since
the length of the filter support S = 0.1 s, we will need to
use a signal with a period T ≥ 0.1 s. In Figure 5(a), we
apply a signal u that is bandlimited to 25 Hz and has a
period of T = 0.2 s, that is, the order of the space L =
T · Ω/(2π) = 5. The biased output of the filter v = (u ∗
h) + b is then fed into an ideal integrate-and-fire neuron
(Figure 5(b)). Here the bias b guarantees that the output
of the integrator reaches the threshold value in finite time.
Whenever the biased filter output is above zero (Figure 5(b)),
the membrane potential is increasing (Figure 5(c)). If the
membrane potential

∫ t
tk [(u∗ h)(s) + b]ds reaches a threshold

δ, a spike is generated by the neuron at a time tk+1 and the
potential is reset to zero (Figure 5(c)). The resulting spike
train (tk)nk=1 at the output of the [Filter]-[Ideal IAF] circuit is
shown in Figure 5(d). Note that the circuit generated a total
of n = 13 spikes in an interval of length T = 0.2 s. According
to Theorem 14, we need at least n = 2L + 2 = 12 spikes,
corresponding to 2L + 1 = 11 measurements, in order to
identify the projection Ph of the filter h loss-free. Hence, for
this particular example, it will suffice to use a single I/O pair
(u,T).

In Figure 5(e), we plot the original impulse response of
the filter h, the filter projection Ph, and the filter Ph∗. The
latter filter was identified using the algorithm in Theorem 14.
Notice that the identified impulse response Ph∗ (red) is
quite different from h (dashed black). In contrast, and as
expected, the blue and red curves corresponding, respec-
tively, to Ph and Ph∗ are indistinguishable. The mean
squared error (MSE) between Ph∗ and Ph amounts to
−77.5 dB.

The difference between Ph and h is further evaluated
in Figures 5(f)–5(h). By definition of Ph in (6), Ph =
h ∗ K(·, 0), or F (Ph) = F (h)F (K(·, 0)) since K = K .
Hence both the projection Ph and the identified filter Ph∗

will contain frequencies that are present in the reproducing
kernel K , or equivalently in the input signal u. In Figure 5(f)
we show the double-sided Fourier amplitude spectrum of
K(t, 0). As expected, we see that the kernel is bandlimited
to 25 Hz and contains 2L + 1 = 11 distinct frequencies.
On the other hand, as shown in Figure 5(g), the original
filter h is not bandlimited (since it has a finite temporal
support). As a result, the input signal u explores h in a
limited spectrum of [−Ω,Ω] rad/s, effectively projecting h
onto the space H with Ω = 2π · 25 rad/s and L = 5. The
Fourier amplitude spectrum of the identified projection Ph∗

is shown in Figure 5(h).

3.3.2. SISO [Filter]-[Ideal IAF] Circuit, Multiple I/O Pairs.
Next, we identify the projection of h onto the space of
functions that are bandlimited to 100 Hz and have the same
period T = 0.2 s as in the first example. This means that
the order L of the space of input signals H is L = T ·
Ω/(2π) = 20. In order to identify the projection Ph loss-
free, the neuron has to generate at least 2L + 1 = 41
measurements. If the neuron produces about 13 spikes

(12 measurements) on an interval of length T , as in the
previous example, a single I/O pair will not suffice. However,
we can still recover the projection Ph if we use multiple I/O
pairs.

In Figure 6 we illustrate identification of the filter using
the algorithm in Theorem 11. A total of 48 spikes were
produced by the neuron in response to four different signals
u1, . . . ,u4. Since 48 > 2L + N + 1 = 45, the MSE between
the identified filter Ph∗ (red) and the projection Ph (blue)
is −73.3 dB.

3.3.3. SISO [Filter]-[Ideal IAF] Circuit, h(t) = δ(t). Now we
consider a special case when the channel does not alter the
input signal, that is, when h(t) = δ(t), t ∈ R, is the Dirac
delta function. As explained in Remark 10, the CIM should
identify the projection of δ(t) onto H , that is, it should
identify the kernel K(t, 0). This is indeed the case as shown
in Figure 7.

3.3.4. SISO [Filter]-[Nonlinear Oscillator-ZCD] Circuit, Mul-
tiple I/O Pairs. Next we consider a SISO circuit consisting
of a channel in cascade with a nonlinear dynamical system
that has a stable limit cycle. We assume that the (positive)
output of the channel v(t) + b is multiplicatively coupled
to the dynamical system (Figure 2(b)) so that the circuit is
governed by a set of equations

dy
dt
= (v(t) + b)f

(
y
)
. (16)

A system (16) followed by a zero-crossing detector is an
example of a TEM with multiplicative coupling and has been
previously investigated in [6]. It can be shown that such
a TEM is input/output equivalent to an IAF neuron with
a threshold δ that is equal to the period of the dynamical
system on a stable limit cycle [6].

As an example, we consider a [Filter]-[van der Pol - ZCD]
TEM with the van der Pol oscillator described by a set of
equations

dy1

dt
= (u∗ h + b)

[
μ
(
y1 − 1

3
y3

1

)
− y2

]
,

dy2

dt
= (u∗ h + b)y1,

(17)

where μ is the damping coefficient [6]. We assume that y1 is
the only observable state of the oscillator and without loss of
generality we choose the zero phase of the limit cycle to be
the peak of y1.

In Figure 8, we show the results of a simulation in which
a SISO CIM was used to identify the channel. Input signals
(Figure 8(a)) were bandlimited to 50 Hz and had a period
T = 0.5 s, that is, L = 25. In the absence of an input, that
is, when u = 0, a constant bias b = 1 (Figure 8(b)) resulted a
in period of 34.7 ms on a stable limit cycle (Figure 8(e)). As
seen in Figures 8(b) and 8(c), downward/upward deviations
of v1(t) + b in response to u1 resulted in the slowing-
down/speeding-up of the oscillator. In order to identify the



Computational Intelligence and Neuroscience 9

A
m

pl
it

u
de

−1

0

1

u1(t)
u2(t)

u3(t)
u4(t)

0 0.05 0.1 0.15 0.2
Time (s)

A
m

pl
it

u
de

Zero line

−2

0

2

Bias b = 0.3
(u1 ∗ h)(t) + b

0 0.05 0.1 0.15 0.2
Time (s)

×10−3

0

5

 t

tk
(s)ds,∀k

δ = 0.005 t

tk
= δ

A
m

pl
it

u
de

(u1 ∗ h)

(s)ds(u1 ∗ h)

0 0.05 0.1 0.15 0.2
Time (s)

(t1k)12
k=1

(t2k)12
k=1

(t3k)12
k=1

(t4k)12
k=1

0 0.05 0.1 0.15 0.2
Time (s)

0 0.05 0.1 0.15

0

50

100

A
m

pl
it

u
de

−0.05
−50

h, MSE(Ph∗,h) = −48.9 dB
, MSE(P PhPh ∗, h) = −73.3 dB

Ph∗, from n = 48 spikes

Time (s)

−40

−20

0

20

supp(F K ) = [−Ω,Ω]
10

lo
g
|F

K
|

Frequency (Hz)
−100 −50 0 50 100

supp(F h) ⊃ [−Ω,Ω]

−20

−40

0

20

10
lo

g
|F

h
|

Frequency (Hz)

−100 −50 0 50 100

−40

−20

0

20

10
lo

g
|F

P
h
∗ |

supp(F Ph∗) = [−Ω,Ω]

Frequency (Hz)

−100 −50 0 50 100

(a) Input signals {ui}4
i=1. Ω = 2π · 100 rad/s, L = 20

(b) Biased filter output v1(t) + b

(c) Ideal IAF neuron response to u1

(d) Output sequences (tik)n
i

k=1. n

(e) Original filter versus the identified filter

(f) Fourier amplitude spectrum of K

(g) Fourier amplitude spectrum of h

(h) Fourier amplitude spectrum of Ph∗=∑4
i=1 n

i = 48

Figure 6: Channel identification in a SISO [Filter]-[Ideal IAF] circuit using multiple I/O pairs. (a) Input signals u1, . . . ,u4 are bandlimited
to 100 Hz. The order of the space L = 20. (b) Biased output of the filter v1(t) + b in response to the stimulus u1. (c) The filter output in (b) is
integrated by an ideal IAF neuron. (d) The neuron generated a total of 48 spikes in response to all 4 input signals. (e) The identified impulse
response Ph∗ (red) is shown together with the original filter h (dashed black) and its projection Ph (blue). The MSE between Ph∗ and Ph
is−73.3 dB. (f)–(h) Fourier amplitude spectra of K , h and Ph∗. Note that supp(F K) = [−Ω,Ω] = supp(F Ph∗) but supp(F h) ⊃ [−Ω,Ω].
In other words, Ph∗ ∈H but h /∈H .
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Figure 7: Channel identification for h(t) = δ(t). (a) Input signals u1,u2 are bandlimited to 50 Hz. The order of the space L = 10. (b) Biased
output of the filter v1(t) + b in response to the stimulus u1. (c) The filter output in (b) is integrated by an ideal IAF neuron. (d) The neuron
generated a total of 28 spikes in response to 2 input signals. (e) The identified filter Ph∗ (red) is exactly the kernel K(t, 0) for H 1

Ω,L with
Ω = 2π · 10 rad/s and L = 10. Also shown is the original filter h = δ (dashed black) and its projection Ph = δ ∗ K(·, 0) = K(·, 0) (blue).
The MSE between Ph∗ and Ph is −87.6 dB. (f)–(h) Fourier amplitude spectra of K , h and Ph∗. As before, Ph∗ ∈H but h /∈H .
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Figure 8: Channel identification in a SISO [Filter]-[van der Pol-ZCD] circuit using multiple I/O pairs. (a) Input signals u1, . . . ,u4 are
bandlimited to 50 Hz. The order of the space L = 25. (b) Biased output of the filter v1(t) + b in response to the stimulus u1. (c) Downward
and upward deviations of v1(t) + b from the bias b cause the oscillator to slow down and to speed up, respectively. The damping coefficient
μ = 20. (d) The oscillator produced a total of 56 spikes in response to 4 stimuli. Here spikes correspond to the peaks of the observable state
variable y1

1 . (e) A limit cycle of the van der Pol oscillator for μ = 20 is shown in the phase plane. In the absence of channel output, the bias
b resulted in a constant period of oscillation T(b) = 34.7 ms. The red dot denotes the zero phase (spike) of an oscillation. (f) The identified
filter Ph∗ (red) is shown together with the original filter h (dashed black) and its projection Ph (blue). The MSE between Ph∗ and Ph is
−66.6 dB. (g) Fourier amplitude spectra of h and Ph∗. As before, Ph∗ ∈H but h /∈H .
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filter projection onto a space of order L = 25 loss-free, we
used a total of n = 56 zeros at the output of the zero-crossing
detector (Figure 8(d)). This is 1 more zero than the rank
requirement of 2L + N + 1 = 55 zeros, or equivalently of
2L + 1 = 51 measurements. The MSE between the identified
filter Ph∗ (red) and the projection Ph (blue) is −66.6 dB.

3.4. Convergence of the SISO CIM Estimate. Recall, that
the original problem of interest is that of recovering the
impulse response of the filter h. The CIM lets us identify the
projection Ph of that filter onto the input space. A natural
question to ask is whether Ph converges to h and if so how
and under what conditions. We formalize this below.

Proposition 12. If
∫ T

0 |h(t)|2dt < ∞, then Ph → h in the L2

norm and almost everywhere on t ∈ [0,T] with increasing Ω,
L and fixed T .

Proof. Let T = 2πL/Ω = const. Then K(t, 0) = (1/
T)

∑L
l=−L e( jΩl/L)t = (1/T)

∑L
l=−L e( j2πl/T)t and by definition of

Ph in (6), we have

(Ph)(t) =
∫ T

0

⎡⎣ 1
T

L∑
l=−L

e( j2πl/T)(t−s)
⎤⎦h(s)ds

=
L∑

l=−L

[
1
T

∫ T

0
h(s)e−( j2πl/T)sds

]
e( j2πl/T)t

=
L∑

l=−L
ĥ(l)e( j2πl/T)t = ShL(t),

(18)

where ShL is the Lth partial sum of the Fourier series of h

and ĥ(l) is the lth Fourier coefficient. Hence the problem of
convergence of Ph to h is the same as that of the convergence
of the Fourier series of h. We thus have convergence in the
L2 norm and convergence almost everywhere follows from
Carleson’s theorem [23].

Remark 13. More generally, if
∫ T

0 |h(t)|pdt < ∞, p ∈ (1,∞),
then Ph → h in the Lp norm and almost everywhere by
Hunt’s theorem [23].

It follows from Proposition 12 that Ph approximates h
arbitrarily closely (in the L2 norm, or MSE sense), given an
appropriate choice of Ω and L. Since the number of mea-
surements needed to identify the projection Ph increases
linearly with L, a single channel identification problem leads
us to consider a countably infinite number of time encoding
problems in order to identify the impulse response of the
filter with arbitrary precision. To provide further intuition
about the relationship between h and Ph, we compare the
two in time and frequency domains for multiple values of Ω
and L in Figure 9.

4. MISO Channel Identification Machines

In this section we consider the identification of a bank of
M filters with impulse responses hm, m = 1, 2, . . . ,M. We

present a MISO CIM algorithm in Section 4.1, followed by
an example demonstrating its performance in Section 4.2.

4.1. An Identification Algorithm for MISO Channels. Con-
sider now the MISO ASDM-based circuit in Figure 2(c),
where the signal u = [u1(t),u2(t), . . . ,uM(t)]T , t ∈ [0,T],
M ∈ N, is transformed into the time sequence (tk)nk=1. This
circuit is also an instance of a TEM and (assuming z(t1) = b)
its t-transform is given by∫ tk+1

tk

M∑
m=1

(um ∗ hm)(s)ds = 〈v,φk〉 = qk, (19)

where v = ∑
m(um ∗ hm)(t), φk ∈ H with φk =

∑
l φl,kel(t)

and qk = (−1)k[2Cδ−b(tk+1− tk)]. One simple way to iden-
tify filters hm, m = 1, 2, . . . ,M, is to identify them one by
one as in Theorem 11. For instance, this can be achieved
by applying signals of the form u = [0, . . . , 0,um, 0, . . . , 0]
when identifying the filter hm. In a number of applications,
most notably in early olfaction [25], this model of system
identification cannot be applied. An alternative procedure
that allows to identify all filters at once is given below.

Theorem 14 (MISO channel identification machine). Let
{ui | ui ∈ HM}Ni=1 be a collection of N linearly-independent
vector-valued signals at the input of a MISO [Filter]-[ASDM-
ZCD] circuit with filters hm ∈ H , m = 1, . . . ,M. The filter
projections Phm can be perfectly identified from a collection of
I/O pairs {(ui,Ti)}Ni=1 as

(Phm)(t) =
L∑

l=−L
hml el(t), (20)

m =1, . . . ,M. Here the coefficients hml are given by h = Φ+q
with q = [q1, q2, . . . , qN ]T , [qi]k = qik and h = [h1

−L, . . . ,hM−L,
h1
−L+1, . . . ,hM−L+1, . . . ,h1

L, . . . ,hML ]T , provided that the matrix Φ
has rank r(Φ) =M(2L + 1). The matrix Φ is given by

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 0 · · · 0

0 Φ2 · · · 0

...
...

. . .
...

0 0 · · · ΦN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

...

UN

⎤⎥⎥⎥⎥⎥⎥⎥⎦, with

Ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ui−L 0 · · · 0

0 ui−L+1 · · · 0

...
...

. . .
...

0 0 · · · uiL

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(21)

where uil = [ui1l ,ui2l , . . . ,uiMl ], i = 1, 2, . . . ,N . Finally, the
elements of matrix Φi are given by

[
Φi

]
kl
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
tik+1 − tik

)
, l = 0,

L
√
T
(
el
(
tik+1

)
− el

(
tik
))

jlΩ
, l /= 0.

(22)
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Figure 9: Comparison between h and Ph in time and frequency domains. (a) h (red) and its projection Ph (blue) are shown for several
values of Ω and L in the time domain. Ω = 2π ·20 rad/s, 2π ·50 rad/s and 2π ·100 rad/s in the top, middle and bottom row, respectively. The
period T is fixed at T = 0.2 s in the left column and T = 0.5 s in the right column. (b) Fourier amplitude spectra of h (red) and Ph (blue) for
the same values of Ω and L as in (a). Note that the differentiating filter h clearly removes the zero-frequency (dc) coefficient corresponding
to l = 0 in all cases.

Proof. Since Phm ∈H for allm = 1, . . . ,M, it can be written
as (Phm)(t) =∑L

l=−L h
m
l el(t). Hence, for themth component

of the stimulus ui we get (uim ∗ hm)(t) = (uim ∗Phm)(t) =√
T
∑L

l=−L h
m
l u

im
l el(t) and

vi(t) =
M∑
m=1

√
T

L∑
l=−L

hml u
im
l el(t). (23)

Using the definition of φik =
∑L

l=−L φ
i
l,kel(t) and substituting

(23) into the t-transform (19), we obtain

qik =
〈
vi,φik

〉
=

M∑
m=1

L∑
l=−L

√
Thml u

im
l φ

i
l,k, (24)

or qi = ΦiUih with [qi]k = qik, [Φi]kl =
√
T · φil,k, Ui =

diag(ui−L, . . . , uiL), uil = [ui1l , . . . ,uiMl ] and h = [h1
−L, . . . ,hM−L,

h1
−L+1, . . . ,hM−L+1, . . . ,h1

L, . . . ,hML ]T . Repeating for all stimuli
ui, i = 1, . . . ,N , we obtain q = Φh with Φ as specified in
(21). This system of linear equations can be solved for h,
provided that the rank of Φ satisfies the condition r(Φ) =
M(2L + 1). To find the coefficients φil,k, we note that φil,k =
Li
k(el). Hence, the result follows.

The MIMO time-encoding interpretation of the channel
identification problem for a MISO [Filter]-[ASDM-ZCD]
circuit is shown in Figure 10(a). The block diagram of the
MISO CIM in Theorem 14 is shown in Figure 10(b).

Remark 15. From (23), we see that vi = ∑L
l=−L v

i
l el(t) with

vil =
√
T
∑M

m=1 h
m
l u

im
l . Writing this for all i = 1, . . . ,N , we

obtain vl = Ulhl, where [Ul]im = √
Tuiml , hl = [h1

l ,h
2
l , . . . ,

hMl ]T and vl = [v1
l , v2

l , . . . , vNl ]T . In order to identify the
multidimensional channel this system of equations must
have a solution for every l. A necessary condition for the
latter is that N ≥ M, that is, the number N of test signals
ui is greater than the number of signal components M.

Remark 16. The rank condition r(Φ) = M(2L + 1) can be
satisfied by increasing the number N of input signals ui.
Specifically, if on average the system is providing ν mea-
surements in a time interval t ∈ [0,T], then the minimum
number of test signals is N = M(2L + 1)/ν�.

4.2. Example: MISO [Filter]-[ASDM-ZCD] Circuit. We now
describe simulation results for identifying the channel in a
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Figure 10: MISO CIM algorithm for the [Filter]-[ASDM-ZCD] circuit. (a) Time encoding interpretation of the MISO channel identification
problem. (b) Block diagram of the MISO channel identification machine.

MISO [Filter]-[ASDM - ZCD] circuit of Figure 2(c). We use
three different filters:

h1(t) = ce−αt
[

(αt)3

3!
− (αt)5

5!

]
,

h2(t) = h1(t − β),

h3(t) = −h1(t),

(25)

with t ∈ [0, 0.1] s, c = 3 and α = 200 and β = 20 ms. All
N = 5 signals are bandlimited to 100 Hz and have a period
of T = 0.2 s, that is, the order of the space L = 20. According
to Theorem 14, the ASDM has to generate a total of at least
M(2L + 1) + N = 128 trigger times in order to identify
the projections Ph1, Ph2 and Ph3 loss-free. We use all five
triplets ui = [ui1,ui2,ui3], i = 1, . . . , 5, to produce 131 trigger
times.

A single such triplet u1 is shown in Figure 11(a). The
corresponding biased aggregate channel output v1(t)− z1(t)
is shown in Figure 11(b). Since the Schmitt trigger output
z(t) switches between +b and −b (Figure 11(d)), the signal
v1(t) − z1(t) is piece-wise continuous. Figure 11(c) shows
the integrator output. Note that when z(t) = −b, the chan-
nel output is positively biased and the integrator output∫ t
tk [v

1(s) − z(s)]ds is compared against a threshold +δ. As
soon as that threshold is reached, the Schmitt trigger output
switches to z(t) = b and the negatively-biased channel
output is compared to a threshold −δ. Passing the ASDM
output z1(t) through a zero-crossing device (Figure 11(d)),
we obtain a corresponding sequence of trigger times (t1k)22

k=1.
The set of all 131 trigger times is shown in Figure 11(e).
Three identified filters Ph1∗, Ph2∗ and Ph3∗ are plotted in
Figures 11(f)–11(h). The MSE between filter projections and

filters recovered by the algorithm in Theorem 14 is on the
order of −60 dB.

5. Generalizations

We shall briefly generalize the results presented in previous
sections in two important directions. First, we consider a
general class of signal spaces for test signals in Section 5.1.
Then we discus channel models with noisy observations in
Section 5.2.

5.1. Hilbert Spaces and RKHSs for Input Signals. Until
now we have presented channel identification results for
a particular space of input signals, namely the space of
trigonometric polynomials. The finite-dimensionality of this
space and the simplicity of the associated inner product
makes it an attractive space to work with when implementing
a SISO or a MISO CIM algorithm. However, fundamentally
the identification methodology relied on the the geometry
of the Hilbert space of test signals [5, 26]; computational
tractability was based on kernel representations in an RKHS.

Theorem 17. Let {ui | ui ∈ H(I)}Ni=1 be a collection of N
linearly independent and bounded stimuli at the input of a
[Filter]-[Asynchronous Sampler] circuit with a linear process-
ing filter h ∈ H and the t-transform

Li
k(Ph) = qik, (26)

where Li
k : H → R is a bounded linear functional mapping

Ph into a measurement qik. Then there is a set of sampling
functions {(φik)k∈Z}Ni=1, in H such that

qik =
〈
Ph,φik

〉
, (27)
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Figure 11: Channel identification in a MISO [FIlter]-[ASDM] circuit using multiple I/O pairs. (a) An input triplet signal u1 = [u11,u12,u13]
is bandlimited to 100 Hz. The order of the space L = 20. (b) Biased aggregate output of the channel v1(t)− z1(t) in response to the triplet u1.
(c) Integrator output

∫ t
tk

[v1(s)−z1(s)]ds (blue) is compared against two thresholds +δ and−δ (dashed red). Trigger times of the noninverting
Schmitt trigger are indicated by red dots. (d) The ASDM output z1(t) (blue) is passed through a zero-crossing detector to produce a sequence
of trigger times (t1k)22

k=1. (e) A total of 131 trigger times were generated by the ASDM in response to five input triplets. (f)–(h) Identified filters
Ph1∗ (red), Ph2∗ (green) and Ph3∗ (blue) are shown together with the original filters h1, h2, h3 (dashed black) and their projections Ph1,
Ph2 and Ph3 (black). The MSE achieved by the identification algorithm is less than −60 dB.
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for all k ∈ Z, i = 1, 2, . . . ,N . Furthermore, if H is an RKHS

with a kernel K(s, t), s, t ∈ I , then φik(t) = Li
k(K(·, t)). Let the

set of representation functions {(ψik)k∈Z}Ni=1, span the Hilbert
space H . Then

(Ph)(t) =
N∑
i=1

∑
k∈Z

hikψ
i
k(t). (28)

Finally, if {(φik)k∈Z}Ni=1 and {(ψik)k∈Z}Ni=1 are orthogonal basis
or frames for H , then the filter coefficients amount to h = Φ+q,
where h = [h1, h2, . . . , hN ]T with [hi]k = hik, [Φi j]lk = 〈φil ,
ψ
j
k〉 and q = [q1, q2, . . . , qN ]T with [qi]l = qik for all i, j =

1, 2, . . . ,N , and k, l ∈ Z.

Proof. By the Riesz representation theorem, since the linear
functional Li

k : H → R is bounded, there is a set of sampling
functions {(φik)k∈Z}Ni=1 in H such that Li

k(Ph) = 〈Ph,φik〉.
If H is an RKHS, a sampling function φik can be computed
using the reproducing property of the kernel K as in

φik(t) =
〈
φik,K(·, t)

〉
≡

〈
K(·, t),φik

〉
= Li

k(K(·, t)).

(29)

Finally, writing all inner products 〈φik, Ph〉 = qik yields, with
the notation above, a system of linear equations Φh = q and
the fiter coefficients amount to h = Φ+q.

5.1.1. Example: Paley-Wiener Space. As an example, we
consider the Paley-Wiener space which is closely related
to the space of trigonometric polynomials. Specifically, the
finite-dimensional space H can be thought of as a discretized
version of the infinite-dimensional Paley-Wiener space

Ξ = {
u ∈ L2(R) | supp(F u) ⊆ [−Ω,Ω]

}
(30)

in the frequency domain. An element u ∈ H has a line
spectrum at frequencies lΩ/L, l = −L,−L + 1, . . . ,L. This
spectrum becomes dense in [−Ω,Ω] as L → ∞. The space
Ξ with the inner product 〈·, ·〉 : Ξ× Ξ → R given by

〈u,w〉 =
∫
R
u(t)w(t)dt (31)

is also an RKHS with an RK [22]

K(s, t) = sin(Ω(t − s))
π(t − s) , (32)

with t, s ∈ R. Defining the projection of the filter h onto Ξ as
(Ph)(t) = ∫

R h(s)K(s, t)ds, we find that Lemma 8 still holds
with φk ∈ Ξ and we can extend Theorem 11 to the following.

Proposition 18. Let {ui | supp(F ui) = [−Ω,Ω]}Ni=1 be
a collection of N linearly independent and bounded stimuli
at the input of a [Filter]-[Ideal IAF] neural circuit with a
dendritic processing filter h ∈ H . If

∑N
j=1(b/Cδ) > Ω/π, then

(Ph)(t) can be perfectly identified from the collection of I/O
pairs {(ui,Ti)}Ni=1 as

(Ph)(t) =
N∑
i=1

∑
k∈Z

hikψ
i
k(t), (33)

where ψik(t) = K(t, tik), i = 1, 2, . . . ,N , and k ∈ Z. Finally, h =
Φ+q, where h = [h1, h2, . . . , hN ]T with [hi]k = hik, [Φi j]lk =∫ til+1

til
ui(s − t

j
k)ds and q = [q1, q2, . . . , qN ]T with [qi]l = Cδ −

b(til+1 − til) for all i, j = 1, 2, . . . ,N , and k, l ∈ Z.

Proof. As before, the spikes (tik)k∈Z in response to each test
signal ui, i = 1, 2, . . . ,N , represent distinct measurements
qik = 〈φik, Ph〉 of (Ph)(t). Thus we can think of the
{(qik)k∈Z}Ni=1’s as projections of Ph onto {(φik)k∈Z}Ni=1, where

φik(t) = Li
k(K(·, t)) = ∫ tik+1

tik

∫
R u

i(z)K(s − z, t)dz ds =∫ tik+1

tik
ui(s − t)ds. Since the signals are linearly independent

and bounded [5], it follows that, if
∑N

i=1(b/Cδ) > Ω/π or
equivalently if the number of test signals N > ΩCδ/πb, the
set of functions {(ψik)k∈Z}Ni=1 with ψik(t) = K(t, tik), is a frame
for Ξ [5, 26]. Hence

(Ph)(t) =
N∑
i=1

∑
k∈Z

hikψ
i
k(t). (34)

If the set of functions {(φik)k∈Z}Ni=1 forms a frame for Ξ,

we can find the coefficients hik, k ∈ Z, i = 1, 2, . . . ,N ,
by taking the inner product of (34) with each element of

{φil(t)}Ni=1 : 〈φil , Ph〉 = ∑
k∈Z h1

k〈φil ,ψ1
k〉 +

∑
k∈Z h2

k〈φil ,ψ2
k〉 +

· · ·+
∑

k∈Z hNk 〈φil ,ψNk 〉 ≡ qil , for i = 1, 2, . . . ,N , l ∈ Z. Letting

[Φi j]lk = 〈φil ,ψ j
k〉, we obtain

qil =
∑
k∈Z

[
Φi1

]
lk
h1
k

+
∑
k∈Z

[
Φi2

]
lk
h2
k + · · · +

∑
k∈Z

[
ΦiN

]
lk
hNk ,

(35)

for i = 1, 2, . . . ,N , l ∈ Z. Writing (35) in matrix form, we

have q = Φh with [Φi j]lk = 〈φil ,ψ j
k〉 = 〈φil(·),K(·, t jk)〉 =

φil(t
j
k) = ∫ til+1

til
ui(s− t

j
k)ds. Finally, the coefficients hik, i = 1, 2,

. . . ,N and k ∈ Z, amount to h = Φ+q.

Simulation results of a SISO CIM for a Paley-Wiener
space of test signals is shown in Figure 12 Input signals
u1, . . . ,u5 were bandlimited to 100 Hz and the circuit gen-
erated a total of 38 spikes. The MSE between the identified
filter Ph∗ (red) and the projection Ph (blue) is −71.1 dB.

5.2. Channels with Noisy Observations. In the derivations
above we implicitly assumed that the I/O system was noise-
less. In practice, noise is introduced either by the channel
or the sampler itself. Here we revisit the t-transform in (5)
and show that the analysis/methodology employed in the
previous sections can be extended within an appropriate
mathematical setting to I/O systems with noisy measure-
ments.

Recall the t-transform of an ideal IAF neuron is given by∫ tk+1

tk (u∗h)(t)dt = 〈Ph,φk〉 = qk, k = 1, 2, . . . ,n−1, where n
is the number of spikes generated by the neuron in an interval
of length T . The measurements qk were obtained by applying
a piece-wise linear operator on the channel output v = u∗h.
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Figure 12: Channel identification in a SISO [Filter]-[Ideal IAF] circuit using signals from the Paley-Wiener space Ξ. (a) In contrast to
Figure 6, input signals ui ∈ Ξ, i = 1, . . . , 5. (b) Biased output of the filter v1(t) + b in response to the stimulus u1. (c) The filter output in
(b) is integrated by an ideal IAF neuron. (d) The neuron generated a total of 38 spikes in response to all 5 input signals. (e) The identified
impulse response of the filter Ph∗ (red) is shown together with the original filter h (dashed black) and its projection Ph (blue). The MSE
between Ph∗ and Ph is −71.1 dB. (f)–(h) Fourier amplitude spectra of K , h, and Ph∗. In contrast to Figure 6, K and Ph∗ do not exhibit a
discrete (line) spectrum. Again, Ph∗ ∈ Ξ but h /∈ Ξ.
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Figure 13: Noisy channel identification in a SISO [Filter]-[Ideal IAF] circuit using multiple I/O pairs. (a) Input signals u1,u2 are bandlimited
to 25 Hz. The order of the space L = 5. (b) Biased output of the filter v1(t) + b in response to the stimulus u1. (c) Thresholds are random

with δk ∼ N (δ, (0.1δ)2). (d) The neuron produced a total of 26 spikes in response to 2 stimuli. (e) The optimal estimate P̂h
∗

(red) is shown

together with the original filter h (dashed black) and its projection Ph (blue). Note that the MSE between P̂h
∗

and Ph is −31.8 dB. (f)–(h)

Fourier amplitude spectra of K , h and P̂h
∗

. As before, supp(F K) = [−Ω,Ω] = supp(F P̂h
∗

) but supp(F h) ⊃ [−Ω,Ω]. In other words,

P̂h
∗ ∈H but h /∈H .
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If either the channel or the sampler introduce an error, we
can model it by adding a noise term εk to the t-transform
[9]:

〈Ph,φk〉 = qk + εk. (36)

Here we will assume that εk ∼ N (0, σ2), k = 1, 2, . . . ,n − 1,
are i.i.d.

In the presence of noise it is not possible to identify
the projection Ph loss-free. However, we can still identify

an estimate P̂h of Ph that is optimal for an appropriately
defined cost function. For example, we can formulate a bi-
criterion Tikhonov regularization problem

min
P̂h∈H

N∑
i=1

n−1∑
k=1

(
〈P̂h,φik〉 − qik

)2
+ λ

∥∥∥P̂h
∥∥∥2

H
, (37)

where the scalar λ > 0 provides a trade-off between the faith-

fulness of the identified filter projection P̂h to measurements

(qk)n−1
k=1 and its norm ‖P̂h‖H .

Theorem 19. Problem (37) can be solved explicitly in analyti-
cal form. The optimal solution is achieved by

(
P̂h

)
(t) =

L∑
l=−L

hlel(t), (38)

with h = (ΦHΦ + λI)−1ΦHq, Φ = [Φ1;Φ2; . . . ;ΦN ] and Φi,
i = 1, 2, . . . ,N , as defined in (13).

Proof. Since the minimizer P̂h is in H , it is of the form given
in (38). Substituting this into (37), we obtain

min
h∈C2L+1

∥∥Φh− q
∥∥2
Rn−1 + λ‖h‖2

C2L+1 , (39)

where Φ = [Φ1; Φ2; . . . ;ΦN ] with Φi, i = 1, 2, . . . ,N , as
defined in (13). This quadratic optimization problem can be
solved analytically by expressing the objective as a convex
quadratic function J(h) = hHΦHΦh − 2qHΦh + qHq +
λhHh with H denoting the conjugate transpose. A vector h
minimizes J if and only if∇J = 2(ΦHΦ + λI)h− 2ΦHq = 0,
that is, h = (ΦHΦ + λI)−1ΦHq.

Remark 20. In Section 3.2, identification of the projection
(Ph)(t) = ∑L

l=−L hlel(t) amounted to finding Ph ∈ H such
that the sum of the residuals (〈Ph,φk〉 − qk)2 was minimized
[9]. In other words, we were solving an unconstrained convex
optimization problem of the form

min
Ph∈H

N∑
i=1

n−1∑
k=1

(〈
Ph,φik

〉
− qik

)2 ⇐⇒ min
h∈C2L+1

∥∥Φh− q
∥∥2
Rn−1 ,

(40)

where h = [h−L, . . . ,hL] and Φ = [Φ1;Φ2; . . . ;ΦN ] with Φi,
i = 1, 2, . . . ,N , as defined in (13).

5.2.1. Example: Noisy SISO [Filter]-[Ideal IAF] Circuit. In
the following example, we assume that noise is added to
the measurements (qik)n−1

k=1, i = 1, 2, by the neuron and we
model that noise by introducing random thresholds that are
normally distributed with a mean δ and a standard deviation

0.1δ, that is, δk ∼ N (δ, (0.1δ)2) :
∫ tik+1

tik
(ui ∗ h)(t)dt =

Cδk−b(tik+1− tik) = [Cδ−b(tik+1− tik)] +C(δk−δ) = qik + εik,
where εik ∼ N (0, (0.1Cδ)2). Thus random thresholds result
in additive noise εik ∼ N (0, (0.1Cδ)2), i = 1, 2.

In Figure 13(a) we show two stimuli that were used
to probe the [Filter]-[Ideal IAF] circuit. Both stimuli are
bandlimited to 25 Hz and have a period of T = 0.2 s, that
is, the order of the space is L = 5. The response of the
neuron to a biased filter output v1(t) + b (Figure 13(b)) is
shown in Figure 13(c). Note the significant deviations in
thresholds δk around the mean value of δ = 0.05. Although
a significant amount of noise is introduced into the system,

we can identify an optimal estimate P̂h
∗

that is still quite
close to the true projection Ph. The MSE of identification is
−31.8 dB.

6. Conclusion

In this paper we presented a class of channel identification
problems arising in the context of communication channels
in [Filter]-[Asynchronous Sampler] circuits. Our results are
based on a key structural conditional duality result between
time decoding and channel identification. The conditional
duality result shows that given a class of test signals, the
projection of the filter onto the space of input signals can
be recovered loss-free. Moreover, the channel identification
problem can be converted into a time decoding problem.
We considered a number of channel identification problems
that arise both in communications and in neuroscience.
We presented CIM algorithms that allow one to recover
projections of both one-dimensional and multi-dimensional
filters in such problems and demonstrated their performance
through numerical simulations. Furthermore, we showed
that under natural conditions on the impulse response of
the filter, the filter projection converges to the original
filter almost everywhere and in the mean-squared sense (L2

norm), with increasing bandwidth and order of the space.
Thus in order to identify the impulse response of the filter
with arbitrary precision, we are lead to consider a countably
infinite number of time encoding problems. Finally, we
generalized our results to a large class of test signal spaces
and to channel models with noisy observations.
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