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Topological protection versus degree of
entanglement of two-photon light in photonic
topological insulators
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Kurt Busch1,2, Miguel A. Bandres3✉ & Armando Perez-Leija 1,2✉

Topological insulators combine insulating properties in the bulk with scattering-free transport

along edges, supporting dissipationless unidirectional energy and information flow even in the

presence of defects and disorder. The feasibility of engineering quantum Hamiltonians with

photonic tools, combined with the availability of entangled photons, raises the intriguing

possibility of employing topologically protected entangled states in optical quantum com-

puting and information processing. However, while two-photon states built as a product of

two topologically protected single-photon states inherit full protection from their single-

photon “parents”, a high degree of non-separability may lead to rapid deterioration of the

two-photon states after propagation through disorder. In this work, we identify physical

mechanisms which contribute to the vulnerability of entangled states in topological photonic

lattices. Further, we show that in order to maximize entanglement without sacrificing topo-

logical protection, the joint spectral correlation map of two-photon states must fit inside a

well-defined topological window of protection.
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The prospect of generating topologically protected
entangled states of several photons is a highly intriguing
proposition1–3. Specifically, topological protection can

enable robust transport of quantum information across dis-
ordered photonic structures without degradation4,5, just as effi-
ciently as for single-particle wavepackets6–10.

In recent years, we have witnessed several experimental
demonstrations of topological protection at the single-photon level
in integrated one-dimensional lattice systems. Notably, Wang and
co-workers11 showed that the fundamental quantum features of
spatially entangled biphoton-states can be protected against dis-
order in the so-called Su-Schrieffer-Heeger (SSH) topological
lattice. Interestingly, SSH lattices turned out to be equally effective
in protecting polarization-entangled photon pairs12. Another
important ingredient was provided by Tambasco et al.13 showing
that Hong-Ou-Mandel two-photon interference of topological
edge–modes is feasible, by implementing a topological beams-
plitter in a judiciously engineered time-dependent Harper-model.

Concurrently, on the theory front several ideas have been
suggested to investigate topological two-photon effects in
linear14,15 and nonlinear16 lattice systems. In this regard, an
intriguing proposition was recently put forward17, where the
Bose-Hubbard model, which is topologically trivial for single
particles, becomes topologically nontrivial for two interacting
photons. That is, particle interactions have a dramatic impact on
topological properties, not only modifying the topology of the
spectra but also creating a topological order in otherwise topo-
logically trivial systems.

In order to maximize the potential of topological photonic
networks for transferring quantum information, it is indis-
pensable to have a considerable number of edge modes at our
disposal. One possibility is to use two-dimensional topological
systems, which intrinsically support a multitude of topological
edge-states18–20.

In two-dimensional photonic topologial insulators, single-
particle edge-states reside in the gap existing between the energy
bands supporting the bulk states21–23. Thus, breaking the topo-
logical protection requires disorder with sufficient strength to
close the bandgap. For states describing two indistinguishable
photons, the same bandgap is fundamentally lacking. The reason
is because the propagation eigenvalues λð2Þ12 for two-photon
eigenstates in a photonic system are given by the sum of the
eigenvalues λ1, λ2 corresponding to the constituent individual
photons, λð2Þ12 ¼ λ1 þ λ2. This implies that we can keep λð2Þ12 con-
stant while increasing λ1 and simultaneously decreasing λ2, or
vice versa. In this way, we can combine two single-photon bulk
states, one from the lower and one from the upper band, to create
a biphoton bulk–bulk state whose energy lies inside the single-
particle bandgap. This fundamental additive property of the
single-particle eigenvalues removes the bandgap and leads to
massive degeneracies of the edge–edge, edge–bulk, and bulk–bulk
two-photon states. Hence, considering the lack of the topological
bandgap for two-photon systems, it is not clear whether topolo-
gical protection will be automatically granted to two-particle
states provided single particles are topologically protected in the
same system.

In solids, the degeneracies described above lead to the decay of
two-electron edge states when electron–electron correlations are
substantial24–26. This decay mechanism is reminiscent of auto-
ionization, where electron–electron correlations lead to energy
exchange between the two particles, coupling two bound elec-
tronic excitations to an energy-degenerate bound-continuum
two-electron state27,28.

Still, photonic systems are fundamentally different from solids,
as the two photons do not readily interact with each other29.

Consequently, the evolution operator for two-photon states, U(2)

(z), breaks down into the product of two propagators for indi-
vidual single-photon states, U(2)(z)=U(z)⊗U(z)30. Thus, a
natural question to ask is whether such a factorization and the
absence of bangap will prevent decoherence and dissipation of
non-factorizable two-photon edge-states into the bulk?

In this work, we analyze possible mechanisms of dissipation of
two-photon edge states into the bulk of two different topological
insulator system, the Haldane lattice model and an aperiodic
lattice corresponding to the quantum Hall effect. Our results
show that the key to topological protection is to minimize the
disorder-induced overlap of the initial two-photon (joint) spec-
trum with the edge–bulk and bulk–bulk spectral regions.

Results
Theoretical approach. In lattice systems, static disorder can be
introduced in either the site energies—termed diagonal disorder31

—or in the coupling coefficients—so-called off-diagonal
disorder32. In either case, static disorder is represented by a

single-particle operator V̂
ð1Þ
. Since such perturbation is time-

independent, energy conserving resonant coupling into the bulk
is absent within first-order perturbation theory—the single-

particle transition induced by V̂
ð1Þ

does not preserve energy. The
process that can resonantly couple a two-photon edge–edge state
to a bulk–bulk, or to a bulk–edge, state would require a correlated
change of states for both photons and it might arise within the

second-order corrections in V̂
ð1Þ
.

To see this, we examine the second-order transition matrix
elements between an initial two-photon edge–edge state ij i ¼
ni;mij i and a final edge–bulk, or bulk–bulk, state fj i ¼ nf ;mfj i

V ð2Þ
i;f ¼ ∑

j0

V ð1Þ
f j0 V

ð1Þ
j0 i

λð2Þj0 � λð2Þi

; ð1Þ

where j0j i ¼ n0;m0j i labels intermediate virtual states and

λð2Þj0 ¼ λn0 þ λm0 . The single-particle nature of V̂
ð1Þ

ensures that
only two terms corresponding to the two possible time-orderings
of the two single-particle transitions are left in the sum

V ð2Þ
i;f ¼ V ð1Þ

nf ;ni
V ð1Þ

mf ;mi

1
λnf � λni

þ 1
λmf

� λmi

" #
: ð2Þ

The stationary nature of the disorder dictates that real transitions
from the edge–edge states can occur only if the initial eigenvalue

λð2Þi ¼ λni þ λmi
is equal to the final one λð2Þf ¼ λnf þ λmf

. Therefore,

λnf � λni ¼ �ðλmf
� λmi

Þ, and the two terms in V ð2Þ
i;f exactly cancel

each other, V ð2Þ
i;f ¼ 0. That is, two-particle dissipation from each

product state is zero, and the same is true for any entangled two-
particle state ψ(2) represented as a quantum superposition of two

possible distinguishable configurations ψð2Þ
i , e.g., ψð2Þ ¼ ψð2Þ

1 þ ψð2Þ
2 .

Physically, this destructive interference is a direct outcome of the
indistinguishability of the photons, which ensures that the two-
particle eigenvalue is a sum of the two single-particle eigenvalues, and
that the two-particle propagator is a product of the single-particle
counterparts.

In contrast to dissipation, the situation with dephasing can be
different: while each constituent state in an entangled super-
position can be protected against disorder1, the overall super-
position is, in general, not. To be precise, motion through
different disordered regions may lead to disorder-induced
random phase shifts between the states destroying the entangle-
ment. To avoid this fate, all states in the superposition must travel
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across the same spatial region of the photonic structure, such that
they are affected by disorder in the exact same manner33. These
effects have been explored for spatial path-entangled states1, and
for states built from an entangled superposition of an initial non-

stationary state ψð2Þ
1 with its time-delayed replica ψð2Þ

1 ðτÞ, that is,
entangled states in the time-domain2. In these two cases,
however, the entanglement of the states can be related to the
entanglement of symmetrized wavefunction of identical
particles34. Consequently, the states exhibit the lowest possible
amount of entanglement, as indicated by the corresponding
Schmidt numbers SN= 2. Throughout this work we use the
Schmidt number to quantify the amount of entanglement: SN= 1
denotes complete separability while SN≫ 1 corresponds to high
entanglement35.

A more appealing type of highly entangled two-photon states
are multimode optical Gaussian states in which both photons are
most likely to be found inhabiting any waveguide, within an
excitation window, simultaneously36. The importance of such
states is based on the fact that any phase difference arising among
the paths becomes enhanced by a factor of two in comparison
with single photon states37. Naturally, the enhanced phase
sensitivity of such highly entangled two-photon states manifests
as faster diffraction of the associated wavepackets propagating in
any photonic system, periodic and disordered38. Therefore, it is
not clear to what extent topological protection will persist for
these types of highly entangled states.

Propagation of entangled two-photon states in disordered
topological lattices. In what follows we analyze the impact of
disorder onto a continuum of two-photon states that extend from
the correlated to the anti-correlated limits, passing through a
completely separable state. For our analysis we consider two
topological lattices, one periodic and one aperiodic. In the peri-
odic case we consider the Haldane model39, and for the aperiodic
we use a square lattice whose single-particle dynamics corre-
sponds to the quantum Hall effect6,40 (information, S. Supporting
material). The results for the Haldane model are presented here,
while the quantum Hall effect lattice is discussed in the Supple-
mentary Note 5.

In optics, a first-order approximation of the Haldane model
can be implemented using a honeycomb lattice composed of
helical waveguides as illustrated in Fig. 1a, see pioneering work41.
In this system, every waveguide has a nearest-neighbor coupling
κ1 and a complex second-nearest-neighbor coupling κ2 or κ�2, see
Fig. 1b. At the single-photon level, the Haldane lattice is governed
by the Hamiltonian1

Ĥ ¼ ∑
i
βiâ

y
i âi þ κ1 ∑hi;ji

âyi âj þ âyj âi
� �

þ iκ2 ∑
hhi;jii

âyi âj � âyj âi
� �

;

ð3Þ

where βi represents the propagation constant of the i-th
waveguide and the corresponding optical mode is represented
by the creation (annihilation) operator, âyi (âi). Notice, in a
disorder-free lattice βi= β. The symbols 〈〉 and 〈〈〉〉 indicate
summation over nearest and next-nearest-neighbor sites, respec-
tively. The lattice used in our simulations is a ribbon with Ny= 90
hexagons in the y-direction and Nx= 10 hexagons in x-direction,
Fig. 1c. We normalized the units in terms of κ1 throughout this
work, and set κ2= iκ1/5.

For pure states of two indistinguishable noninteracting
particles the Hamiltonian is H2=H⊗ I+ I⊗H, where H is
the single-particle Hamiltonian and I is the identity operator42.
The two-photon eigenstates are given by the symmetric tensor-

product combinations of the single-photon eigenstates

jϕð2Þm;ni ¼
ϕm
�� �� ϕn

�� � () m ¼ n;
1ffiffi
2

p ϕm
�� �� ϕn

�� �þ ϕn
�� �� ϕm

�� �� � () m≠ n:

(
ð4Þ

As alluded to above, the two-photon eigenvalues are the sums of
the single-photon ones, λð2Þm;n ¼ λm þ λn.

In the absence of disorder, the eigenvalue spectrum for single-
photon states in a finite lattice exhibits topological edge states in
the bandgap43, Fig. 1d. In contrast, for two indistinguishable
photons, the spectrum does not have a bandgap: the edge–edge
states can have the same eigenvalues λð2Þn;m ¼ λn þ λm as those
lying in the bulk–bulk region, Fig. 1e.

To include disorder, we separate the lattice shown in Fig. 1c
into three regions1. The left and right parts of the system are
disorder-free, while its middle part exhibits diagonal disorder31,
that is, random modifications of the on-site refractive index taken
from a normal distribution with zero mean and variance σ= 1.
Importantly, taking σ= 1 ensures that the disorder strength does
not destroy the topological protection for single photons, since σ
= 1 corresponds to half the size of the topological bandgap. The
two-photon eigenspectrum in the presence of disorder is shown
in Fig. 1f.

We now send trial two-photon wavepackets into the system.
They are built from single-photon edge states and vary
continuously from an unentangled product state, with Schmidt
number SN= 1, to highly entangled two-photon states, SN≫
144,45, with the two photons either correlated or anti-correlated in
space46.

To construct these states, we begin with protected single-

photon states as a template, j~ψð1Þ
σ i ¼ ∑Me

j¼1 ð�1Þje�
x0�jð Þ2
2σ2 jj i, where

jj i describes a photon initialized in waveguide j, Me= 20 is the
selected range of waveguides in the upper-left edge of our system,
and x0= (Me+ 1)/2= 10.5 is the center of this range. These
single-photon wavepackets travel through both clean and
disordered lattice without scattering to the bulk or back
scattering. Importantly, the alternating sign (−1)j in the
amplitude ensures that the wavepacket has proper momentum
and resides in the single-photon edge subspace.

Next, we construct our trial two-photon states as follows

j~ψð2Þ
σc;σa

i ¼ ∑
Me

j;k¼1
ψj;k j; kj i ¼ ∑

Me

j;k¼1
ð�1Þjþke

�ðj�kÞ2
4σ2a

� x0�ðjþkÞ=2ð Þ2
σ2c j; kj i:

ð5Þ
Here, j; kj i represents the state where a photon starts at
waveguide j and its twin at k. The spatial two-photon correlations
are controlled by the parameters σc and σa. For σc≫ σa we have a
spatially correlated state, in which both photons most probably
enter into the same waveguide simultaneously38. For σa≫ σc we
obtain a spatially anti-correlated state, in which the two photons
enter at two waveguides symmetrically lying on opposite sides of
the window covered by the wavefunction46.

Finally, we must ensure that the initial wavepackets only
include edge states. To this end, we project our state onto the two-
photon eigenstates jϕð2Þm;ni of the system and then remove the
components belonging to the subspaces B � E and B � B,
keeping only states that belong to the edge–edge subspace

jψð2Þ
σc;σa

i ¼ 1
A

∑
E�E

m;n
∑
Me

j;k¼1
ψj;khϕð2Þm;njj; kijϕð2Þm;ni; ð6Þ

where A is the normalization constant. It is worth noting that
two-photon states described by Eq. (6) are a lattice adoption of
Gaussian two-mode squeezed states47, which are a commonplace
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choice in quantum optical experiments. The corresponding

spatial Pj;k ¼ jhj; kjψð2Þ
σc;σaij2 and spectral Sm;n ¼ jhϕð2Þm;njψð2Þ

σc;σaij2
correlation maps of our initial states, Eq. (6), are shown in Fig. 2.
Tuning σa and σc, one can go from the spatially correlated state
jψð2Þ

c i, Fig. 2a, to the product state jψð2Þ
p i, Fig. 2b, and to the

spatially anti-correlated state jψð2Þ
a i, Fig. 2c. Note the relation

between spatial and spectral distributions: the state jψð2Þ
c i, which

is strongly correlated in space, Fig. 2a, is strongly anti-correlated
spectrally Fig. 2d, and vice versa for jψð2Þ

a i. Irrespective of their
correlation maps, all these states occupy the same spatial area on
the upper-left edge of the lattice, see Supplementary Note 1. The
Schmidt number for jψð2Þ

c;a i is SN= 13, while for jψð2Þ
p i we have SN

= 1. We now explore the robustness of these two-photon states as
they traverse the disordered lattice. We begin with the product
state jψð2Þ

p i. To characterize the impact of disorder, we compute

the fidelity30 that is given as the overlap of the state jψð2Þ
p ðzf Þi

after it has traversed the lattice with the reference state jψð2Þ
p ðzmÞi

obtained after propagating the same state jψð2Þ
p i in a disorder-free

lattice, see Supplementary Note 2. The two wavepackets are taken

at slightly different propagation distances zf and zm to account for
the somewhat different travel distance in a disordered lattice. We
find the fidelity Fp ¼ jhψð2Þ

p ðzf Þjψð2Þ
p ðzmÞij2 ¼ 0:98, confirming

that both the single-photon states and their product are immune
to disorder. The edge–mode content of the evolved state is almost
100%, Ep ¼ ∑E�E

n;m jhϕð2Þn;mjψð2Þ
p ðzf Þij2 ¼ 0:9934. The product state

traverses the lattice without distortion, see Supplementary
Movie M1, in spite of the degeneracy between the two-photon
edge–edge and bulk–bulk states.

Figure 3a, b visualize this outcome by showing the single-
photon spatial distribution and two-photon spectral correlation
maps for the two-photon product state jψð2Þ

p i traversing
the disordered lattice. The spatial single-photon probability
density R(n) is given by the diagonal elements ρð1Þnn of the reduced
single-photon density matrix ρ̂ð1Þ, RðnÞ � nh jρ̂ð1Þ nj i � ρð1Þnn

48.
The reduced single-photon density matrix ρ̂ð1Þ is obtained from
the two-photon density matrix ρ̂ð2Þ in the usual way,
ρ̂ð1Þ ¼ ∑M

m mh jρ̂ð2Þ mj i30. As expected, the spectral composition
of the wavepacket remains undisturbed and the wavepacket

Fig. 1 The Haldane photonic lattice. a Photonic implementation of the Haldane system using a honeycomb lattice of helical waveguides. b Elementary
hexagonal cell of the Haldane system, with real-valued nearest-neighbor coupling (blue arrows) κ1= 1 and imaginary next-nearest-neighbor coupling (red
arrows); κ2= iκ1/5 along the arrow and− iκ1/5 in the opposite direction. c Pictorial view of the finite lattice used in our numerical analysis. d Single-photon
spectrum formed by eigenvalues λn. In e and f we show the two-photon eigenspectra without and with disorder, respectively. Colors encode the two-
photon eigenvalue λð2Þn;m ¼ λn þ λm . For better appreciation we have separated the spectrum into the subspaces edge–edge E � Eð Þ, bulk–edge B � Eð Þ, and
bulk–bulk B � Bð Þ.
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propagates through the disordered region without leaving
the edge.

We now turn our attention to entangled two-photon states.
Figure 3c, d depict R(n) and the spectral correlation maps for the

two-photon state jψð2Þ
c i traversing the “clean” lattice, and Fig. 3e, f

show the same for the disordered lattice. While in the absence of
disorder, R(n) stays on the edge and the highly correlated two-
photon spectral distribution is unchanged (panels c, d), the

Fig. 2 Initial two-photon states. a, b, c Spatial correlation maps Pn,m over the 91 sites of the upper edge of the lattice. d, e, f Spectral correlation maps Sn,m
in the E � E-subspace. a, d correspond to the strongly spatially correlated state ψð2Þ

c

�� �
, ðσc; σaÞ ¼ ð

ffiffiffiffiffiffi
40

p
;0:01Þ, b, e stand for the product state jψð2Þ

p i,
ðσc; σaÞ ¼ ð

ffiffiffiffiffiffi
40

p
;

ffiffiffiffiffiffi
40

p
Þ, and c, f for the strongly spatially anti-correlated state ψð2Þ

a

�� �
, ðσc; σaÞ ¼ ð0:01;

ffiffiffiffiffiffi
40

p
Þ.

Fig. 3 Propagation of two-photon edge states. a Probability density distribution for the reduced single-photon state and b the spectral correlation map for
the product state jψð2Þ

p i, which survives disorder. c, d The same for the spatially correlated entangled state ψð2Þ
c

�� �
propagating in the clean lattice, while

e, f show the impact of disorder on this highly entangled state. In all cases the rightmost panels show a magnification of the edge–edge subspace. Dashed
lines in a, c, e indicate the disordered region.
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disorder strongly affects these states. Figure 3e shows strong
dissipation into the bulk as soon as the entangled wavepacket
encounters the disordered region. The spectral distribution
spreads all over the system, with both bulk–bulk and bulk–edge
states becoming occupied, Fig. 3f. A similar result is obtained for
jψð2Þ

a i, except that the cross-like shape observed in Fig. 3f is
flipped towards the opposite diagonal, Supplementary Note 3.

To quantify the probability fraction of the states scattered into
the bulk we compute the edge–mode content. For jψð2Þ

c i the
edge–mode content after traversing the disordered lattice is Ec=
0.4524, while for jψð2Þ

a i it gives Ea= 0.4453. Thus, >50% of both
types of states is scattered into the bulk. The part of the states that
survives the disordered region and stays on the edge remains
strongly correlated in the spectral domain: the edge–edge part of
its spectral content preserves the initial shape, see the right
column in Fig. 3f. However, the spectral phase of the state is
scrambled. To illustrate this point, we have renormalized the
transmitted edge part of the two-photon wavepacket to unity and
computed its fidelity FN by overlapping it with the reference two-
photon wavepacket from a clean system, yielding FN= 0.405.

The topological window of protection. We find that the conduit
for dissipation of the two-photon edge–edge states is always
provided by the edge–bulk states, which are degenerate in energy
with the edge–edge states. Once disorder induces transitions
into the edge–bulk states, they further transfer the amplitudes
into the energy-degenerate bulk–bulk states, see Supplementary
Movies M2 and M3. Hence, the key to topological protection is to
minimize the disorder-induced overlap of the initial joint spec-
trum with the edge–bulk and bulk–bulk spectral regions, keeping
it as close to the center as possible. That is, there is a topological
protection window for two-photon states that offers the key
guideline for designing robust two-photon states. To infer the
protection window, we sent a probe product state with σc= σa=
0.01 through an ensemble of 1000 disordered lattices. This initial
state is very well localized onto the edge region in real space,
ensuring that all components within the state travel along very
close paths. The spectral content of the state before and after the
disorder is shown in in Fig. 4a, b. The components that have
survived the impact of disorder are within the marked window—
the topological window of protection. The joint spectral correla-
tion map of any entangled state with varying σa and σc must fit
inside this protection window to be robust against disorder.

In practice, to increase the amount of entanglement we need to
increase σa σcð Þ while decreasing σc σað Þ, and by doing so the joint
spectrum unavoidably tends to fall outside the protection
window. However, we can always find two-photon states with a
considerable amount of entanglement, which are protected. To
elucidate this we have scanned the edge-mode content of the two-
photon states after propagation through the disordered region as
a function of σa and σc. In Fig. 4c, d we show the contour maps of
the edge–mode content as we vary σa and σc. Figure 4c shows the
edge–mode content of the two-photon states after propagation
through the disordered region, with the diagonal corresponding
to the product states, that is, states with σa= σc. The states with
the highest degree of entanglement correspond to very different
σa and σc and, therefore, they are found in the top left and lower
right corners in Fig. 4c. In general, highly entangled states lay on
the top left σa � σcð Þ and bottom right σa � σcð Þ corners and
the edge–mode content quickly drops below 0.5. The reason is
because as one increases σa, or σc, the tails of the spectral
correlation ellipse fall outside of the protection window and, as a
result, the states scatter into the bulk. Similarly, uncorrelated
states may experience the same fate when they are initially
confined into a small spatial region, which is the case for states

with σa ¼ σc 2 0; 2:5ð Þ. Figure 4d shows the key figure of merit,
E ⋅ SN, the product of the Schmidt number SN and the edge–mode
content E. The bright yellow islands indicate the best two-photon
states, which combine robustness against disorder with high
degree of entanglement. Importantly, the spectral correlation
ellipse of these states always fits into the protection window
shown in Fig. 4b. It is worth mentioning the features exhibited by
the contour maps are generic as similar structures are obtained
for disordered Haldane lattices with different dimensions, see
Supplementary Note 4. This demonstrates that, in principle, one
can create states with high Schmidt number and edge–mode
content close to unity.

As evidence that our results are generic, in the sense that they
apply to other two-dimensional topological systems, in the
Supplementary Note 5 we have performed a similar analysis for
an aperiodic topological lattice system6,40. We have found that
the contour map of the edge-mode content E is not symmetric,
implying that the correlated states are slightly less protected than
their anti-correlated mirror-images. Nevertheless, we obtain the
same qualitative features as in the Haldane model.

Discussion
Before concluding, we would like to outline possible ways to
generate the initial states and address the potential challenges
for experimental observations of these effects. The initially
highly correlated states can be implemented using standard
spontaneous-parametric-down-conversion nonlinear crystals to
generate photon pairs that are coupled to the edge of the lattice
using a positive achromatic doublet lens as demonstrated in38.
Anti-correlated photon pairs can be generated by applying the
fractional Fourier transform to the highly correlated states49. The
Haldane lattice has been previously demonstrated using femto-
second laser written waveguides as reported in41. Hence, the
challenges are reduced to optimizing the fabrication for minimal
scattering, absorption and bending losses associated with the
helical waveguides.

These results lead to the following conclusions. Two issues
have to be considered when constructing two-photon entangled
edge states in topological systems: their dissipation into the bulk
and the relative dephasing between the different components
comprising the entangled state. Regarding dissipation, the two-
photon edge states can be protected just as well as the single-
photon edge states. Further, phase scrambling can also be mini-
mized if the different components of the entangled state travel
along the same path in the edge region. Both aims are achieved by
keeping the spectral correlation map of the two-photon state in
the center of the window of protection. Thus, attempts to increase
entanglement must be balanced against keeping the spectral
correlation maps of the two-photon states within the narrow
spectral region at the very center of the single-photon gap—the
topological window of protection. This limits the degree of
entanglement one can safely encode in practice, but presents a
clear strategy for creating useful states with high degree of
entanglement and robustness.

Looking forward, one could take advantage of the static nature
of disorder to circumvent entanglement-induced dissipation into
the bulk. While the disorder-induced relative phase between the
different product-state components of the entangled wavepacket
may appear random due to the random nature of disorder, for
static disorder scrambling and dissipation are nevertheless fixed.
This opens an opportunity to find the windows of protection as
we have done in the cases considered here, and generate robust
wavepackets tailored to the particular disordered system at hand.
From a practical perspective, the stability of entangled states up to
relatively high Schmidt numbers offers practical guidelines for
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generating useful entangled edge states in topological photonic
systems. Finally, our work may open the door to study topological
protection of highly entangled multiphoton non-Gaussian states
that fulfill the protection conditions.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The Matlab programs used to simulate the systems discussed in the paper are available as
supplementary software.
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