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Abstract

Age-related Macular Degeneration (AMD) is a major cause of central vision loss in the elderly and smoking is a primary risk
factor associated with the prevalence and incidence of AMD. To better understand the cellular and molecular bases for the
association between smoking and AMD, we determined the effects of Benzo(a)Pyrene (B(a)P), a toxic element in cigarette
smoke, on cultured retinal pigment epithelia (RPE) and we examined the RPE/choroid from mice exposed to chronic cigarette
smoke. We measured: mitochondrial DNA (mtDNA) damage, phagocytic activity, lysosomal enzymes, exosome markers and
selected complement pathway components. In the presence of a non-cytotoxic dose of B(a)P, there was extensive mtDNA
damage but no nuclear DNA damage. RPE phagocytic activity was not altered but there were increased lysosomal activity,
exocytotic activity and complement pathway components. Retinas from mice exposed to cigarette smoke contained markers
for mtDNA damage, exosomes and complement pathway components surrounding Bruch’s membrane. Markers for these
processes are found in drusen from AMD patients. Thus, smoking may cause damage to mtDNA and increased degradative
processes in the RPE. These altered cell biological processes in the RPE may contribute to the formation of drusen in individuals
who are cigarette smokers and underlie susceptibility to genetic mutations associated with AMD.
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Introduction

Age-related Macular Degeneration (AMD) is a major cause of

loss of central vision in the elderly in the United States. Due to the

aging population, the number of people with advanced AMD will

increase from 1.75 million, currently, to 3 million by 2020 [1].

Smoking is a primary risk factor associated with the prevalence

and the incidence of ‘‘dry AMD’’ and geographic atrophy, in

which there is degeneration of the retinal pigment epithelium

(RPE), and ‘‘wet’’ AMD, in which there is abnormal vascular cell

proliferation and destruction of the RPE and the photoreceptors

[2,3]. The link between cigarette smoking and AMD has been

affirmed by both epidemiological and genetic studies [2,3].

Cigarette smoke, which contains chemical toxins, has been

epidemiologically linked with AMD [4]. A review of 17 studies

found a two- to threefold increased risk for AMD in current smokers

compared with those who never smoked [2,3]. The association

between smoking and AMD has been strengthened even further by

recent epidemiologic studies, including the Age-Related Eye

Disease Study, which found current smokers were at higher risk

and incidence of AMD than both past smokers and those who never

smoked [5]. People who stopped smoking more than 20 years earlier

were not at increased risk of AMD causing visual loss [4,6].

In the last several years, human genetics has associated several

genes and genetic loci with AMD. Genetic studies have identified a

susceptibility locus for AMD, which may be located in or near the

hypothetical LOC387715 gene [7,8]. Kanda et al. have confirmed

that this locus is the susceptibility locus for AMD and that this

gene encodes a mitochondrial protein [9]. Interestingly, this locus

may be associated with smoking in that the combination of the

LOC387715 polymorphism and smoking confers a higher risk for

AMD than either factor alone [10]. Further evidence for genetic

susceptibility related to mitochondria has been provided by Canter

et al., who have correlated the mtDNA polymorphism A4917G

with AMD [11] and Kimura et al, who showed that a

polymorphism in superoxide dismutase 2 is associated with

AMD in a small subset of patients [12]. Nevertheless, there is

little understanding of the underlying cell biology by which

cigarette smoking might contribute to AMD.

Although cigarette smoke contains more than 4000 chemicals,

one of the most toxic classes of compounds is the polycyclic

aromatic hydrocarbons (PAHs) [13], which form DNA adducts.

Benzo(a)Pyrene (B(a)P) is a PAH that forms DNA adducts and has

been studied in lung and liver tissue [13]. When mammalian cell

cultures are exposed to B(a)P, the extent of covalent modification

of mtDNA is far greater than that of nDNA [14]. In vitro

experiments with various cell types have routinely used concen-

trations of 10 to 100 mM. In cultures of bovine RPE cells, Patton

et al. found cellular DNA damage and altered morphology at 50

and 100 mM B(a)P [15].
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We have previously demonstrated that increased mtDNA

damage, autophagy and exosomes in the aged RPE may contribute

to the formation of drusen [16,17]. We now hypothesize that these

processes are associated with cigarette smoking and AMD. To

better understand the cellular and molecular bases for the

epidemiologic and genetic associations between cigarette smoking

and AMD, we examined the effects of B(a)P on functions of cultured

human RPE (ARPE-19). We also determined whether the RPE/

choroid of mice exposed to chronic cigarette smoke developed

features of mtDNA damage and increased exocytotic activity that

we had seen previously with aging [17].

Materials and Methods

APRE-19 cell culture
ARPE-19 cells are a spontaneously transformed human RPE

cell line [18]. ARPE-19 cells were purchased from American Type

Culture Collection (ATCC, Manassas, VA) and maintained in

DMEM/F12 with 10% fetal bovine serum (FBS), according to

published methods [19].

Ethics statement
All animal experiments were conducted according to the

ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research, and the research was approved by the

institutional research board at Johns Hopkins Medical Institutions.

Viability assay
ARPE-19 cells were seeded at a density of 8000 cells/well onto

96-well plates. One day after seeding, the plate were treated with

media containing 0, .25, 2.5, 5, 10, 20, 40, 80 mM B(a)P. After the

cells were treated for 24 hr, the cell viability was quantified by MTT

assay (Promega, Madison, WI), following the manufacturer’s

instructions. Briefly, the wells were washed with normal culture

media and incubated with MTT for an additional 4 hr at 37uC.

Absorbance at 570 nm was determined using a Microplate Reader

Table 1.

A. DNA primers used for LX-PCR

16.2-kb mitochondria fragment

15149 59-TGA GGC CAA ATA TCA TTC TGA GGG GC-39 Sense

14841 59-TTT CAT CAT GCG GAG ATG TTG GAT GG-39 Antisense

8.9 Kb mitochondrial fragment

5999 59-TCT AAG CCT CCT TAT TCG AGC CGA -39 Sense

14841 59-TTT CAT CAT GCG GAG ATG TTG GAT GG-39 Antisense

Short fragment of mtDNA (221 bp)

14620 59-CCC CAC AAA CCC CAT TAC TAA ACC CA-39 Sense

14841 59-TTT CAT CAT GCG GAG ATG TTG GAT GG-39 Antisense

13.5-kb fragment from the 59 flaking region near the â-globin gene

48510 59-CGA GTA AGA GAC CAT TGT GGC AG-39 Sense

62007 59-GCA CTG GCT TAG GAG TTG GAC T-39 Antisense

10.4 Kb fragment encompassing exons 2–5 of the HPRT gene

14577 59- TGG GAT TAC ACG TGT GAA CCA ACC -39 Sense

24997 59- GCT CTA CCC TCT CCT CTA CCG TCC -39 Anti-sense

B. Primers for real-time RT-PCR

CYP1A1

59- AGTGGCAGATCAACCATGACCAGA -39 Sense

59- CCGCTTGCCCATGCCAAAGATAAT -39 Anti-sense

CFH

59- TGTGTATAAGGCGGGTGAGCAAGT -39 Sense

59- ACACAGGAGGTGTCTCTGCATGTT -39 Anti-sense

C3

59- TGA CCA CCA GGA ACT GAA CCT TGA -39 Sense

59- TCA GCT GTG ACT GTG AAA CCC TCA -39 Anti-sense

CFB

59- TGG TTT GGG AAC ACA GGA AGG GTA -39 Sense

59- TCC CTT TGA AGG GCG AAT GAC TGA -39 Anti-sense

CD59

59- TGA TGG CTG ACA GTG TGT CCA GAT -39 Sense

59- ACT GCT CCC TTC AGA GAA AGC ACA -39 Anti-sense

doi:10.1371/journal.pone.0005304.t001
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(Model 680; Bio-Rad, CA). All assay points were determined in

triplicate and all experiments were repeated three times.

Western blot
ARPE-19 cells were lysed in buffer (20 mM HEPES, pH 7.0,

10 mM KCl, 2 mM MgCl2, 0.5% Nonidet P-40, 1 mM Na3VO4,

1 mM PMSF, and 0.15 U ml–1 aprotinin) and homogenized.

Protein concentrations were determined using the Bradford

colorimetric assay. Thirty micrograms of each protein lysate were

loaded in each lane in sample buffer (2% SDS, 10% glycerol,

0.001% bromophenol blue, 1% DTT, and 0.05 M Tris-HCl,

pH 6.8), separated on 10% SDS–PAGE (Invitrogen), and trans-

ferred to a PVDF membrane (Millipore, Temecula, CA). The blots

were blocked with 5% nonfat milk in PBS for 1 hr and incubated

with rabbit anti-Cathepsin D (1:4000, GeneTex), rabbit anti-b
glucuronidase (1:500, Protein Tech Group)), followed by peroxi-

dase-conjugated donkey anti-rabbit IgG (1:15,000) for 1 hr at room

temperature. Finally, the blots were developed by enhanced

chemiluminescence (ECL) (Pierce) on Hyperfilm (Amersham).

The immunoblots were scanned and relative band density was

determined using ImageJ (National Institutes of Health, Bethesda,

MD). The densities were normalized to b-actin and analyzed by a

standard two-tailed t-test using GraphPad Prism.

Long Extension-Polymerase Chain Reaction (LX-PCR)
LX-PCR [19] was performed on B(a)P treated ARPE-19 cells

(described above). Genomic DNA was isolated with DNeasy Blood &

Tissue Kit (Qiagen). The quantitation of the purified genomic DNA,

as well as of PCR products, was performed fluorometrically using the

PicoGreen dsDNA reagent (Invitrogen). LX-PCR was performed

with the GeneAmp XL PCR system (Applied Biosystems), which

uses rTth DNA Polymerase XL enzyme designed to amplify target

DNA sequences up to about 40 kB. The amounts of primers were

20 pmol and the Mg2+ concentration was 1.3 mM. The pairs of

PCR primers employed in this study are given in Table 1. All the

protocols were initiated by a hot start (75uC, 2 min) prior to addition

of rTth enzyme. For amplification of the long fragment of mtDNA,

the standard thermocycler program included initial denaturation at

94uC for 1 min, 26 cycles for 15149/14841 or 19 cycles for 5999/

14841 of 94uC 15 sec, 65uC 12 min, with final extension at 72uC for

10 min. To amplify a short mtDNA fragment (221 bp) the same

program as 15149/14841 was used except that extension temper-

ature was 60uC. To amplify a long nDNA fragment, the

thermocycler profile included initial denaturation at 94uC for

1 min, 27 cycles for b-globin or 29 cycles for HPRT of 94uC
15 sec, 65uC 12 min, with final extension at 72uC for 10 min. DNA

damage was quantified by comparing the relative efficiency of

amplification of large fragments of DNA (16.2 and 7.5 KB from

mtDNA and 13.5 and 12.2 KB for nDNA) and normalizing this to

the amplification of smaller (221 bp and 84 bp) fragments. The

template DNA (1,50 ng) was varied so that PCR products were

obtained during the log phase of the PCR amplification.

Preparation of photoreceptor outer segments (POS)
POS were isolated according to established protocols from

bovine eyes obtained fresh from the slaughterhouse [20]. POS

were stored suspended in 10 mM sodium phosphate, pH 7.2,

0.1 M sodium chloride, 2.5% sucrose at 280uC. Before use, POS

were thawed and labeled by addition of 20% vol of 1 mg/ml

FITC (Molecular Probes) in 0.1 M sodium bicarbonate, pH 9.0,

for 1 hr at room temperature in the dark. POS were then washed

and re-suspended in cell culture media.

Phagocytic activity assay
Phagocytosis was measured using a previously published

method [21]. Our laboratory previously reported that exposure

to fluorescein labeled POS (FITC-POS) to ARPE-19 cells caused a

linear uptake for up to 6 hours without loss of cell viability [22].

After exposure to 10 mM B(a)P for 24 hrs, the RPE cells were fed

with FITC-POS (10 POS/RPE cell) for 3 hrs under culture

conditions before rinsing four times with PBS containing 1 mM

MgCl2 and 0.2 mM CaCl2. The total fluorescence was recorded at

485/525 nm using Tecan plates. Each assay was repeated four

times. Intensities were calculated with Graph Pad Prism.

Cathepsin D enzyme activity
Cathepsin D activity was measured in ARPE-19 cell extracts

using a kit containing a fluorogenic peptide substrate peptide,

MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-D-

Arg-NH2 (Sigma CS0800), reaction buffer (pH 4.0), and stan-

dards. Reactions were initiated by the addition of substrate and

kinetics of substrate hydrolysis was measured using a fluorescent

Figure 1. Cell viability assay for ARPE-19 cells treated with B(a)P. Concentrations in the media of 1.25 to 20 mM of B(a)P did not cause a
significant decrease of cell viability (p.0.05, n = 10). Data are expressed as normalized ratios (Control = 100).
doi:10.1371/journal.pone.0005304.g001
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plate reader (Biotek Synergy 2, Ex 340 nm, Em 460 nm) at 37uC
for 15 min with data points collected every 120 sec. Data was

imported to Graph Pad Prism for analysis, determination of initial

rates, and normalization to total protein assayed.

N-acetyl- b-glucosoamidase (b glucuronidase activity)
enzyme activity

Enzyme activity was measured in ARPE-19 cell extracts using

the fluorogenic substrate 4-methylumbelliferyl-N-acetyl- b-gluco-

soamide (Sigma) and previously published methods [23]. Briefly,

cell extract protein (8–10 mg) was added to a pH 4.5 reaction

buffer (20 mM Na Acetate, 0.1 M NaCl) in duplicate wells in a 96

well format. The reactions were initiated by adding substrate to a

final concentration of 100 mM. Plates were sealed and incubated

at 37uC for 60–300 min in a plate reader (Synergy II – BioTek).

The generated fluorescence was read at 20 min time intervals (Ex

360 nm, Em 465 nm). Standards of 4-methylubelliferone were

used to calibrate the fluorescence signal to nmol of hydrolyzed

Figure 2. Damage to mtDNA by 10 mM B(a)P. (A) real time RT-PCR for CYP1A1. There is a significant increase of CYP1A1 expression levels after
6 hr B(a)P treatment and this increase continued with time at 12, 24 and 48 hrs. (B–C) BPDE-DNA adducts in ARPE-19 cells. In these confocal
immunofluorescence images, an-anti-BPDE-DNA antibody labels particles in the cytoplasm of ARPE-19 cells after B(a)P treatment (C), but not in the
control (B). (D–E) LX-PCR for mtDNA and nDNA. B(a)P at 10 mM damaged mtDNA (p,0.05, n = 3)., but not nDNA (p.0.05, n = 3). Data are expressed as
normalized ratios (Control = 1).
doi:10.1371/journal.pone.0005304.g002
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substrate. Kinetic data was input to Graph Pad Prism for analysis

and determination of initial rates.

Real time RT-PCR
Total cellular RNA from mouse RPE/choroid was isolated and

purified (PicoPureTM; Arcturus, Mountain View, CA). Samples of

the total starting RNA were analyzed by capillary electrophoresis

(Agilent Technologies, Palo Alto, CA) to assess the degree of

purification. Real time RT-PCR (qRT-PCR) was done using the

SYBR-Green dye binding method implemented on an Applied

Biosystems 7900 genetic analyzer. Validated primers for each gene

of interest were designed for each target mRNA (Table 1B).

Optimization of primers and determination of the input cDNA

levels were done to ensure appropriate cycle time response. Relative

expression was calculated from the differences in cycle time of an

internal standard (18 s RNA) compared to the target mRNA.

Exposure to cigarette smoke
At 8 weeks of age, mice were placed into a smoking chamber for

5 hours/day, 5 days/week for 6 months. This chamber contains a

smoking machine (Model TE-10, Teague Enterprises, Davis, CA)

that burns 5 cigarettes (2R4F reference cigarettes, 2.45 mg

nicotine/cigarette; Tobacco Research Institute, University of Ky)

at a time. Eight puffs per minute were taken of 2 seconds duration at

a flow rate of 1.05 l/min, to provide a standard puff of 35 cm3. The

machine is adjusted to produce side stream (89%) and mainstream

smoke (11%). The chamber atmosphere is monitored to maintain

total suspended particulate at 90 mg/m3, and carbon monoxide at

350 ppm. At the rate indicated above, the entire volume of the

chamber was exposed to the equivalent of 33 cigarettes/hr. Control

mice were kept in a filtered air environment.

Mouse eye tissues
An equal number of male and female C57Bl6 mice were fed

standard rodent chow and water ad libitum, and kept in a 12-hour

light-dark cycle. Multiple retinal sections from the eyes of five mice

(C57Bl6) exposed to cigarette smoke and eyes of five control mice

(C57Bl6) not exposed to cigarette smoke were used. Exposure to

cigarette smoke began at 2 months of age and continued for 6

months [24]. Mice exposed to cigarette smoke and control mice

were 8 months of age at sacrifice.

Immunohistochemistry
Cryosections (8 mm) from mice exposed to air or cigarette smoke

for 6 months were first blocked with BSA, 5%, for 20 min and

incubated at 4uC overnight with a primary antibodies, mouse-anti

BPDE-DNA (1:50, Santa Cruz), mouse anti-CD63, CD81 and

LAMP2 (1:50, Abcam), mouse anti-C3a (1:50, Chemicon) and mouse

anti-C5 (1:50, Lifespan). Primary antibody was omitted in the

negative control. After several washes, tissue sections were incubated

with the secondary antibody, anti-mouse rhodamine red (1:1000,

Molecular Probes) for 1 hr at room temperature. After washing with

PBS, the slides were mounted with Vectorshield containing DAPI

(Vector Laboratory) and observed using confocal microscopy.

Ultrastructural analysis
After mice were sacrificed and eyes were enucleated, one eye

was fixed in 2.5% glutaraldehyde and 1% paraformaldehyde in

0.08 M cacodylate buffer in preparation for electron microscopy.

The contralateral eye was either fixed in 2% paraformaldehyde for

histochemical analysis. The central 262 mm tissue temporal to the

optic nerve was postfixed with 1% osmium tetroxide and

dehydrated and embedded in Poly/Bed 812 resin (Polysciences,

Inc., Warrington, PA). Ultrathin sections were stained with uranyl

acetate and lead citrate, and examined with a JEM-100 CX

electron microscope (JEOL, Tokyo, Japan) in the Northwestern

University Core Facility.

Statistical analyses
Data are presented as mean6SEM with statistical differences

between groups analyzed by standard Student two-tailed t-test and

one way ANOVA using GraphPad Prism 5 software. A p value of

less than 0.05 was considered statistically significant.

Results

mtDNA damage following exposure to B(a)P in ARPE-19
cells

A dose-response curve was performed to determine a non-

cytotoxic dose of B(a)P. We found that B(a)P at a concentration of

10 mM was not cytotoxic to ARPE-19 cells (Fig. 1) and this

concentration was used for all further experiments. B(a)P acts as a

substrate for the cytochrome P450 1A1 (CYP1A1) isoform and is

Figure 3. Phagocytic activity of ARPE-19 cells. B(a)P at concentrations in the media of 2.5–20 mM did not change phagocytic activity when cells
were exposed to fluorescein labeled bovine photoreceptor outer segments for 3 hr (p.0.05, n = 4).
doi:10.1371/journal.pone.0005304.g003
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ultimately converted into B(a)P-7,8-diol 9,10-epoxide (BPDE),

which binds covalently to DNA to produce BPDE adducts [13].

We investigated the changes in expression of CYP1A1 when B(a)P

was added to the medium using real-time RT-PCR. As shown in

Fig. 2A, in the presence of B(a)P, expression of CYP1A1 was

significantly increased (p,0.05, n = 3), in RPE cells by 6 hr, and

Figure 4. Lysosomal enzyme activity. (A–C) Comparison of protein levels of cathepsin D (A) and b-glucuronidase (B) in ARPE-19 cells by
immunoblots. b-actin was used as a loading control (C). (D) Expression of cathepsin D in ARPE-19 cells. The differences in protein levels of cathepsin D
were determined by scanning gels and determining the integrated areas of the bands using Image-J software. Data are expressed as normalized
ratios to actin. Appropriate background subtraction and normalization of the data to actin was done for each blot. Values are the mean6SEM. There
were significant increases in cathepsin D protein following 10 mM B(a)P treatment for 24 hr and 48 hr (p,0.05, n = 3), compared to untreated
controls. Data were expressed as normalized ratios to actin. (E) Expression of b-glucuronidase in ARPE-19 cells. The differences in expression levels of
b-glucuronidase were determined by scanning gels and determining the integrated areas of the bands using Image-J software. Data are expressed as
normalized ratios to actin. Appropriate background subtraction and normalization of the data to actin was done for each blot. Values are the
mean6SEM. There were significant increases in b-glucuronidase protein following 10 mM B(a)P treatment for 24 hr and 48 hr (p,0.05, n = 3),
compared to untreated controls. (F) Cathepsin D enzymatic activity from cell extracts were significantly increased at 10 mM B(a)P treatment (p,0.05,
n = 3). (G) b-glucuronidase enzymatic activity from cell extracts was significantly increased at 10 mM B(a)P treatment (p,0.05, n = 3).
doi:10.1371/journal.pone.0005304.g004
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expression increased with time at 12, 24 and 48 hrs. Furthermore,

the BPDE-DNA adduct was observed in the cytoplasm of ARPE-

19 cells treated with 10 mM B(a)P (Fig. 2C), but not in untreated

control cells (Fig. 2B).

Previous studies showed that when cells are exposed to B(a)P,

the extent of covalent modification of mtDNA is 40–90 times

greater than that of nDNA [14]. We determined whether the

effects of B(a)P was primarily on mtDNA or on nDNA in RPE. To

assess damage to DNA, we used the Long-extension PCR (LX-

PCR) technique [16,17,19,25]. This method determines the

relative amplification of long stretches of mtDNA and nDNA

(.6 kb), which will be less efficiently transcribed when nucleotides

are modified by oxidation or alkylation. We found there was a

significant decrease in the relative amplification of mtDNA but not

nDNA (Fig. 2D and E), indicating greater B(a)P damage to

mtDNA compared to nDNA (p,0.05, n = 3). Agarose gel

electrophoresis showed that all mtDNA PCR products were single

bands of the appropriate size (data not shown).

Phagocytic activity
Functionally, RPE cells are among the most active phagocytic

cells in the body [26]. To determine whether B(a)P affects

phagocytosis, we measured the phagocytosis of bovine photorecep-

tor outer segment (POS) that were labeled with fluorescein. ARPE-

19 cells were treated with B(a)P for 24 hr and then exposed to

fluorescently labeled POS for 3 hr. There was no difference in the

fluorescence intensity when cells were treated with B(a)P (Fig. 3).

Thus, the damage to mtDNA with 10 mM B(a)P in ARPE-19 cells

had no impact on the phagocytosis of POS (p.0.05, n = 4).

Lysosomal activity
Another major function of the RPE is lysosomal digestion of

damaged intracellular macromolecules from autophagy (e.g.

arising from damage to mtDNA), phagosomes (containing POS)

and endosomes. We determined whether B(a)P affected lysosomal

activity. An important lysosomal enzyme in RPE cells is the

aspartic protease, cathepsin D [27]. After exposure to 10 mM

B(a)P for 24 hr and 48 hr, cathepsin D protein levels (Fig. 4A and

D) and activity (Fig. 4F) were significantly increased (p,0.05,

n = 3). In addition, we measured another lysosomal enzyme, b-

glucuronidase, in RPE. b-glucuronidase protein levels (Fig. 4B and

E) and activity (Fig. 4G) were significantly increased after 10 mM

B(a)P exposure for 24 hr and 48 hr.

Exosome markers in stressed RPE
We hypothesized that RPE, compromised by the toxic

components of cigarette smoke, will need to increase removal of

damaged intracellular macromolecules. Endosomes, and the

exosomes (40–100 nm vesicles) that they form and release, are

mechanisms that remove intracellular macromolecules [28]. Thus,

we treated ARPE-19 cells with 10 mM B(a)P and measured, by

quantitative RT-PCR, three markers for late endosomes and

exosomes: CD63, CD81 and LAMP2. As shown in Fig. 5A,

exposure to 10 mM B(a)P for 24 hrs caused increased expression of

CD63, CD81 and LAMP2 (p,0.05, n = 3).

Complement activation in stressed RPE
Our previous data, comparing gene expression profiles from

young and old mice, showed that the RPE/choroid in the aged

mouse has become an immunologically active tissue [29]. We

determined the levels of complement pathway components after

B(a)P exposure. C3, CFH, CFB are well-known risk factors for

AMD. CD59 is upregulated in ARPE-19 cells when treated with

oxidized low density lipoprotein [30]. As shown in Fig. 5B,

exposure of ARPE-19 cells to 10 mM B(a)P increased expression of

C3, CFH, CFB, and CD59 (p,0.05, n = 3). These results are

consistent with increased immunological activity in vivo. Thus, in

cultured cells, sublethal concentrations of B(a)P induce mtDNA

damage, increased lysosomal enzyme activity, increased expression

of exosome markers and increased expression of complement

pathway components.

Exosome markers and complement pathway markers in
RPE/choroids from mice exposed to chronic cigarette
smoke

To determine whether the effects of B(a)P seen in vitro in

ARPE-19 cells are consistent with changes in vivo, we sought

evidence for increased exocytotic activity and increased comple-

ment pathway components in the RPE/choroid of mice exposed

to chronic cigarette smoke for 6 months, starting at 2 months of

age. For immunohistochemistry, five mouse eyes were used for

each group. Mice exposed to chronic cigarette smoke had positive

immunoreactivity to the BPDE-DNA adduct in the RPE, but

there was no labeling in control mice (Fig. 6A and B). Interestingly,

we found exosome marker proteins, CD63, CD81 and LAMP2,

between RPE and choroid from mice exposed to chronic cigarette

smoke, but little or no exosome markers were found in the control

tissues (Fig. 6C,H). The exosome markers appeared to be on the

choroid-side of Bruch’s membrane. We also found that comple-

ment pathway components C3a, C5, C5b-9 and CFH were

Figure 5. Exosome markers and complement in ARPE-19 cells.
(A) When the cells were treated with 10 mM B(a)P for 24 hr to damage
their mtDNA, gene expression of exosome markers CD63, CD81 and
LAMP2 was significantly increased at 24 hrs (p,0.05, n = 3). (B) When
the cells were treated with 10 mM B(a)P for 24 hr to damage their
mtDNA, gene expression of complement pathway components CFH,
C3, CFB and CD59 was significantly increased at 24 hrs (p,0.05, n = 3).
doi:10.1371/journal.pone.0005304.g005
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Figure 6. Immunolocalization of BPDE-DNA, exosome markers and complement pathway components in mice exposed to chronic
cigarette smoke. These confocal immunofluorescence images were overlayed with the bright field images. (A–B) BPDE-DNA. Immunoreactivity to
the BPDE-DNA adduct is present in RPE of mice exposed to chronic cigarette smoke (B), but not in control tissues (A). (C–D) CD63, Immunoreactivity
to CD63 is observed in the area of Bruch’s membrane of mice exposed to chronic cigarette smoke (D), but not in the control tissues (C). (E–F): CD81.
Immunoreactivity to CD81 is observed in the area of Bruch’s membrane of mice exposed to chronic cigarette smoke (F), but not in the control tissues
(E). (G–H) LAMP2. Immunoreactivity to LAMP2 is observed in the area of Bruch’s membrane of mice exposed to chronic cigarette smoke (H), but not in
the control tissues (G). (I–J) C3a. Immunoreactivity to C3a is observed in the area of Bruch’s membrane of mice exposed to chronic cigarette smoke (J),
but not in the control tissues (I). (K–L) C5. Immunoreactivity to C5 is observed in the area of Bruch’s membrane of mice exposed to chronic cigarette
smoke (L), but not in the control tissues (K). (M–N) Immunoreactivity to C5b-9 is observed in the area of Bruch’s membrane of mice exposed to
chronic cigarette smoke (N), but not in the control tissues (M). (O–P) Immunoreactivity to CFH is observed in the area of Bruch’s membrane of mice
exposed to chronic cigarette smoke (P), but not in the control tissues (O). Scale bar = 20 mm. Blue: DAPI.
doi:10.1371/journal.pone.0005304.g006
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present between RPE and choroid from mice exposed to chronic

cigarette smoke, but not in the control tissues (Fig. 6I,P). These

complement pathway components were also on the choroid-side of

Bruch’s membrane. When sufficient material becomes available,

immunoblots should be done to verify these apparent differences.

Damage to mitochondria in the RPE of mice exposed to
cigarette smoke

By electronmicroscopy, the mitochondria in the RPE of 8

months old mice raised in air appeared normal; the membranes

and cristae were clearly visible (Fig. 7 A and C). In contrast, the

mitochondria in the RPE of 8 months old mice that had been

exposed to chronic cigarette smoke exhibited ultrastructural

injury. Many mitochondria had lost their outer membranes and

had severe disorganization that varied from focal to complete loss

of cristae (B and D). The damaged mitochondria were in close

proximity to the swollen membrane invaginations on the basal

border of the RPE, which has been previously reported (23).

Discussion

We have previously shown that there is increased mtDNA

damage, autophagy and the release of intracellular proteins via

exosomes in the RPE of old mice and that many of the markers for

these processes are found in drusen in AMD patients [17]. The

current results show that B(a)P and cigarette smoke initiates some

of the same changes in RPE cells that we found associated with age

and AMD. The changes in RPE function that we have found in

old mice and now in mice exposed to cigarette smoke, to the extent

that such changes occur in humans, are likely to contribute to the

cellular and molecular bases for the epidemiologic and genetic

associations between cigarette smoking and AMD.

Cigarette smoking is the strongest environmental risk factor

associated with AMD. The epidemiologic data, such as the Beaver

Dam Eye Study, AREDS study [5], and the Blue Mountain study

[31], associate smoking with early AMD as well as progression of

AMD. The RPE appears to be a specific target of cigarette

smoking associated changes. In human [5,32] studies, cigarette

smoking is associated with RPE abnormalities such as with

development of geographic atrophy of the RPE and cell death

from apoptosis. Furthermore, mice exposed to chronic cigarette

smoke develop evidence of oxidative damage with ultrastructural

degeneration of the RPE and Bruch’s membrane, as well as RPE

apoptosis [24]. Increased oxidative DNA damage to the RPE/

choroid has been reported in mice exposed to chronic cigarette

smoke [24]. Our findings are consistent with and extend this work

by demonstrating that the increased damage was primarily to

mtDNA and not nDNA. The ultrastructural changes to RPE

mitochondria observed by electronmicroscopy are also consistent

with mitochondrial DNA damage.

Increased cathepsin activity has been reported for the human

RPE with age [33,34]. We have previously measured increased

expression of cathepsin D in the RPE/choroid of old mice

compared to young mice (unpublished data). After treatment with

B(a)P, cathepsin D and b-glucuronidase proteins and activities

were increased. Thus, B(a)P induced an RPE cell line to increase

expression of lysosomal enzymes that are known to increase with

age. Whether differential changes in lysosomal enzymes exist in

the RPE of AMD patients, comparing smokers and nonsmokers,

merits further investigations.

Generation of intracellular damaged macromolecules leads to

increased exocytotic activity. Exocytotic activity includes the

formation of endosomes, multi-vesicular bodies and the release

of exosomes from the cell. Although collection of exosomes from

Figure 7. Transmission electron microscopy of the RPE-Bruch’s membrane. A. Control, mice exposed to air (n = 5). This representative
micrograph shows that mitochondrial membrane and cristae were well preserved and the matrix has homogeneous electron-dense (arrows). B. Mice
exposed to cigarette smoke (n = 5). This representative micrograph shows that mitochondria had lost outer membrane and there was disorganization
of cristae (arrows). C. Control, mice exposed to air. This representative micrograph at high power shows intact outer membranes of mitochondria. D.
Mice exposed to cigarette smoke. This representative micrograph at high power shows loss of mitochondrial outer membranes (arrows) and
disorganization of the cristae (arrowhead). A, B: Scale bar = 1 mm; C, D: scale bar = 500 nm.
doi:10.1371/journal.pone.0005304.g007
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tissue is not possible, our previous studies of mtDNA damage in

ARPE-19 cells demonstrated that exosome markers are upregu-

lated and released when the cells are stressed [17]. Treatment of

ARPE-19 cells with B(a)P upregulated the same set of exosome

markers (CD63, LAMP2, and CD81). Similarly, we found

increased exosome markers surrounding Bruch’s membrane in

the eyes of mice exposed to cigarette smoke, implying that released

exosomes and/or their protein components and contents are being

trapped locally in the tissue. We previously found that there are

exosome markers in drusen from eyes of AMD patients [17]. To

the extent that exosomes contribute to the formation of drusen and

the subsequent onset of AMD, cigarette smoking may be an

accelerating factor for this process. Further studies of AMD

patients who were smokers are needed to determine whether

cigarette smoking leads to increased exosome markers in the RPE/

choroid.

AMD has been associated with local inflammatory responses in

the RPE/choroid [35]. In previous work, we demonstrated that

the aged RPE/choroid becomes immunologically active [29] due

to increased expression of complement components (e.g. C3) and

cytokines (e.g. MCP-1) that recruit macrophages and other cells

into the tissue. Our model of mtDNA damage in ARPE-19 cells

also caused increased release of cytokines [17]. Using B(a)P to

cause mtDNA damage in ARPE-19 cells, we now demonstrate

that complement components C3, CFH, CFB and CD59 are

upregulated. In addition, the RPE/choroid of mice exposed to

chronic cigarette smoke had increased expression of complement

pathway components such as C3a, C5, C5b-9 and CFH. The

increased expression of cytokines and complement pathway

components is significant because of genetic polymorphisms

associated with increased risk of AMD. For example, a mutation

in the HF1/CFH gene increases risk of AMD in both

homozygotes and heterozygotes [36]. Similarly, studies of CFB

and C2 found variants associated with AMD [37]. Thus, cigarette

smoking may further increase the inflammatory activity of the old

RPE/choroid and/or promote inflammatory activity in this tissue

at an earlier age. Such increased activity in the presence of a gene

polymorphism may cause dysfunctional events in the RPE/

choroid leading to AMD.

Our findings link B(a)P and cigarette smoke with mtDNA

damage, altered lysosomal activity, increased exocytotic activity

and complement activation in the RPE. These changes are similar

to those seen in aged eyes. Therefore, altered cell biological

processes caused by age and/or cigarette smoking may underlie

susceptibility to genetic mutations that are found in AMD patients

and may be associated with the pathogenesis of AMD in the

elderly.
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