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Abstract. Transition of leukocyte function-associated 
antigen-1 (LFA-1), from an inactive into an activate 
state depends on the presence of extracellular Mg 2+ 
and/or Ca 2+ ions. Although Mg 2+ is directly involved 
in ligand binding, the role of Ca 2+ in LFA-1 mediated 
adhesion remained obscure. We now demonstrate that 
binding of Ca 2+, but not Mg 2+, directly correlates with 
clustering of LFA-1 molecules at the cell surface of T 
cells, thereby facilitating LFA-l-ligand interaction. 
Using a reporter antibody (NKI-L16) that recognizes a 
Ca2+-dependent epitope on LFA-1, we found that Ca 2+ 
can be bound by LFA-1 with different strength. We no- 
ticed that weak binding of Ca 2+ is associated with a 
dispersed LFA-1 surface distribution on T cells and 
with non-responsiveness of these cells to stimuli 

known to activate LFA-1. In contrast, stable binding of 
Ca 2÷ by LFA-1 correlates with a patch-like surface dis- 
tribution and vivid ligand binding after activation of 
LFA-1. Mg:+-dependent ligand binding does not affect 
binding of Ca 2+ by LFA-1 as measured by NKI-L16 ex- 
pression, suggesting that Mg 2+ binds to a distinct site, 
and that both cations are important to mediate adhe- 
sion. Only Sr 2+ ions can replace Ca 2+ to express the 
L16 epitope, and to induce clustering of LFA-1 at the 
cell surface. 

We conclude that Ca 2+ is involved in avidity regula- 
tion of LFA-1 by clustering of LFA-1 molecules at the 
cell surface, whereas Mg 2+ is important in regulation 
of the affinity of LFA-1 for its ligands. 

T 
H~ leukocyte function-associated antigen-1 (LFA-1) t 
is a cell adhesion molecule, which mediates different 
adhesion processes occurring between leukocytes 

(Springer et al., 1982, 1987; Martz, 1987). LFA-1 (CDlla/ 
CD18) is a member of the B2 family of the integrins (Hynes, 
1987). It consists of an ot chain and a B chain, which are non- 
covalently linked (Keizer et al., 1985). Cell adhesion medi- 
ated by LFA-1 is established by binding of LFA-1 to its 
ligands on the opposing cell. Ligands for LFA-1 are intercel- 
lular adhesion molecule-1 (ICAM-1), -2 and -3 (Marlin et al., 
1987; Staunton et al., 1989; de FougeroUes et al., 1991, 
1992). 

LFA-1/ICAM-l-mediated adhesion can be regulated by 
changes in the affinity of LFA-1 for its ligand ICAM-1. Trig- 
gering of cell surface receptors CD2, CD3, or MHC class 
II can induce such an affinity change in LFA-1, thereby induc- 
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1. Abbreviations used in this paper: ICAM, intercellular adhesion molecule; 
IPB, immtmoprecipitation buffer; LFA, leukocyte function-associated anti- 
gen; PBL, peripheral blood lymphocytes; RT, room temperature. 

ing cell-cell adhesion (Dustin et al., 1989; van Kooyk et al., 
1989; Mourad et al., 1990). Also activation of PKC by PMA 
can switch the inactive LFA-1 molecule into an active confor- 
mation (Rothlein et al., 1986; Patarroyo et al., 1985; Chatila 
et al., 1989; Buyon et al., 1990). These data point out that 
the LFA-1 molecule can become activated by intraceUular 
signals (Dustin et al., 1989; van Kooyk et al., 1989), and in- 
dicates that at least two forms of LFA-1 exist: "inactive LFA- 
r' and "active LFA-I: We previously described that binding 
of an unique antibody (NKI-L16), directed against the o~ 
chain of LFA-1, can stimulate LFA-l-mediated adhesion 
(Keizer et al., 1988) by inducing a conformational change, 
without the generation of intracellular signals (van Kooyk et 
al., 1991). We have demonstrated that LFA-1 can only be- 
come activated when it expresses the L16 epitope ("poten- 
tially active LFA-I') (Figdor et al., 1990). Since NKI-L16 
antibodies recognize a Ca2+-dependent epitope located on 
the ot chain of LFA-1, Ca 2+ ions may be important in the 
transition of one form into the other (van Kooyk et al., 1991). 

The critical role of extracellular divalent cations (Mg 2+ 
and Ca 2+) in LFA-1/ligand interaction suggests that struc- 
tural alterations necessary for ligand recognition may occur 
as a result of divalent cation binding (Martz, 1980; Rothlein 
et al., 1986; Makgoba et al., 1988; Marlin et al., 1987). The 
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three putative cation binding motifs (EF-hand like domains) 
in the a subunit of the LFA-1 family (Larson et al., 1989), 
and the presence of clustered oxygenated residues in the t2  
chain, have both been proposed to provide divalent cation 
binding (Loftus et al., 1990; Dranstield, 1991; Ginsberg et 
al., 1991). The finding that the binding of Mn 2+ to LFA-1 
can augment LFA-1/ligand interaction, as well as other inte- 
grin mediated interactions (Gailit et al., 1988; Kirehhofer et 
al., 1990; Elices et al., 1991; Sonnenberg et al., 1988; AI- 
tieri, 1991), indicates that binding of certain divalent cations 
can induce conformational changes in LFA-1 (Dransfield et 
al., 1992), which may alter the affinity of LFA-1 for its 
ligand. The importance of Mg 2+ ions in LFA-1/ligand inter- 
action has been illustrated by a Mg2+-dependent LFA-1 anti- 
body (mAb 24) (Dransfield et al., 1989; 1992). In these 
studies, the high affinity change Of LFA-1 induced by ligand 
binding, corresponded with expression of the 24 epitope, in- 
dicating that Mg :+ binding induces a high affinity change in 
LFA-1. 

By using the NKI-L16 antibody as a reporter for Ca :+ oc- 
cupancy of the LFA-1 receptor, we investigated on different 
T cells the role and function of Ca 2+ in LFA-1 distribution 
and adhesion, and the effect of other divalent cations herein. 

Materials and Methods 

mAbs and Chemicals 

The mAbs SPV-L7 (IgG1), NKI-L15 (IgG2A), and NKI-L16 (IgG2A) all 
reactive with the ct chain of LFA-1 (CDlla) were raised as described previ- 
ously (Keizer et al., 1985, 1988). mAb FIO.2 was directed a~ain~t ICAM-1 
(Bloemen et al., 1992). The reagents used were; PMA (phorbol 12- 
myristate 13-acetate, 50 ng/ml; Sigma Chemical Co., St. Louis, MO); Che- 
lex 100 micro spheres (Biorad, 1% wt/vol), to deplete solutions for the pres- 
ence of divalent cations by rotary mixing for 4 h at 4"C; EDTA or EGTA 
(Fluka Chemic AG, Buchs, Switzerland; 5 raM) to remove cell bound diva- 
lent cations by incubation of cells for 15 rain at 37°C, viability of the ceils 
was always >95 %. Divalent cations (CaC12, MgC12, ZnC12, COC12, CuCI:, 
NiCI2, and SrC12; Sigma Chemical Co.) were diluted in Hepes/NaC1 
buffer. 

Cell Lines and Cell Culture 

The human T cell clone JS136 (CD3 + CD4 + CD16-) (Borst et al., 1986) 
used in this study, was cultured as described previously (van Kooyk et ai., 
1991). T cell line Peer was cultured in Iscove's medium containing 5 % FCS. 
A homogenous population of highly purified resting T lymphocytes was iso- 
lated from buffy coats of healthy donors by centrifugal elutriation, as de- 
scribed (van Kooyk et al., 1991), and were cultured in Iscove's medium con- 
taining 5% FCS. 

Fluorescence Analysis 
Cells were washed twice in Hepes/NaCl buffer (cation free), after which 
they were incubated (30 rain, 4°C) with purified antibody (5 Mini) in the 
presence of appropriate dilutions cations. Cells were washed twice in PBS, 
containing 1% wt/vol bovine serum albumin (BSA; Sigma Chemical Co.) 
and 0.01% sodium azide (PBS/BSA/azide) followed by incubation with 
fluorescein isothiocyanate (FITC)-labeled goat F(ab')2 anti-mouse IgG an- 
tibody (Nordic, Tilburg, The Netherlands) for 30 rain at 4"C. Cells were 
washed once, and the relative fluorescence intensity was measured by FAC- 
Scan analysis (Becton Dickinson, Mountain View, CA). Cells activated 
with anti-CD3, anti-CD2, or anti-MHC class H antibodies (10/~g/ml; all 
IgG1), were stained with NKI-L16 (IgG2A) or NKI-L15 (IgG2A), and ex- 
pression was determined with isotype specific FITC-labeled goat anti- 
mouse IgG2A (Boehringer Mannheim, Mannheim, Germany). 

Confocal Microscopy 
Cells were preincubated for 15 rain with 5 mM EDTA, 5 mM EGTA, or 

medium at 37"C, followed by labeling with Fab fragments of SPV-L7 anti- 
body 0:100) in the presence of EDTA or EGTA or 3 mM SrCh, or 3 mM 
MgCh for 30 rnin at room temperature (RT). Cells were washed with 
PBS/BSMazide followed by incubation with FITC-labeled goat F(ab)'2 
anti-mouse IgG for 30 rain at RT. Cells were washed and fixed with 0.5% 
paraformaldehyde for 30 rain at RT. Ceils were attached to poly-L- 
lysine-coated glass, after which fluorescence distribution was determined 
by Confocal Laser Microscopy at 488 nm with a krypton/argon laser (Bio 
Rad Laboratories, Richmond, CA). Dot sizes were defined using as digital 
image analyzer a TCL ~ program of Macintosh. The relative size of 
distribution of LFA-1 is depicted in a scale of 10 to 3300, in which a scale 
of 100 corresponds + / -  0.33 #m. 

Binding Assay to L Cells Transfected with ICAM-1 
L cells transfected with ICAM-1 (L-ICAM-1) or mock-transfected control 
L cells (van Kooyk et al., 1993), were grown to form a monolayer of cells. 
Na2SlCrO4-1abeled T cells were preineubated for 15 rain at 4°C in 
Hepes/NaC1 buffer containing divalent cations (1 raM) in the presence of 
PMA (50 ng/ml), or with the adhesion inducing antibody NKI-LI6 (10 
t~g/ml). 5tCr-labeled T ceils were preincubated for 15 rain at 4"C in 
Hepes/NaC1 buffer containing divalent cations (1 raM) in the presence of 
PMA (50 ng/rrd), or with the adhesion inducing antibody NKI-LI6 (10 
/zg/ml). SlCr-labeled T calls were added and were allowed to settle for 15 
rain at 4"C, followed by a 30-rain incubation at 37"C. Subsequently, nonad- 
herent T cells were removed by washing with warm Iscove's medium. The 
adherent cells were lysed with 100/zl of 1% Triton X-100 and radioactivity 
was quantified. Results are expressed as the mean per cent of cells binding 
from triplicate wells. Binding to control L cells was always <10%. 

Radiolabeling and lmmunoprecipitation 
Before iodination cells were pretreated with 5 mM EDTA for 15 rain at RT, 
ceils were washed with cation-free medium and were surface labeled with 
Na'25I (Amersham International, Amersbam, UK) through the lactoperox- 
idase method (van Kooyk et al., 1991). For immunoprecipitation, JS136 (20 
x 106) were lysed for 1 h at 4"C in immunoprecipitation buffer 0PB) 
which contained 1% NP-40, 50 mM Triethanolamine, pH 7.4, 150 mM 
NaCI and as protease inhibitors, 1 mM PMSF, ovomucoid trypsin inhibitor 
(0.02 mg/ml), 0.02 mg/ml leupeptin, and 1 mM Nd-P-Tosyl-L-lysine ehio- 
romethyl ketone were added. The IPB contained 5 mM EDTA, or 2 mid 
cations as depicted in Fig. 1 B. Nuclear debris was removed from the ly- 
sates by centrifugation at 13,000 g for 15 rain at 4"C. Lysates were 
precleared with mouse IgG covalenfly coupled to protein A-Sepharose CL- 
4B beads (Pharmacia Fine Chemicals, Piscataway, NJ). Precleared lysates 
were incubated for 2 h with NKI-L16 or SPV-L7 coupled to protein 
A-Sepharose. The immunopreeipitates were removed from the lysates by 
centrifugation, and washed with IPB containing 5 mM EDTA or 2 mM cat- 
ions. Samples were analyzed under reducing conditions with 5 % 2-mercap- 
toethanol in SDS sample buffer on SDS-page on acrylamide gels (5-15%). 
Dried gels were exposed to Kodak XAR-fiim (Eastman Kodak Co., Roches- 
ter, NY). Molecular weight markers are depicted. 

Results 

The L16 Epitope Is a Ca 2+ Binding Reporter 

It has been previously described that NKI-L16 antibodies 
recognize a unique epitope located on the ~ chain of LFA-1, 
and that binding of this antibody stimulates LFA-l-mediated 
adhesion. Expression of the L16 epitope is Ca 2+ dependent, 
and epitope expression is required for LFA-1 mediated adhe- 
sion (van Kooyk et al., 1991). Here we further analyzed the 
role of other divalent cations on L16 epitope expression 
using T cell clones (JS136 is used as a prototype T cell clone 
throughout this study), which express high levels of the L16 
epitope. Treatment of JS136 with EGTA or EDTA (to spe- 
cifically remove Ca 2÷ or all divalent cations, respectively) 
completely removes the L16 epitope from LFA-1. Expression 
of other epitopes on the o~ chain of LFA-1 (SPV-L7), or the 
H-chain (not shown) remain unchanged (Table I; Fig. 1 A). 
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Table I. Effect of Divalent Cations on the Expression 
of the L16 Epitope After EDTA Treatment 

Relative fluorescence intensity 

Treatment JS136 Control SPV-L7 NKI-LI6 

Medium 5 373 300 
EGTA 5 310 21 
EDTA* 5 290 30 

+Mg 2+ 5 417 19 
+Ca 2+ 7 335 300 
+ Mn 2+ 6 251 31 
+Co 2÷ 6 360 20 
+ Zn 2+ 8 335 22 
+ Cu 2+ 9 311 34 
+ Sr 2+ 9 320 306 
+ Ni 2+ 8 307 31 

* JS136 T cells were pretreated with 5 raM EDTA for 15 rnin at 37°C, to re- 
move all cell-bound divalent cations. Subsequently, cells were washed twice 
with cation-free medium, followed by the addition of distinct divalent cations 
(1 raM). Cells were incubated with NKI-L16 or SPV-L7 antibodies for 30 rain 
at 40C, were washed and incubated for 30 rain with FITC-labeled antibody. 
Fluorescence is measured in the FACSCan, expression is depicted as relative 
fluorescence intensity. One experiment out of three is shown. 

We observed that in addition to C a  2+, also Sr 2÷ call restore 
expression of  the L16 epitope, whereas M g  2+, C o  2+, C u  2+, 

Zn 2+, Mn 2+, or Ni 2+ can not. Immunoprecipitation studies 
(Fig. 1 B) also revealed that mAb NKI-L16 (lane 2) could 
only precipitate LFA-1 when Ca 2+ or Sr 2+ are present, 
whereas precipitation by a regulator anti-LFA-1 mAb (SPV- 
L7, lane / )  was independent on the presence of cations. This 
indicates that mAb NKI-L16 only recognizes the Ca 2+ or 
Sr 2+ LFA-1 complex. 

Mg ~+ Does Not Inhibit Ca 2+ Binding to Form 
the LI6 Epitope 

Since Mg 2+ plays an important role in LFA-l-mediated ad- 
hesion (Dransfield et al., 1989, 1992), we next investigated 
if Mg 2÷ ions can displace Ca 2+, and thus prevent the L16 ex- 
pression (Table ll). After removal of  both cell bound Ca 2+ 
and Mg 2+ with EDTA, cation concentrations were restored 
according to a specific sequence. Addition of Mg 2+ before 
Ca 2+ (or vice versa; Ca 2+ followed by Mg 2+) did not inhibit 
the formation of  the L16 epitope, and thus could not prevent 
Ca 2+, nor Sr 2+ (not shown) from binding to LFA-1 to restore 
the L16 epitope. These results clearly demonstrate that 
Mg 2÷ binds to a site distinct from the one that binds Ca 2+ to 
express the L16 epitope. 

Strong or Weak Binding of Ca 2+ to LFA-I 

We noticed, by determining the cation dependency of  the L16 
epitope on a number of  other T cells, such as the T cell line 
Peer and resting peripheral blood lymphoeytes (PBL), that 
the expression of this epitope is directly related to the con- 
centration of  Ca 2+ or Sr 2+ ions in the medium. Surprisingly, 
only washing of resting T cells or Peer T cells in cation free 
buffer, lowered the L16 expression dramatically, compared 
to the expression found in the presence of  complete medium 
(1 mM Mg 2+ and 1 mM Ca 2+) (Fig. 2; Table HI). In con- 
trast, washing of JS136 T cells in cation free buffer hardly 
affected the L16 expression (Fig. 2; Table III). Similar results 
were obtained with a number of  other T cell clones (not 

Figure 1. Effect of Ca 2÷ or Sr 2+ on the expression of the L16 epi- 
tope on LFA-1 after EDTA treatment of JS136 T ceils. Cells were 
treated with 5 mM EDTA, washed twice with cation free medium, 
and restored with 1 mM Ca z+ or Sr 2+, which give the same facs 
profile. (B) Effect of cations on immunoprecipitation of LFA-I from 
t~I-labeled lysate of JS136 T cells with two different anti-LFA-1 
mAbs SPV-L7 (lanes/) and NKI-LI6 (lanes 2). JS136 T cells were 
pretreated with 5 mM EDTA. Immunoprecipitation was performed 
in the presence of 5 mM EDTA, or upon restoration of 2 mM diva- 
lent cations. Bars indicate relative molecular mass (kD) as defined 
by prestained markers. A representative experiment out of three is 
shown. 

shown). These data indicate that LFA-1 expressed on differ- 
ent T ceils bind Ca 2÷ ions with different strength: Ca 2+ (Peer 
T cells, resting PBL) which is easily removed by washing 
with Ca2+-free medium (low affinity) and Ca 2+ (JS-36 T 
cells) which can only be removed with chelating agents such 
as EGTA (high affinity). 

Table II. Mg z+ Does Not Inhibit Binding of Ca z+ 
to Form the LI 6 Epitope 

Treatment JS 136 Relative fluorescence intensity 

First Second Third Control SPV-L7 NKI-LI6 

EDTA 5 329 27 
EDTA Ca 2+ 5 345 327 

EDTA Ca 2+ Mg 2+ 7 360 340 
EDTA Mg 2+ 5 333 26 
EDTA Mg 2+ Ca 2+ 5 351 314 

JS136 T cells were pretreated with 5 mM EDTA (first) for 15 rain at 37°C, 
cells were washed twice with cation free medium. Subsequently cells were in- 
cubated with distinct divalent cations (second), 1 mM Mg 2+, or Ca 2*. After 
15 rain at 4°C the other divalent cations (1 raM) were added, together with the 
antibodies (third treatment). Antibodies were incubated for 30 min at 4°C, 
cells were washed and incubated with F1TC-labeled antibody for 30 rain at 
4°C. Expression is depicted as relative fluorescence intensity. One experiment 
out of three is shown. 
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Figure 2. Effect of Ca 2+ and Sr 2+ (the same fats profile) on the ex- 
pression of LFA-1 after washing different T cells (Peer, PBL, JS136) 
in cation-fre~ buffer. 

Table IlL Effect of Divalent Cations on the 
Expression of the 1,16 Epitope After Washing 
in Cation-Free Medium 

Relative fluorescence intensity 

Treatment Control SPV-L7 NKI-L 16 F 10.2 

JS136 
Medium 7 356 320 121 
Cation free 6 360 250 143 

+Mg 2+ 7 410 237 130 
+Ca 2+ 5 314 340 144 
+ Mn 2+ 6 361 260 136 
+ Zn 2+ 7 363 207 118 
+ Co 2+ 7 333 221 126 
+Cu 2÷ 6 259 239 110 
+Sr 2+ 5 416 339 133 
+Ni 2+ 6 373 225 121 

Peer 
Medium 2 137 121 25 
Cation free 3 132 25 30 

+ Mg 2. 3 131 25 27 
+Ca 2+ 2 133 121 40 
+Mn 2÷ 2 135 28 38 
+ Zn 2+ 2 131 25 34 
+Co s+ 2 128 25 25 
+ Cu 2+ 3 131 25 32 
+St a+ 2 132 127 33 
+Ni 2+ 2 136 23 25 

T cells were washed twice with cation free medium. Ceils were incubaxed with 
antibodies together with divalent cations (1 mM) for 30 min at 4°C and were 
washed once followed by incubation with FITC-labcled antibody for 30 rain 
at 40C. One experiment out of four is shown. 
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Figure 3. Removal of the L16 epitope expressed on JS136 T cells 
(A and C) and Peer T cells (B and D) upon washing in cation free 
buffer (A and B) or upon EDTA treatment (C and D). T cells (JS136, 
A; Peer, B) were washed twice in cation free buffer to remove low 
affinity Ca 2+ bound to LFA-1. Subsequently cells were washed 
twice and were incubated with different concentrations of Sr 2+ (o) 
or Ca 2+ (e) (ranging from 0.001 to 10 raM) together with the first 
antibody (NKI-L16 or SPV-LT) for 30 rain at 4°C. T cells (JS136, 
C; Peer, D) were incubated for different time periods with 5 mM 
EDTA, after which the L16 expression was determined at different 
time points in the absence of cations (a). Cells were washed and 
incubated with the FITC-labeled antibody for 30 rain at 4°C. Values 
are expressed as percent of maximal expression of the 1,16 epitope 
in medium, which is equal to the L7 (n) epitope expression. One 
experiment out of two is shown. 

We defined the optimal concentration of  Ca z+ and Sr 2+ re- 
quired to restore the L16 epitope after removal of  the cations 
by washing T cells in cation free buffer (Fig. 3 A, JS136 cells 
and 3B Peer T cells). 0.5-1 mM Ca :+ or  Sr 2+ could restore 
the L16 expression to a level similar as observed with SPV- 
L7 antibodies. The results show that in the presence of  low 
(0.1 raM) extracellular Ca ~+ concentrations, Peer T cells do 
not express the L16 epitope (low affinity), whereas the epi- 
tope remains expressed on JS136 T cells under these condi- 
tions (high affinity). Treatment of  JS136 and Peer T cells for 
different t ime periods with chelating agents like EDTA (Fig. 
3, C and/9,  respectively) shows that the L16 epitope is rap- 
idly lost from Peer (within 1 min), whereas 10-15 rain are 
required to remove the L16 epitope of  JS136. These results 
again demonstrate that Ca :+ is differentially bound by LFA-1 
on these cells, and suggest that Ca 2+ can be bound with dif- 
ferent affinities. 

Interestingly, we observed that NKI-L16 antibodies can 
protect Ca 2+ from removal of  LFA-1. After  binding of  the 
NKI-LI6  antibody in the presence of  Ca 2+ or Sr 2+, washing 
of  the Peer T cells with cation free buffer did not affect ex- 
pression of  the L16 epitope, whereas EDTA or EGTA treat- 
ment removed the L16 epitope completely (Table IV). 

We conclude from these results that Ca 2+ can be bound 
by LFA-1 with high and low affinity, and that binding of  NKI- 
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Table IV. NKI-L16 Antibodies Protect Ca 2+ 
from Being Removed from LFA-1 by Incubation 
in Cation-Free Medium 

Treaunent Peer 

First Second Fluorescence intensity 

Control Medium 3 
Control Cation free 3 
Control EDTA 3 
Control EGTA 3 
SPV-L7 Medium 142 
SPV-L7 Cation free 137 
SPV-L7 EDTA 132 
SPV-L7 EGTA 140 
NKI-L16 Medium 130 
NKI-L16 Cation free 122 
NKI-L16 EDTA 5 
NKI-L16 EGTA 7 

Peer T cells were preincubated in cation containing medium with the first anti- 
body (control, SPV-LT, or NKI-LI6) for 30 rain at 4"C. Subsequently cells 
were washed with cation containing medium, cation free buffer or EDTA (5 
mM) and incubated for 15 rain at RT with the same buffer. Finally cells were 
washed with PBA, and FITC-labeled antibody was added for 30 rain at 4"C. 
Expression is indicated as relative fluorescence intensity. One experiment out 
of four is shown. 

L16 antibody protects low affinity bound Ca 2+ from removal 
of LFA-1. 

Role of  Ca 2÷ in LFA-1-Mediated Adhesion 

We next investigated whether binding of Ca 2+ had any effect 
on LFA-1 mediated adhesion (Fig. 4). If  Peer or JS136 cells 
are suspended in medium that contains Mg 2+ and Ca 2÷, both 
cell types bind to L-ICAM-1 (L cells transfected with ICAM-1 
eDNA) upon activation of LFA-1 by PMA or NKI-L16 (Fig. 
4). Binding of the cells is ICAM-1 specific since no binding 
is observed to control (mock-transfected) L cells. After 
washing of the cells with cation free buffer neither PMA nor 
NKI-L16 can induce ICAM-1 binding of JS136 as well as 
Peer T cells. Addition of Mg 2+ (1 raM) restores only bind- 
ing of JS136 to ICAM-1 when LFA-1 is activated. Whereas 
no binding to Peer T cells was observed after stimulation 
with PMA or NKI-L16 (Fig. 4). These data correspond with 
the finding that LFA-1 of JS136 cells still contains Ca 2+ 
(bound with high affinity), whereas Peer cells lost the low 
affinity bound Ca 2+ (Fig. 3). Only if both Mg 2+ and Ca 2+ 
levels are restored, binding of Peer cells to ICAM-1 is ob- 
served. These data provide further evidence that not only 
Mg 2+ but also Ca 2+ is important for LFA-1 mediated adhe- 
sion, however restoration of Ca 2+ alone is not sufficient to 
restore binding of JS136 or Peer. Furthermore we conclude 
that Mg 2÷ does not bind to LFA-1 with high affinity unless 
activated. 

We consistently observed that after induction of adhesion 
by PMA or NKI-L16 antibodies in the presence of extracellu- 
lar Ca 2+ and Mg z+, the capacity of JS136 T cells to bind to 
ICAM-1 was always higher than that of Peer T cells (Fig. 4) 
or resting PBL (not shown). Surprisingly, Peer T cells 
showed a significant increase in adhesion to ICAM-1 when 
both stimuli (PMA and L16) were combined. Since the 
results in Table IV demonstrate that binding of NKI-L16 anti- 
bodies stabilize binding of Ca 2+ to LFA-1 on Peer T cells, 
LFA-1 is likely converted into a form similar to that found 

JS136 50. 

40" 

30' 

20' 

10' 

cation free Ca Mg Mg+Ca 

Peer 50' 

4O 

~ 2o 

cation free Ca Mg Mg+Ca 

Figure 4. PMA and NKI-L16 induced adhesion of JS136 cells and 
Peer T cells to ICAM-1 transfected L cells. L-ICAM-1 cells were 
cultured to obtain a monolayers of cells. ~lCr-labeled T cells were 
preincubated without stimulus (n), with PMA (z~) (50 ng/ml), 
NKI-L16 antibodies (r~) (10 mg/ml), or a combination of both (I) 
(10 #g/ml) for 15 min at 4"C. The adhesion assay was performed 
in medium containing no cations, 1 mM Mg 2+, 1 mM Ca 2+, or a 
combination of both for 30 min at 37°C. The mean of two experi- 
ments is shown (SD < 3%). 

on JS136 in which Ca 2+ is bound with high affinity. This 
enables Peer T cells to respond to PMA and increases LFA-1 
mediated adhesion (Fig. 4). 

LI6 Expression Is Associated with a Clustered Cell 
Surface Distribution of  LFA-1 

Since previous observations by Detmers et al. (1987) showed 
a correlation between clustering of/32 integrins at the cell 
surface and cell adhesion, we investigated whether differ- 
ences in the affinity of LFA-1 for extracellular Ca 2+ affect 
the cell surface distribution of LFA-1 (Figs. 5-7). Using con- 
focal laser microscopy we observed that Peer T cells showed 
a dispersed LFA-1 distribution, consisting of numerous small 
aggregates. In contrast, LFA-1 on JS136 T cells was localized 
into large clusters, when stained with anti-LFA-lot Fab frag- 
ments (SPV-L7) (Fig. 5). Double labeling of cells with SPV- 
L7 and NKI-L16 antibodies showed the same distribution, 
thus the L16 epitope was always found in the clustered LFA-1 
(not shown). Washing of JS136 T cells in cation free buffer, 
hardly changed the distribution of LFA-1. To determine if the 
L16 epitope, and thereby binding to Ca :+ ions, are neces- 
sary for clustering of LFA-1, JS136 T cells were pretreated 
with EGTA or EDTA to remove Ca :+ from LFA-1. This dra- 
matically changed the clustered distribution of LFA-1 from 
large clusters into a more dispersed distribution, indicating 
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Figure 5. Overview of the distribution of LFA-1 on different T ceils. 
Distribution of LFA-1 was determined by CLSM, using SPV-L7 Fab 
fragments. LFA-1 is localized in large clusters on JS136 in the 
presence of medium (A), while it is dispersed present on Peer T 
cells (B). 

that binding of Ca 2÷ to LFA-1 is critically important to clus- 
ter LFA-1 receptors at the cell surface (Fig. 6). Moreover, 
reconstitution with Ca 2÷ but also with Sr 2÷ ions, restored 
the clustered LFA-1 distribution (Fig. 7). Notably, neither 
Mg 2. (Fig. 7) nor any of the other cations (not shown) were 
able to restore receptor clustering, again pointing to differ- 
ent roles of  Ca 2÷ and Mg 2÷ in LFA-1 mediated adhesion. 

Quantitative data on the relative size of the spots of LFA-1 
at the cell surface were obtained using a digital image ana- 
lyser. Note that it is not possible to measure individual LFA-1 
molecules by this technique since the resolution of the visible 
light is limited to about 0.5/zm, which equals "~250 mole- 
cules, considering the predicted size of an individual inte- 
grin, i.e., 20 nm (Calvete et al., 1992). Still, a relative size 
distribution of the spots can be given. We observed that the 
size of most LFA-1 spots on JS136 T cells is 30-fold larger 
(from 100 to 3300) in the presence of medium compared to 
the spots measured after EGTA (Fig. 8) or EDTA (not 
shown) treatment. Reconstitution with 2 mM Ca 2÷ restores 
clustering (from 100 to 1,000) within 15 min. Control ex- 
periments showed that both chelators did not affect the mem- 
brane distribution of several other cell membrane molecules 
on JS136 T cells, such as MHC class I antigen or ICAM-1, 
as observed on the images as well as by the quantitative anal- 

Figure 6. Overview of the distribution of LFA-1 on JS136 T cells 
in the presence of medium (A) or after treatment with 5 mM EDTA 
(B) or EGTA (C) for 15 min at 37°C resulted in a dispersed LFA-1 
distribution. Top views of LFA-1 distribution on JS136 are depicted. 

ysis (not shown). These data demonstrate that Ca ~+ ions, 
and thus the expression of the L16 epitope directly correlates 
with the distribution of LFA-1 into clusters. Moreover 
clustering of  LFA-1 on the cell surface facilitates strong in- 
teraction of LFA-1 with its ligand (Fig. 4). 

Discuss ion  

From the results the following conclusions can be drawn: (a) 
LFA-1 binds Ca 2÷ ions with different strengths depending on 
the activation/maturation state of the T cells; (b) Ca 2+ can 
be replaced by Sr 2+ ions; (c) binding of Ca 2+ or Sr 2+ by 
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Figure 7. Reconstruction of 
clustered LFA-1 on JS136 T 
cells after the addition of 
Ca 2+ or Sr 2+ ions. JS136 cells 
were treated with 5 mM 
EDTA or EGTA, as described 
in Fig. 5, to remove all cell 
bound divalent cations. Sub- 
sequenfly Ca 2+, Sr 2+, or Mg ~+ 
ions were added and LFA-1 
distribution was determined 
by CLSM, using SPV-L7 Fab 
fragments. One representative 
experiment out of four is 
shown, 

LFA-1 correlates with ligand independent clustering of LFA-1 
at the cell surface; (d) Ca2÷-mediated clustering of LFA-1 
facilitates Mg2÷-dependent ligand binding; (e) Ca ~÷ and 
Mg 2÷ ions play a different role in LFA-1 mediated adhesion 
by T cells. Ca 2÷ is involved in avidity regulation of LFA-1 
by clustering of LFA-1 molecules at the cell surface, whereas 
Mg 2÷ is important in regulation of the affinity of LFA-1 for 
its ligands. 

Here we show for the first time that binding of Ca 2÷ ions 
correlates with ligand-independent clustering of LFA-1 at the 
cell surface. These results are in line and extend previous ob- 
servations of Detmers et al. (1987), who showed that the/32 
integrin CR3 is clustered at the cell surface and that cluster- 
ing correlates with cell adhesion. Binding of Ca ~÷ by LFA-1 
(Fig. 1 B), and thus L16 epitope expresion, is a reflection 
of LFA-1 membrane distribution, also since expression of the 
L16 epitope is always found in clustered LFA-1. We previ- 
ously reported that LFA-1 cannot be stimulated to bind ligand 
unless the L16 epitope is expressed (Figdor et al., 1990; van 
Kooyk et al., 1991). We now presume that strong binding of 
Ca 2÷ by LFA-1 (high affinity) converts LFA-1 from an inac- 
tive- into a "potentially active" form, thus lowering the 
threshold of LFA-1 to respond to stimuli leading to activation 

of LFA-1 (Figdor et al., 1990). In contrast, cells on which 
Ca 2+ is only weakly bound to LFA-1 (low affinity) (resting 
PBL or Peer T cells) can not respond to activating stimuli, 
indicating that LFA-1 is in an "inactive ~ state. Nevertheless, 
we show (Fig. 4) that the capacity of such cells to respond 
can be restored after binding of NKI-L16 antibodies which 
apparently stabilize binding of Ca 2+ to LFA-1. Binding of 
NKI-L16 may enhance the affinity of LFA-1 for Ca 2+ or 
mimic high affinity Ca 2+ binding (Table IV). This may ex- 
plain why addition of PMA together with the NKI-L16 anti- 
bodies results in further enhancement of LFA-1 mediated 
adhesion (Fig. 4). 

That LFA-1 can bind Ca 2+ with different affinities is based 
on the described washing experiments and experiments using 
chelators. The affinity of Ca :+ binding to LFA-1 on resting 
PBL or Peer T cells must be extremely low, since simple 
washing with cation free buffer is capable of removing 
Ca 2+. Binding of Ca 2+ to LFA-1 by JS136 cells is of signifi- 
cantly higher affinity, since it is only removed by the chela- 
tors EDTA or EGTA. In addition, we observed that Ca 2+ is 
removed from LFA-1 on JS136 cells only after 10--15 min, 
indicating that Ca 2+ is firmly bound to LFA-1 on these ceils. 
It is not possible to exactly determine the affinities with 
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Figure 8. Relative quantification ofthe dotsize distribution of LFA-I 
using a digital image analyzer. The relative size of the dusters of 
LFA-1 was quantified on JS136 T cells in the presence of medium 
(A), after EGTA treatment for 15 rain at 370C (B), after reeonstitu- 
t.ion of the EGTA treated cells with 2 mM Ca 2+ (C) or with 2 mM 
Mg 2+ (D). The mean of calculation of eight cells is depicted. One 
representative experiment out of three is shown. 

which Ca 2+ binds to LFA-1 using intact cells since a variety 
of Ca 2+ binding proteins are expressed. Furthermore, since 
the different activation states of LFA-1 do not exist when the 
receptor is solub'dized, it is not possible to perform affinity 
studies with isolated receptors. Precise characterization of 
cation binding to LFA-1 awaits crystallography studies. 

It is not known what drives the different activation states 
of LFA-1 expressed on leukocytes. It might be that local cyto- 
kine release may invoke the activation/maturation state of the 
lymphocyte resulting in enhanced Ca 2+ binding by LFA-1 
thus increasing the L16 expression. We previously demon- 
strated that IL-2 stimulates L16 expression on resting PBL 
(van Kooyk et al., 1991). The expression of different activa- 
tion states of adhesion receptors on the cell surface is not re- 
stricted to the/?2 integrins, but has also been reported for 
the/51 integrins (Masumoto and Hemler, 1993; Faull et al., 
1993). 

In line with the data of Detmers et al. (1987) we observed 
that clustering of LFA-1 is independent from ligand binding. 
This notion is supported by double labeling studies with 
anti-LFA-1 antibodies and anti-ICAM-1 antibodies. We 
could exclude co-localisation of ICAM-1 and LFA-1, thus ex- 
cluding receptor-ligand interactions on one and the same cell 
(van Kooyk, Y., and G. Figdor, unpublished observations). 
These results were confirmed by capping experiments, show- 
ing independent expression of LFA-1 and ICAM-I. In gen- 
eral, artificial clustering of LFA-1 by anti-LFA-1 mAbs does 
not mimic clustering of LFA-1 mediated by Ca 2+, indicating 
that only Ca2+-mediated clustering of LFA-1 receptors most 
likely increases the avidity of LFA-l-ligand interactions. 
However, it should be noted that stable ligand binding still 
requires a Mg2+-dependent affinity change within the mole- 
cule (Staatz et al., 1989; Martz, 1980; Graham et al., 1991; 
Elices et al., 1991; Rothlein et al., 1986) induced by signals 
like PMA, anti-CD2 or anti-CD3 (Dustin et al., 1989; van 
Kooyk et al., 1989). Therefore, we can conclude that both 
avidity changes (Ca ~+) as well as affinity changes (Mg 2+) 
within LFA-1 contribute to a stable LFA-l-ligand interaction. 

Because of the limiting resolution of visible light (0.5 #m) 
we were unable to identify single LFA-1 molecules at the cell 
surface. Quantification of LFA-1 distribution on JS136 
showed large clusters of LFA-1, whereas the aggregates on 
EDTA or EGTA treated cells were 10-30-fold smaller. The 
number of LFA-1 molecules within each cluster can still only 
be guessed. Considering a predicted size of 20 nm for an in- 
dividual integrin (Calvete et al., 1992), the estimated num- 
ber of LFA-1 molecules varies between 2,000-8,000 mole- 
cules in the largest aggregates and ~250 molecules in the 
smallest measurable aggregates. 

We observed that apart from Ca 2+ also Sr 2+ can form the 
L16 epitope. Recent crystallographic studies of cation-bind- 
ing motifs (EF-hands) in parvalbumin demonstrated that 
divalent cations with an ionic radius closest to 1 /~ favors 
binding to cation-binding motifs (EF-hands) (Declerc et al., 
1991). Both Ca 2+ and Sr 2+ come closest of all divalent cat- 
ions to this value, with an ionic radius of 0.94 and 1.10 
respectively. Three potential cation binding sites are present 
on the o~ chain of LFA-1 (Larson et al., 1989). The finding 
that both Ca 2+ and Sr ~+ can form the L16 epitope suggest 
that both cations may bind the same domain with high 
attinity. If is not known how binding of Ca 2+ or Sr z+ to LFA-1 
results in clustering of LFA-1. We speculate that Ca 2+ may 
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link the o~-chain of one ~x//3 heterodimer with the/3 chain of 
an adjacent a//3 heterodimer. One argument in favor of inter- 
molecular interactions is the observation of Calvete et al. 
(1992) that the cation binding domains of integrins may be 
exposed at the outside of the integrin molecule. Further- 
more, the importance of Ca 2+ in ¢//3 complex formation of 
receptors has also been reported for other integrins (Fitzger- 
aid et ai., 1985; Fujimura et al., 1983). 

The finding that the L16 expression is neither enhanced 
nor decreased upon activation of the LFA-1 receptor by CD2, 
CD3 triggering or PMA, indicates that this Ca 2+ binding 
site is also occupied upon ligand binding. This is opposite 
to the expression of the 24 epitope, a Mg 2÷ dependent epi- 
tope on LFA-1, which parallels functional activity of LFA-1 
(Dransfield et al., 1992). A negative regulatory role for 
Ca 2+ in integrin activation has been reported (Dransfield et 
al., 1992; Staatz et al., 1989; Kirchhofer et al., 1991; 
Dransfield, 1991; Ginsberg et al., 1991). The data described 
here, in which Mg 2+ ions do not inhibit Ca 2+ binding and 
expression of the L16 epitope, are distinct from the observa- 
tion that Ca 2+ has an inhibitory effect on the expression of 
the Mg2+-dependent epitope as recognized by the antibody 
24 (Dreyer et al., 1991; Dransfield et al., 1992). Together, 
these findings strongly suggest that L16 and 24 recognize dis- 
tinct cation binding domains. This notion is supported by the 
finding that Ca ~+ occupancy, as detected by NKI-L16 bind- 
ing, can be replaced by Sr 2+, whereas Mg 2+ occupancy, as 
detected by 24 binding, can be inhibited by Ca 2+ but not by 
Sr 2÷ (Dransfield et al., 1992). Further evidence for the no- 
tion that both antibodies recognize distinct sites on LFA-1 
comes from the finding that Mg 2+ does not affect binding of 
Ca 2÷ to form of the L16 epitope (Table II), and that L16 is 
exclusively expressed by LFA-1, whereas the epitope recog- 
nized by antibody 24 is expressed by all three/32 integrins. 
Because anti-CD18 antibodies block binding of 24 antibod- 
ies, it has been suggested that residues on the/5 subunit might 
participate with the proposed cation binding sequences on 
the ol subunit to provide the sixth co-ordination site (-Z) for 
Mg 2+ binding (Dranstield, 1991). However, since the L16 
epitope is not blocked by anti-CD18 antibodies, and since ex- 
pression of L16 does not correspond with ligand bound LFA- 
1, it is likely that the/3-chain is not involved in the formation 
of the Ca 2+ binding site that may form the L16 epitope. In 
relation to this, the recent finding of Michishita et al. (1993), 
who describe a novel cation-binding site located in the 
A-domain of the a chain of CR3 nicely demonstrate that 
divalent cations like Mn 2+ and Mg 2+ can bind to this new 
divalent cation-binding site, which is also shown to be im- 
portant in ligand binding. 
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