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Abstract

Computing the genetic relationship between two humans is important to studies in genetics, genomics, genealogy, and
forensics. Relationship algorithms may be sensitive to noise, such as that arising from sequencing errors or imperfect
reference genomes. We developed an algorithm for estimation of genetic relationship by averaged blocks (GRAB) that is
designed for whole-genome sequencing (WGS) data. GRAB segments the genome into blocks, calculates the fraction of
blocks sharing identity, and then uses a classification tree to infer 1st- to 5th- degree relationships and unrelated individuals.
We evaluated GRAB on simulated and real sequenced families, and compared it with other software. GRAB achieves similar
performance, and does not require knowledge of population background or phasing. GRAB can be used in workflows for
identifying unreported relationships, validating reported relationships in family-based studies, and detection of sample-
tracking errors or duplicate inclusion. The software is available at familygenomics.systemsbiology.net/grab.
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Introduction

Two individuals are related if they share a recent common

ancestor. Knowledge of genetic relationships is crucial to genetic

studies — including linkage analysis and heritability estimation.

Related individuals needed to be removed in population-based

association study to avoid bias [1,2]. For example, software

PRIMUS was developed to find the maximum set of unrelated

individuals given a user-defined threshold of relatedness [3].

Genetic relationships derived from reported pedigree structures

may be incorrect due to unknown relationships between founders,

non-paternity, adoption or sample labeling errors [4,5]. Therefore

relationships need to be validated using genotype data.

Many existing methods estimate relationships from identical-by-

state (IBS) or identical-by-descent (IBD) estimates between two

individuals [6]. PLINK calculates IBS probability with a hidden

Markov model [7]. KING provides a quick method for estimating

a kinship coefficient which correlates with the degree of

relationship [8]. SNPduo visualizes IBS patterns from meiotic

crossover points in siblings to characterize relationships between

individuals [9]. As relationship distances increase, variances

increase in these metrics, so simple algorithms that rely on

genome-wide estimates them are best suited for estimating close

relationships. A more sophisticated approach, ERSA [10],

employs a maximum-likelihood method to integrate more

information from IBD segments reported from an input IBD

algorithm. ERSA extends the range of relationship estimation to

up to thirteenth degree relatives. The performance of ERSA relies

on the accuracy of IBD algorithms. IBD algorithms improve with

phased data, knowledge of genetic distances between variants (e.g.,

in centimorgans), and population allele frequencies.

Here we present GRAB, an algorithm for accurate estimation of

genetic relationships by focusing on the distribution of IBS in

segmented windows. GRAB works well with whole-genome

sequencing (WGS) because it averages local noise across short

blocks with little loss in measuring true signal, which is derived

from correctly called ancestral variants aligned to an accurate

reference genome. In essence, it works much like a ‘‘low pass’’

filter in electronics. Genome-wide metrics such as average IBS are

not able to fully take advantage of this true signal. We tested

GRAB on real and simulated families with various levels of

sequencing error, and found it can accurate predict 1st-degree to

5th-degree relationship and robust to sequencing error.

Methods

Design
GRAB was designed both to address new aspects of WGS data

as well as for simplicity and computational speed. WGS data tends

to be more noisy than classical genotyping array data, in part

because classical arrays were designed based on a carefully chosen

set of positions that passed numerous rounds of quality control

including demonstration of Hardy-Weinberg equilibrium in

particular populations. GRAB addresses noise in WGS by

averaging signal over blocks of positions. To enable averaging

the genotype signal across sufficient markers, GRAB segments

genomes into non-overlapping windows of 1 Mb (for WGS) or

2 Mb (for genotyping panels). These intervals were chosen

empirically to provide a reasonable balance of sensitivity and

specificity across a range of datasets. For WGS, more than 2700

windows were obtained that contained at least one single
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nucleotide variant (SNV). SNVs within a window are compared

between pairs of individuals and classified into three groups: IBS2,

when the genotypes of the two individuals are identical; IBS1,

when they share exactly one allele; and IBS0, when there are no

alleles in common. The fractions of SNVs in each IBS group are

calculated for each window (called P0 for the IBS0 group, P1 for

the IBS1 group, and P2 for the IBS2 group).

After computing P0, P1, and P2 for each window, GRAB

classifies that window either as an identity window (IW) or not

based on P0 (less than P0cutoff). P0cutoff is chosen as a function of

the parameter ‘sequencing error’ (SE). Sequencing error can be

determined by replicate sequencing of identical sequences [11]; it

is known precisely in simulated data. We explored values of P0cutoff

between 1-(1-SE)4 and 1-(1-SE)2. We set P0cutoff to (0, 0.004, 0.01,

0.015) when SE is (0, 0.001, 0.005, 0.01) in simulated data.

One simulated family (Figure 1) was used to train the model and

investigate the effect of sequencing error. Programs for simulating

WGS families are available at (github.com/caballero/FakeFam-

ily). The distribution of P2 is very different between pairs of

siblings and other pairs of individuals. The sibling-pair distribution

has a large component at high P2 (Figure 2A), indicating genomic

segments that were inherited identically from both parents. We

include the twin relationship or comparison of self with self in this

group. For all other relationships such a large P2 component is not

observed, GRAB extracts relationship information from the

fraction of IWs. For parent-offspring pairs this fraction is

approximately 1 (almost all genomic windows are IW), and it

decreases with more distant relationships (Figure 2B). More distant

relationships have fewer and less contiguous IWs (Figure 2C,D).

The pattern of the number of IWs is similar for varying values of

SE and P0cutoff, enabling use of a simple classification tree across a

diverse range of parameters, including the number and length of

contiguous IWs.

GRAB employs such a classification tree to estimate relationship

(Figure 3). Degree of relationship is defined as the combined

number of generations separating individuals from their ancestors

[10]. Two metrics defined from the distribution of P2 are used to

predict identical-twin and full-sibling relationships: the number of

windows with P2 within (0.8, 1] and a logic value indicating

whether the peak between (0.8, 1] is higher than the peak between

(0, 0.8]. Three additional metrics used in the classification tree are

the number of IWs, the percentage, and maximal length of

contiguous IWs. They were used to estimate unrelated individuals

and 1st-degree to 5th-degree relationship.

Implementation
GRAB is stand-alone Perl software suitable for integration into

high-throughput workflows. It accepts several input formats:

PED+MAP or TPED [7], Genome Variation Format (GVF)

[12], Variant Call Format (VCF) [13] and the ‘varfile’ format of

Complete Genomics, Inc. (CGI). GRAB is available at famil-

ygenomics.systemsbiology.net/grab.

Comparison with other algorithms
Whole-genome sequenced families were used as a test dataset.

Input was filtered to include only full-called biallelic SNVs.

PLINK [7] and KING [8] take PED+MAP file as input, and

output the percentage of IBS (KING also estimate kingship

coefficient). ERSA [10] takes IBD segments as input and uses a

likelihood model to estimate relationship. Two IBD detection

methods are used for ERSA: GERMLINE [14] and ISCA [15].

GERMLINE can be used on both unphased and phased data. It

performs better on phased genotype than unphased data.

However, phasing needs ancestor information, a large number

of unrelated control individuals and longer running time.

Results

Software validation
To test the performance of GRAB we analyzed four datasets: 1)

182 individuals from 28 families that are whole-genome sequenced

by CGI (,3.5 million SNVs in each individual), 2) one family with

172 members genotyped by Affymetrix (Array version 6.0; ,0.8

million nominal SNVs), 3) five WGS-simulated families with up to

15th-degree relationships, and 4) the same five simulated families

restricted to Affymetrix array positions.

Most of the estimated genetic relationships by GRAB were

consistent with the reported relationships in real families. Manual

verification revealed that for all the discordant 1st-degree

relationships, the GRAB predictions were confirmed to be correct:

the discrepancies were caused by incorrect labeling of samples or

reported pedigree structure. Such errors may be common when

complex pedigrees are studied. Estimating genetic relationships is

a very important quality control step in family genome studies.

Before further measuring the performance of GRAB and other

software, we corrected the reported pedigree structures to

eliminate these discrepancies.

GRAB obtained exact predictions for 97% of 2nd-degree, 93%

of 3rd-degree, and 97% of 4th-degree relationships in real WGS

families (Table 1). For genotyping array data, GRAB’s relationship

accuracy is slightly lower than on WGS data; 67% of 5th-degree

relationships were exactly predicted (Table 1). When not exact, the

relationship was usually predicted to within one degree of the

correct value. For example, 99% of 5th-degree relationships were

predicted as fourth degree, fifth degree, or ‘related, more distance’.

GRAB’s relationship accuracy was better on real families than on

simulated families (Table 2). All 1st-degree pairs were exactly

predicted in simulated families, including distinctions between full-

sibling and parent-offspring relationships. GRAB obtained 100%

accuracy for unrelated individuals, 95% accuracy for 2nd-degree,

and ,60% for 5th-degree relationships (Table 2). Even when

increasing the per-SNV error rate to 0.01, GRAB could achieve

similar performance by adjusting parameter ‘P0cutoff’ accordingly.

GRAB trades distant-relationship sensitivity for close-relationship

accuracy. This trade is effectuated by employing a long segmen-

tation block length that is robust to sequencing noise. GRAB

successfully estimates up to 5th-degree relationships and classifies

more distant relationships as unrelated (‘UN’) or unknown distance

(‘UD’), which indicates a relationship without a prediction of

Figure 1. A simulated 26-member, 7-generation pedigree.
Green symbols indicate founders that were sequenced by CGI, and
purple ones indicate children whose genotyping were simulated. The
topology of the pedigree was chosen to enable testing of diverse
relationship estimations.
doi:10.1371/journal.pone.0085437.g001

Relationship Prediction from Whole-Genome Sequence

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e85437



degree). 94% of 6th-degree and 78% of 7th-degree relationships were

predicted as related in simulated WGS families (sequencing error

parameter: 0.001). In summary, GRAB performs exceptionally well

in detecting and estimating close relationships. GRAB cannot

exactly predict the degree of distant relationships but can in cases

identify the existence of a relationship, and does very well in

determining if a pair is unrelated.

Comparison with existing approaches
We compared GRAB with PLINK v1.07 [7], KING v1.1 [8],

and ERSA 1.0 [10] for real whole-genome sequenced families.

PLINK and KING provide genome-wide average measurements

of IBS; Individual pairs with same relationship degree tend to

cluster together (Figure 4). Linear discriminant analysis was used

to classify relationship from PLINK/KING’s output metrics, and

leave-one-out cross-validation was used to estimate prediction

accuracy (Table 3). Deriving accurate relationships from these

estimation algorithms is sensitive to the variation around the

expected mean proportion of genome-wide sharing, and therefore

it can be challenging to classify more distant relationships. PLINK

clearly identifies 1st-degree or 2nd-degree relationships, but only

detects 52% 3rd-degree relations (Table 3). KING can correctly

predict 86% 3rd-degree relationships, but cannot distinguish

Figure 2. IBS percentage in different relationships of simulated families. For this visualization, the sequencing error (SE) parameter was set
to zero. (A) Distribution of P2 in an example sibling pair. Siblings have much of the genome that is easily detectable as IBD2, which GRAB detects
through a large number of windows with a very high P2 statistic. (B) Number of identity windows (IWs) between pairs of individuals, decreasing with
increased relationship degree. (C) Percentage of contiguous IWs. A contiguous IW is any IW adjacent to another IW. Unrelated individuals have fewer
contiguous IWs than relatives. (D) Maximum length of a set of contiguous IWs. This length tends to be shorter in distant genetic relationships than
close relationships. IT: identical twin. FS: full sibling. PO: parent offspring. UN: unrelated individuals. UD: unknown distance.
doi:10.1371/journal.pone.0085437.g002
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between 4th-degree and unrelated. In contrast, GRAB and ERSA

directly outputs the computed relationships. GRAB correctly

predicts 93% 3rd-degree, and less than 5% of 5th-degree relations

are mispredicted as unrelated. ERSA 1.0 can predict 1st-degree

through 9th-degree relationships, but its accuracy for full-sibling,

2nd-degree and unrelated individuals are lower than GRAB

(Table 3). To resolve these problems and extend ERSA to WGS

data, ERSA 2.0 is under development.

We further compared the computational time of these methods

(Table 4). GRAB on whole-genome sequenced individuals is about

1 minute for a single pair and 14 minutes for all 78 comparisons

between 13 individuals. KING and PLINK are faster, can be

finished within 4 minutes even for 78 individual pairs. GERMLI-

NE+ERSA is slow if counting the phasing time against it. But if the

genotype data have already been phased, it is quite quick and the

running time does not obviously increase with same size.

ISCA+ERSA gets similar accuracy with GERMLINE+ERSA

and does not need phasing, while the time complexity of ISCA is

the square of sample size.

Discussion

GRAB employs windowing to smooth signal across local blocks

of the genome. Some of the value of this ‘‘low-pass filtering’’ can

be achieved by manual curation of the variants employed for

relationship detection. Indeed, years of effort have gone into

curation of genotyping panels such as those marketed by

Affymetrix and Illumina. The resulting panels of common

single-nucleotide polymorphisms (SNPs) tend to have been

selected for low error rates as typed by the panel’s particular

technology, and also for Hardy-Weinberg equilibrium as refer-

enced to legacy population-specific allele frequencies. The

inclusion of SNPs in subsequent generations of these panels has

changed, in part based on unknown proprietary criteria. SNPs that

contribute poorly to market metrics such as typability tend to be

pruned. Because of the high quality of these processes, SNPs

included in current generations of such panels tend to be in

Hardy-Weinberg equilibria in European populations and accu-

rately typable by oligo-based hybridization techniques. The most

significant drawback to the filtering processes used to reject SNPs

from genotyping panels is that they leave voids in regions of

genomes. WGS fills these voids by typing rare SNVs and by typing

SNPs not passing filtering criteria. However, this void filling

currently comes at a price of increased noise on average for

Figure 3. GRAB Workflow.
doi:10.1371/journal.pone.0085437.g003

Table 1. Fraction of correct predictions for real families.

Real families Full sibling Parent offspring 2nd-degree 3rd-degree 4th-degree 5th-degree unrelated

WGS 1 1 0.97 (1) 0.93 (1) 0.97 (1) 0.57 (0.86) 0.98

Affy 1 0.91 (1) 0.875 (1) 0.89 (1) 0.85 (1) 0.67 (0.99)

Values in parentheses are the percentage of predictions within one degree of the true relationship.
doi:10.1371/journal.pone.0085437.t001

Table 2. Fraction of correct predictions for simulated families.

Error rate P0cutoff Marker Full sibling
Parent
offspring 2nd-degree 3rd-degree 4th-degree 5th-degree unrelated

0 0 WGS 1 1 0.96 (1) 0.82 (1) 0.66 (1) 0.52 (1) 1

0 0 Affy 1 1 0.95 (1) 0.80 (1) 0.65 (1) 0.52 (0.99) 0.97

0.001 0.004 WGS 1 1 0.97 (1) 0.84 (1) 0.71 (0.99) 0.57 (1) 1

0.005 0.01 WGS 1 1 0.97 (1) 0.88 (1) 0.79 (0.99) 0.65 (0.97) 1

0.01 0.015 WGS 1 1 0.97 (1) 0.88 (1) 0.82 (1) 0.59 (0.95) 1

P0cutoff is set based on per-SNV error rate. Values in parentheses are the percentage of predictions within one degree of the true relationship.
doi:10.1371/journal.pone.0085437.t002

Relationship Prediction from Whole-Genome Sequence

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e85437



individual SNVs – not necessarily because particular SNPs are less

accurately typed than the identical SNPs on a genotyping panel,

but because the SNVs not included on genotyping panels are on

average inherently harder to type. Tools such as GRAB are

therefore needed to enable the full value of WGS to be used in

relationship detection. A future direction for algorithm develop-

ment will be empirical training on aggregated data from thousands

of whole genomes spanning diverse populations.

GRAB is designed for analysis of WGS data and achieves

prediction accuracy that is similar to current approaches. GRAB

can directly read whole-genome variant information from

standard formats without requiring additional file conversion

utilities or user-guided selection of appropriate markers. The

algorithm has been trained specifically for WGS data and

evaluates all variants in the genome, taking advantage of

information from both rare and common variants. Although

GRAB is optimized for WGS, it is also applicable to high-density

genotyping arrays. GRAB can be integrated into workflows such

as Genome Management System (github.com/systemsbiology/

GMS), which is capable of parsing pedigree file and comparing

reported relationship with GRAB’s prediction. As GRAB does not

need phased data or population background statistics, it can be

used for sparsely studied populations. Computation time is

moderate, mostly spent reading data and computing IBS fractions.

There are multiple ways to improve relationship estimation

algorithms including phasing genotypes and using more realistic

models of IBS distribution, but these may come with increased

computation or a loss of specificity. We recommend GRAB for

detecting 1st to 5th-degree relationships. For estimation of the

degree of distant relationships, when phasing data is not available,

block detection with ISCA and interpretation by ERSA works well

[15]. If a representative population is available, population-based

phasing with GERMLINE [14] and interpretation by ERSA

works well. If computation time becomes limiting during analysis

of a very large cohort, as may be the case in association studies

requiring sequestration of closely related individuals, KING

efficiently detects closer-than-3rd-degree relationships.

Figure 4. Performance of (A) PLINK and (B) KING on true families. Reported relationships are illustrated by different colors. PLINK’s output Z0
P(IBD = 0) and Z1 P(IBD = 1) are plotted, KING’s output IBS0 (proportion of zero IBS) and kinship coefficient are plotted. Relationship must be
estimated by visualization of the clusters in the graph.
doi:10.1371/journal.pone.0085437.g004

Table 3. Comparison of multiple relationship estimation methods on real WGS families.

Relationship degree GRAB PLINK KING ISCA+ERSA1.0 Phasing+GERMLINE+ERSA1.0

Full sibling 1 (1) 0.77 (1) 0.91 0.61 (1) 0.88 (1)

Parent offspring 1 (1) 0.78 (1) 1 (1) 0.99 (1) 1 (1)

2nd-degree 0.97 (1) 0.85 (0.98) 0.93 (1) 0.67 (1) 0.58 (1)

3rd-degree 0.93 (1) 0.52 (0.73) 0.86 (0.97) 0.86 (0.99) 0.87 (0.98)

4th-degree 0.97 (1) 0 (0.19) 0.37 (0.59) 0.83 (0.98) 0.84 (1)

5th-degree 0.57 (0.57) 0 (0) 0 (0.04) 0.56 (0.92) 0.48 (0.90)

unrelated 0.98 0.81 0.93 0.67 0.37

Values in the table are the percentage of correct predictions. Values in parentheses are the percentage of predictions within one degree of the true relationship.
doi:10.1371/journal.pone.0085437.t003
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