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Recent literature suggests that tri-exponential models may provide additional

information and fit liver intravoxel incoherent motion (IVIM) data more

accurately than conventional bi-exponential models. However, voxel-wise

fitting of IVIM results in noisy and unreliable parameter maps. For bi-

exponential IVIM, neural networks (NN) were able to produce superior

parameter maps than conventional least-squares (LSQ) generated images.

Hence, to improve parameter map quality of tri-exponential IVIM, we

developed an unsupervised physics-informed deep neural network (IVIM3-

NET). We assessed its performance in simulations and in patients with non-

alcoholic fatty liver disease (NAFLD) and compared outcomes with bi-

exponential LSQ and NN fits and tri-exponential LSQ fits. Scanning was

performed using a 3.0T free-breathing multi-slice diffusion-weighted single-

shot echo-planar imaging sequencewith 18 b-values. Imageswere analysed for

visual quality, comparing the bi- and tri-exponential IVIM models for LSQ fits

and NN fits using parameter-map signal-to-noise ratios (SNR) and adjusted R2.

IVIM parameters were compared to histological fibrosis, disease activity and

steatosis grades. Parameter map quality improved with bi- and tri-exponential
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NNapproaches, with a significant increase in average parameter-map SNR from

3.38 to 5.59 and 2.45 to 4.01 for bi- and tri-exponential LSQ and NN models

respectively. In 33 out of 36 patients, the tri-exponential model exhibited higher

adjusted R2 values than the bi-exponential model. Correlating IVIM data to liver

histology showed that the bi- and tri-exponential NN outperformed both LSQ

models for themajority of IVIM parameters (10 out of 15 significant correlations).

Overall, our results support the use of a tri-exponential IVIM model in NAFLD.

We show that the IVIM3-NET can be used to improve image quality compared to

a tri-exponential LSQ fit and provides promising correlations with

histopathology similar to the bi-exponential neural network fit, while

generating potentially complementary additional parameters.

KEYWORDS

magnetic resonance imaging, diffusion magnetic resonance imaging, non-alcoholic
fatty liver disease, intravoxel incoherent motion (IVIM), deep learning, tri-exponential,
unsupervised learning

Introduction

The prevalence and degree of obesity and type 2 diabetes

mellitus are increasing worldwide, resulting in a concomitant

increase in non-alcoholic fatty liver disease (NAFLD), which is

now the most prevalent global liver disease (Younossi et al.,

2016). NAFLD is characterized by an accumulation of lipids

within hepatocytes, known as steatosis, which in turn can trigger

intracellular events in the liver, such as hepatocyte ballooning,

lobular inflammation and ultimately liver fibrosis (Parthasarathy

et al., 2020). NAFLD can lead to liver-related complications such

as cirrhosis and hepatocellular carcinoma (Younossi et al., 2016),

and is also thought to contribute to an increased risk of

atherosclerotic cardiovascular disease (Targher et al., 2016;

Stefan et al., 2019). Liver biopsy is currently the gold standard

for diagnosing and staging NAFLD, assessing levels of steatosis,

inflammation, ballooning and fibrosis from a small tissue sample.

Several disadvantages of liver biopsy include patient discomfort,

a small, yet severe risk of life-threatening intraperitoneal

haemorrhage and inaccuracies due to sampling error (Gilmore

et al., 1995; Seeff et al., 2010). This has led to a growing interest in

non-invasive techniques for detecting the presence and severity

of NAFLD. MRI has been developed and researched as a

diagnostic tool in NAFLD (Unal et al., 2017). Various

methods have been proposed, of which intravoxel incoherent

motion (IVIM) imaging has shown potential as a biomarker for

assessing and staging NAFLD, particularly for levels of fibrosis

(Li et al., 2017).

IVIM assesses tissue diffusivity and perfusion reflected by

random motion of water molecules in the intracellular and

extracellular spaces as well as in the tissue (micro)circulation,

respectively (Le Bihan et al., 1988). Data acquired using a range of

diffusion weightings (b-values) are typically fitted using a bi-

exponential model using the following formula:

S(b) � S0 · ((1 − f) · e−b·D + f · e−b·Dp) (1)

where diffusion (D), pseudo-diffusion (Dp) and perfusion

fraction (f) parameters are estimated, with S0 equating the

signal intensity for b = 0 s/mm2. NAFLD has the potential to

alter IVIM parameters in multiple ways. In the case of fibrosis,

it can be theorized that the increased collagen depositions in

the liver restrict the free movement of water molecules,

leading to a reduction in the diffusion parameters, while

increased hepatic resistance amongst others can lead to a

reduction in hepatic perfusion. Li et al. show that while

absolute values tend to vary between studies, typically a

decrease in all three IVIM parameters is observed as

fibrosis stage increases (Li et al., 2017). Hepatic

inflammation could be thought to decrease perfusion

parameters in particular due to the inflammatory response,

in which cell infiltration and oedema restrict blood flow in the

capillaries. Hepatocellular ballooning leads to increases in cell

size and therefore in theory could restrict both diffusion and

perfusion parameters. While the literature on IVIM for

assessing inflammation or ballooning grades is less readily

available, the existing literature describes a negative

correlation between perfusion fraction and both

inflammation and ballooning (Murphy et al., 2015).

Recent literature suggests that the bi-exponential IVIM

model may be insufficient for fitting the liver’s complex

structure. The marked signal decay in the IVIM signal

intensity plots seen at low b-values has given rise to the

hypothesis that a tri-exponential model will provide a more

accurate representation of the data and improve fit accuracy

(Chevallier et al., 2021). Herein, an extra exponent is added to

improve this fitting of rapid signal decay at very low b-values:

S(b) � S0 · ((1 − f1 − f2) · e−b·D + f1 · e−b·Dp
1 + f2 · e−b·Dp

2) (2)

where diffusion (D), slow (Dp
1) and fast pseudo-diffusion (Dp

2),
and slow (f1) and fast perfusion fraction (f2) are estimated.

While the origin of the tri-exponential behaviour in the liver is
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still being debated, one leading theory is that f1 signal could arise

from slower incoherent sinusoid perfusion, while f2 signal could

originate from rapid dephasing of coherent flow in opposing

directions or laminar flow profiles in larger vessels (Riexinger

et al., 2020). Available studies advocating the use of a tri-

exponential model show a higher goodness of fit when

compared to a bi-exponential model (Cercueil et al., 2015;

Chevallier et al., 2019; Riexinger et al., 2020), seen by an

improved Akaike information criterion amongst others.

However, the drive towards tri-exponential models is

predominantly based on the fit better describing the data, as

the tri-exponential model has only been implemented in healthy

volunteers. Whether the added fit parameters have value for

disease classification, such as in patients with NAFLD, yet needs

to be investigated.

Although tri-exponential fitting more accurately describes

the data, fitting of this complex model is challenging and current

least-squares (LSQ) methods typically lead to noisy parameter

maps, particularly in the case of pseudo-diffusion. As a result, tri-

exponential fits are often done using averaged data from a region

of interest (ROI), or even averaged data from multiple subjects,

instead of voxel-wise fitting, reducing clinical diagnostic

applicability.

To improve parameter map accuracy, the use of deep

neural networks to model the bi-exponential IVIM fit has

been proposed (Bertleff et al., 2017; Barbieri et al., 2020;

Kaandorp et al., 2021; Koopman et al., 2021; Lee et al., 2021).

In a previous study, a physics-informed unsupervised

approach that could train directly to in-vivo MRI data

(IVIM-NET) (Barbieri et al., 2020; Kaandorp et al., 2021)

was implemented. IVIM-NET provided parameter maps that

were less noisy, visually more detailed and had a higher test-

retest repeatability. However, there is not yet a tri-

exponential equivalent to the neural network. This

approach could substantially improve the voxel-wise fitting

of tri-exponential IVIM, enabling parameter maps with

clinically acceptable quality and aid wider spread

implementation.

Therefore, in this work, we aim to investigate the value of a

deep neural network to fit a tri-exponential model to IVIM data

in NAFLD. We split up the research into two sub-questions:

firstly, does the parameter map quality improve when

introducing neural networks for fitting the bi- and tri-

exponential models? Secondly, is there an added value of tri-

exponential fitting in the non-invasive grading of NAFLD disease

severity? To address these questions, we have developed a deep

neural network to fit a tri-exponential model to IVIM data

(IVIM3-NET). To show our network works, we compared the

performance of IVIM3-NET to LSQ fitting in simulations. We

then tested the tri-exponential versus bi-exponential model in

patients with various stages of NAFLD, and compared the use of

IVIM-NET and IVIM3-NET to conventional bi- and tri-

exponential LSQ fits.

Materials and methods

Design

Patient data were collected as part of the ongoing Amsterdam

NAFLD-NASH cohort (ANCHOR) study as described in

previous work (Troelstra et al., 2021). In this previous clinical

work, the correlations between liver histopathology and several

ultrasonographic and MRI parameters, including the bi-

exponential IVIM-model, were studied. In our current

technical work, we use the data to study the tri-exponential

model and the performance of NNs. All patients underwent an

MRI scan of the liver and ultrasound-guided liver biopsy,

amongst other diagnostic tests. The study was conducted at

Amsterdam University Medical Centre, in compliance with

the principles in the declaration of Helsinki and according to

Good Clinical Practice guidelines. The protocol was reviewed and

approved by the institutional review board of the AMC and was

registered in the Dutch Trial Register (registration number

NTR7191). All participants provided written informed consent

before study activities.

Participants

36 individuals with known hepatic steatosis (confirmed on

ultrasound), a BMI >25 kg/m2 and elevated aspartate

aminotransferase and/or alanine aminotransferase levels were

included. The main exclusion criteria were contraindications for

undergoing MRI, any condition or risk factors potentially leading

to liver disease besides NAFLD (excessive alcohol use, drug-use,

hepatitis, etc.), conditions or risk factors leading to bleeding

disorders and decompensated liver cirrhosis or hepatocellular

carcinomas. Participants were required to fast for a minimum of

4 h before diagnostic tests.

MRI acquisition

MRI scanning was performed using a 3.0T MRI scanner

(Ingenia; Philips, Best, Netherlands) with a 16-channel phased-

array anterior coil and 10-channel phase-arrayed posterior coil.

IVIM data were acquired using a free-breathing multi-slice

diffusion-weighted single-shot echo-planar imaging sequence.

Eighteen unique b-values were acquired: 0, 1, 2, 5, 10, 20, 30,

40, 50, 75, 100, 150, 200, 300, 400, 500, 600, and 700 s/mm2 in

three orthogonal directions. The following acquisition

parameters were used: repetition time 7,000 ms, echo time

45.5 ms, bandwidth 20.8 Hz/pixel in phase encoding direction,

field-of-view 450 × 295 mm2 with a 3.0 × 3.0 mm2 acquisition

resolution, 152 × 97 acquisition matrix, 27 slices with a 6.0 mm

slice thickness and 1.0 mm slice gap, parallel imaging factor

(SENSE) 1.3, partial averaging factor 0.6, spectral attenuated
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inversion recovery (SPAIR) fat suppression and three saturation

slabs to suppress signal from the anterior abdominal wall. The

total acquisition time was 8.1 min.

MRI analysis

Images were analysed by a single observer (M.T.) with

4 years of experience in hepatic MRI. The entire liver was

manually segmented using reconstructed b-value = 0 images,

avoiding liver edges and any areas or slices containing

(motion) artefacts (ROIliver). Four different models were

used to fit the ROIliver, all implemented in Python (version

3.6.12). These consisted of our newly developed IVIM3-NET

tri-exponential fit, the IVIM-NET bi-exponential fit, and the

LSQ bi- and tri-exponential fits. Data were normalized to the

S(b = 0 s/mm2) for all fitting methods. For the deep learning

approaches, we used PyTorch (1.8.1) whereas the least-

squares fitting was done with scipy’s (1.5.2) optimize.

curve_fit function. All fitting methods can be found on

https://github.com/oliverchampion/IVIMNET (commit

751f272 on 14 Dec 2021).

Bi- and tri-exponential LSQ fits

The LSQ models were fit voxel-wise, solving the bi- or tri-

exponential model for all segmented voxels. For the bi-

exponential LSQ fitting, Eq. 1 was fitted directly, with fit

constraints 3 × 10–4< D <5 × 10–3 mm2/s, 0< f <0.7, 5 ×

10–3< Dp <3 × 10–1 mm2/s and 0.5< S0 <2.5 mm2/s. For the

tri-exponential LSQ fitting, Eq. 2 was modified and we fitted:

S(b) � f0
′ · e−b·D + f1

′ · e−b·Dp
1 + f2

′ · e−b·Dp
2 (3)

with S0 � f0
′ + f1

′ + f2
′; f1 � f1

′/S0; and f2 � f2
′/S0.

Constraints were implemented ensuring 0< D <8 ×

10–3 mm2/s, 8 × 10–3< Dp
1 <80 × 10–3 mm2/s, 60 × 10–3<

Dp
2 <5 mm2/s, 0< f0

′ <2.5, 0< f1
′ <1 and 0< f2

′ <1 mm2/s. The

f1 and f2 of the tri-exponential model were also summed to

produce a f1+2 parameter map for direct comparison with the

perfusion fraction f of the bi-exponential model.

To determine goodness of fit, the bi- and tri-exponential

LSQ models were also separately fit in a ROI-wise manner

using the ROIliver. Here the average value per individual and

per b-value was fit using the same constraints as described

above, increasing the signal-to-noise ratio (SNR). Fitting was

done in a parallel routine, using eight cores from an Intel(R)

Xeon(R) Gold 6132 CPU at 2.60 GHz and fitting times were

recorded.

IVIM-NET and IVIM3-NET fits

IVIM-NET bi and tri-exponential fits were also performed

voxel-wise. The IVIM-NET bi-exponential fit was performed

following previously published work, using a fully-connected

network per IVIM parameter (S0, D, Dp and f) and a physics-

informed loss function to minimize the root-mean-square error

FIGURE 1
Deep neural network for fitting of a tri-exponential model to IVIM data (IVIM3-NET). The IVIM3-NET fits a tri-exponential model to the data,
solving the equation per voxel.
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between input voxel signals and predicted signal decay. The

hyperparameters were kept identical to the optimized setting

previously published (Kaandorp et al., 2021), with a dropout of

0.1, batch normalization, two hidden layers, Adam optimizer and

a learning rate of 3 × 10–5.

The tri-exponential IVIM3-NET was developed based on

the IVIM-NET, adapting the physics-informed loss function

to a tri-exponential model (Eq. 3, Figure 1), instead of the

previously reported bi-exponential model. As the tri-

exponential model is more challenging to fit than the bi-

exponential model, we made some additional adaptations to

the network. We introduced a semi-parallel training

approach, which was a variation on the parallel training

from IVIM-NET. Instead of having each parameter

estimated by a separate network, however, each pair of

decay constants and signal fractions (f0
′ with D; f1

′ and Dp
1;

f2
′ and Dp

2) were predicted by a network. We used four hidden

layers (instead of 2). We also started at a higher learning rate

of 1 × 10–4 and introduced a scheduler that decreased the

learning rate by a factor of five each time the network did not

improve performance on the validation data for

10 consecutive iterations. Early stopping was then adapted

such that once the performance did not decrease in the initial

10 iterations of a new learning rate, training was stopped.

Both networks were trained on the in vivo liver data from all

36 patients, resulting in 3,304,437 voxels. Data were split into

90% for training and 10% for testing. As data was trained

unaware of the ground truth, we could use the same networks

for predicting the parameter maps (Kaandorp et al., 2021). Note

that each epoch <2% of data is seen and that training is

completed in median 91 epochs, meaning each data point is

seen less than twice. Training and inference were done on a Tesla

P100 GPU and times were recorded (averaged over 10 repeated

training/inference).

Comparison of image quality tri-
exponential fits

All tri-exponential LSQ and NN images were assessed by a

single observer (M.T.) in a side-by-side fashion. Image preference

was recorded per slice per patient based on subjective image

quality analysis.

Simulated data

Simulations run in previous work for the bi-exponential IVIM-

NET showed that the neural network approach resulted in a smaller

error compared to other methods, particularly when compared to

the LSQ fit (Barbieri et al., 2020; Kaandorp et al., 2021). To confirm

that this also applied to the IVIM3-NET tri-exponential approach,

we ran simulations and determined the root mean square error

between the predicted parameters and the ground truth parameters

used to simulate the data. To train the network, 5,000,000 signal

curves were simulated at the same b-values acquired in vivo, using

randomly selected IVIM parameters ranging from 0.5 × 10−3 mm2/

s > D > 3 × 10−3 mm2/s, 0.05 > f > 0.3, 10 10–3 mm2/s mm2/s >
D1>50 × 10−3 mm2/s, 0.05 > f2>0.3 and 0.2 mm2/s > D2>4 mm2/s.

These boundaries were representative for values found in vivo.

Random Gaussian noise was added with SNR exponentially

distributed between 10 and 100. From preliminary results, we

found there were two local minima for training, and three out

of 10 networks ended up in a poorly performing local minima,

with loss substantially higher than the other 7. Therefore,

training was repeated 10-fold and the network with the lowest

unsupervised training loss was used for further analysis. Four

new datasets were created for testing, each consisting of

300,000 randomly generated tri-exponential IVIM curves from

similarly distributed parameter values. Each dataset had a

different SNR, namely, 15, 20, 30 and 50. Both the trained

IVIM3-NET and LSQ fit were performed on these new

datasets and the root-mean-square errors (RMSE) between

their predicted values and the ground truth values were taken

as measures for performance.

Liver biopsy

Percutaneous ultrasound-guided liver biopsies acquired after

MRI scanning were assessed by an experienced liver pathologist

(J.V.). Biopsy length and biopsy quality assessment discerning

poor quality, suboptimal quality and good quality were recorded

for each sample. Histology specimens were scored according to

the steatosis, activity and fibrosis score (Bedossa and FLIP

Pathology Consortium, 2014). Steatosis levels were scored

accordingly for grades S0-S3. NAFLD disease activity

comprised the combined sum of inflammation grade (0–2)

and ballooning grade (0–2), for a combined score ranging

from grade A0-A4. Fibrosis was scored according to the

NASH Clinical Research Network for severity ranging from

grades F0-F4 (Kleiner et al., 2005).

Statistical analysis

The statistical analysis was performed using R version 3.6.3

(R Core Team, 2020).

The SNR of the parameter maps within homogeneous liver

tissue was used to determine whether the NN fitting approach

was less noisy than the LSQ approach. A separate ROI (ROISNR)

was selected in the right liver lobe in homogenous liver tissue,

avoiding liver edges, (motion) artefacts and visible vessels. For

each individual, the SNR was defined as the ratio of the mean

parameter value within ROISNR and the standard deviation from

this same ROISNR. Differences between means and SNRs of the
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bi- and tri-exponential models were assessed using Wilcoxon

signed-rank tests. A p-value < 0.05 was considered statistically

significant.

To determine whether the bi- or tri-exponential model more

accurately described the data, we determined the adjusted R2 of

the least-squares fit of the models. As the bi- and tri-exponential

models have a different degrees of freedom, we used the adjusted

R2 which corrects for the extra degrees of freedom. As the noise

was dominating the voxel-wise adjusted R2, we opted for an ROI-

wise fit from the ROIliver, finding the adjusted R2 for each

individual. Differences between the R2 of bi- and tri-

exponential models were tested using a paired Student t-test.

A p-value < 0.05 was considered statistically significant.

Comparison of histology and the average IVIM parameter

values from the ROIliver were performed using Spearman’s rank

correlation for all four models. IVIM3-NET parameters were

further assessed using Kruskal-Wallis tests for trends, and where

appropriate followed by Dunn’s post-hoc analysis with p-value

adjustment according to the Holm–Bonferroni method. A

p-value < 0.05 was considered statistically significant.

Results

Patient characteristics

The first thirty-six individuals (22 male, 14 female) included

in the ANCHOR study were analysed in this work. The average

liver biopsy length was 1.81 cm (SD = 0.55). 20 biopsy specimens

were classified as good quality, 11 as suboptimal quality and two

poor quality. Quality assessment was not available for three

patients included. Liver fibrosis was found on biopsy in all

but two patients (F0). Seven patients were classified as F1,

nineteen as F2, seven as F3 and one as F4. All patients

showed a steatosis level ≥1 on biopsy, of which 20 patients

had S1, twelve S2 and four S3. Three patients had a disease

activity grade of A0, twelve A1, fifteen A2, five A3 and one A4.

Image quality

Visual assessment of IVIM parameter maps revealed that

both the neural network methods showed an increased image

quality and improved fit accuracy compared to the LSQ methods

(Figure 2). For the tri-exponential fit, of the 672 images including

liver tissue, the NN showed a higher subjective image quality in

637 slices for D, 655 slices for f 1, 636 slices for f 2 and all slices for

D*
1 and D*

2. The remaining slices showed comparable image

quality, no slices showed superior image quality for the LSQ

fit compared to the NN fit. The tri-exponential fit successfully

provided parameter maps for all IVIM parameters, with a distinct

difference between the Dp
1 and Dp

2 parameters as well as between

f1 and f2. Peripheral vessels and liver tissue (e.g. capillaries)

showed high Dp
1 and f1 signals, while Dp

2 and f2 signals were

high in larger vessels. In cases with a lower quality of acquired

data, the IVIM3-NET was able to provide smoother parameter

maps with less extreme outliers than the LSQ fit (Figure 3).

Figure 4 displays IVIM3-NET parameter maps for three patients

with increasing fibrosis grades. While all parameters except Dp
2

show a decrease in signal with increasing fibrosis grade, this effect

FIGURE 2
Example datasets from a single participant depicting the bi-exponential least-squares fit versus the bi-exponential neural network IVIM-NET fit
on the left and tri-exponential least-squares fit versus tri-exponential neural network IVIM3-NET fit. Both neural network methods show less noisy
parameter maps compared to the least-squares fits.
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is most noticeable for the perfusion parameter maps (f1, f2

and f1+2).
One patient showed two incidental findings in the liver

(Figure 5). Compared to the tri-exponential LSQ fit, the IVIM3-

NET provided a more distinct delineation of the abnormalities.

Interestingly, the two findings displayed different behaviour. The

large lesion was most clearly visible on the IVIM3-NET pseudo-

diffusion maps, with a low Dp
1 signal and a highDp

2 signal. On the

other hand, the small lesion was clearer on the perfusion maps,

with a low f1 signal in and a high f2 signal.

Comparison of neural network versus
least-squares model

Simulations
The RMSE of the tri-exponential fits in simulated data with

varying SNRs showed a substantially lower error for the IVIM3-

NET than for LSQ fitting for all parameters and at all tested SNRs

(Figure 6). This was particularly evident at lower SNRs, where the

largest discrepancies are visible.

In vivo
The neural network approaches resulted in substantially less

noisy, and hence more precise, parameter maps. The average

spread in IVIM values from the ROISNR in homogenous liver

tissue showed significantly higher SNRs in the parameter maps

for both neural networks fits compared to the LSQ fits for all

parameters except the tri-exponential f2 (Table 1 and

Supplementary Figure S1). The average SNR over all

parameters was 3.38 versus 5.59 for the bi-exponential LSQ

and NN fit respectively and 2.45 versus 4.01 for the tri-

exponential LSQ and NN fit respectively.

For the bi-exponential approach, the network took a

median of 8.7 min to train, with a range of 6.5–12.8 min,

and 40 s to inference (1.2 × 10−5 s per voxel). For the tri-

exponential approach, the network took a median of

12.2 min to train, with a range of 3.4–16.2 min, and 52 s to

inference (1.5 × 10−5 s per voxel). The least-squares fits took

substantially longer, with 85 min (150 × 10−5 s per voxel) for bi-

exponential fitting and 166 min (300 × 10−5 s per voxel) for tri-

exponential fitting. Training took a median of 91 epochs before

converging.

Comparison of bi-versus tri-exponential
model

The average adjusted R2 of the LSQ tri-exponential fit for the

ROIliver was 0.990 for the tri-exponential model and 0.984 for the

FIGURE 3
Example of a noisy dataset from a single participant with lower quality of image acquisition, fit with the tri-exponential least-squares fit and the
tri-exponential neural network IVIM3-NET. The IVIM3-NET provides less noisy parameter maps.
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bi-exponential model (t = 6.77, df = 35, p < 0.001), with a higher

adjusted R2 for the tri-exponential model in 33 out of 36 patients.

The bi-exponential and tri-exponential R2 values of each

individual along with example fits of the best and worst

performing tri-exponential fit compared to bi-exponential fit

can be found in Figure 7.

FIGURE 4
Datasets from the IVIM3-NET tri-exponential neural network of three patients with increasing levels of fibrosis. Visually a decrease of signal
intensity with increasing fibrosis stage is most noticeable for the perfusion fractions (f1, f2 and f1+2). Only two patients had fibrosis stage 0 and a single
patient fibrosis stage 4.
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Correlations with liver histopathology

Figure 8 gives an overview of the Spearman correlations

between IVIM parameters and histopathology for all the reported

fit methods. Comparing LSQ fits (top two rows) with NN fits

(bottom two rows), ten correlations are stronger for the NN than

LSQ fit, whereas the LSQ finds five that are stronger than the NN.

When comparing bi-exponential to tri-exponential models

(using bi-exponential f and tri-exponential f1+2), marginal

differences between the four models were found. D showed

higher correlations between histopathology for the bi-

exponential model, in particular for the LSQ model. On the

other hand, f was higher for the tri-exponential LSQ model

compared to the bi-exponential model, while the NNs showed

overall similar values.

IVIM3-NET versus liver fibrosis
IVIM3-NET showed a significant decrease in D (rs = -0.43, p =

0.0097), f1 (rs = -0.47, p = 0.0036), f2 (rs = -0.55, p < 0.001) and f1+2
(rs = -0.59, p < 0.001) with increasing fibrosis stage. Dp

2 was positively

correlatedwithfibrosis stage (rs = 0.36, p=0.033). Significant differences

in medians between fibrosis stages were seen for f1 (χ2 = 11.18, p =

0.025, df = 4),f2 (χ2 = 11.00, p=0.027, df = 4) andf1+2 (χ2 = 14.43, p=
0.0060), while post-hoc analysis only showed a significant difference

between fibrosis stage 0–3 for f1 and f1+2 (Figure 9).

IVIM3-NET versus NASH disease activity
A significant correlation was observed between disease

activity grade and all IVIM3-NET parameters except Dp
1 (D:

rs = -0.35, p = 0.040 Dp
2: rs = 0.42, p = 0.011; f1: rs = -0.36, p =

0.029; f2: rs = -0.49, p = 0.0024; f1+2: rs = -0.48, p = 0.0029) was

observed, with f2 and f1+2 showing significant differences

between disease activity grades (χ2 = 9.77, p = 0.044, df = 4;

χ2 = 9.97, p = 0.041, df = 4 respectively). Post-hoc analysis,

FIGURE 5
Dataset from individual with two incidental findings, as seen on the tri-exponential least-squares fit and the IVIM3-NET tri-exponential neural
network fit and indicated by the red arrows. IVIM3-NET in particular shows a clear delineation of the lesions.

FIGURE 6
Average root mean square error (RMSE) for each tri-
exponential IVIM parameter in simulated data for varying levels of
SNR. The IVIM3-NET shows lower root mean square errors for all
parameters and for all levels of SNR.
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however, did not provide significant differences between

individual disease activity grades (Figure 10).

IVIM3-NET versus hepatic steatosis
Steatosis grade did not correlate with any IVIM3-NET

parameter and no significant differences between group

medians were found (Supplementary Figure S2).

Discussion

Our IVIM3-NET is the first neural network able to provide

high-quality tri-exponential IVIM parameter maps and IVIM3-

NET is shared on our GitHub. We had four main findings: first,

IVIM3-NET provides substantially more precise parameter

estimates. This was confirmed in simulations, where the

TABLE 1 Mean parameter values from the entire liver excluding large vessels (ROIliver) and mean signal-to-noise ratio (SNR) from the small region-of-
interest in homogenous liver tissue (ROISNR) for all four IVIM models per IVIM parameter.

Bi-
exponential LSQ

Bi-exponential NN Tri-
exponential LSQ

Tri-exponential NN

Mean SNR Mean SNR Mean SNR Mean SNR

D (10–3 mm2/s) 1.02 5.47 1.24 9.33*** 0.94 5.53 1.12 8.26***

Dp
1 (mm2/s) 0.12 1.38 0.15 3.79*** 0.032 1.80 0.042 4.65***

Dp
2 (mm2/s) 1.49 0.83 2.27 4.10***

f1 (%) 15.89 1.50 15.80 2.26***

f2 (%) 13.31 1.83*** 8.35 1.18

f1+2 (%) 26.28 3.30 19.91 3.66* 29.20 3.23 24.15 15 3.60**

The bi-exponential neural network (NN)model had significantly higher means for theD andDp parameters, while the fwas higher for bi-exponential least-squares (LSQ) model. The SNR

was higher for all bi-exponential NN parameters. The tri-exponential NN model had a higher mean values for the D, Dp
1 and Dp

2 parameters; the tri-exponential LSQ model had higher

means for the f1, f2 and f1+2 parameters. SNR of the tri-exponential NNmodel was significantly higher than the tri-exponential LSQmodel for all parameters except f2 (LSQ higher than

NN) and f1+2 (no significant difference between NN and LSQ). *: significantly higher SNR than other bi- or tri-exponential model with 0.01 < p-value < 0.05. **: significantly higher SNR

than other bi- or tri-exponential model with 0.001 < p-value < 0.01. ***: significantly higher SNR than other bi- or tri-exponential model with p-value < 0.001. LSQ: least-squares, NN, neural

network, SNR, signal-to-noise ratio.

FIGURE 7
Adjusted R2 plots. (A) adjusted R2 values for the bi- and tri-exponential least-squares models for each individual. The blue lines represent the
patients with the largest difference between bi- and tri-exponential fits, with light blue showing a higher R2 for the tri-exponential fit and dark blue a
higher R2 for the bi-exponential fit. (B) example plot of the average signal intensity for each b-value and the corresponding bi- and tri-exponential fits
from the patient with the largest difference between bi- and tri-exponential fits, favouring the tri-exponential fit. The tri-exponential fit more
accurately fits the data points. (C) example plot of the average signal intensity for each b-value and the corresponding bi- and tri-exponential fits
from the patient with the largest difference between bi- and tri-exponential fits, favouring the bi-exponential fit. Here the data points show more
spread, indicating a noisier dataset.

Frontiers in Physiology frontiersin.org10

Troelstra et al. 10.3389/fphys.2022.942495

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.942495


RMSE was considerably lower for the IVIM3-NET than LSQ fits

for all parameters and at all SNRs. The better estimates resulted

in improved parameter map quality, as both neural networks

provided a less noisy fit than the LSQ fits. Second, the neural

network was substantially faster and produced parameter maps

in times that would allow for immediate on-console evaluation.

Third, the majority of patients with NAFLD displayed a

significantly higher adjusted R2 for the tri-exponential model

compared to the bi-exponential model, suggesting that the data

behaves in a tri-exponential manner and hence should be fitted

by a tri-exponential model. However, we did not find a clear

clinical advantage of the tri-exponential model parameters

compared to the bi-exponential model parameters in our

cohort. Fourth, correlating IVIM data to liver histology results

FIGURE 8
Spearman correlations between histopathological outcomes fibrosis and disease activity versus IVIM parameters for the bi- and tri-exponential
least-squares methods (LSQ) and the bi- and tri-exponential neural network methods (NN). Darker blue equates a stronger negative or positive
correlation. Only significant values (p < 0.05) are reported, non-significant values are depicted by NS.

FIGURE 9
IVIM3-NET parameters versus fibrosis grade. All parameters except Dp

1 showed a significant correlation with fibrosis, while only f1 showed a
significant difference in medians between fibrosis stage 0 and 3; f1+2 between stage 0 and 3, as well as stage 1 and 3.

Frontiers in Physiology frontiersin.org11

Troelstra et al. 10.3389/fphys.2022.942495

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.942495


from patients with varying levels of NAFLD severity showed that

both the IVIM3-NET and IVIM-NET showed similar diagnostic

performance, while generally outperforming both the bi- and tri-

exponential least-squares models.

Multiple studies in healthy volunteers support the use of a tri-

exponential model for assessing IVIM scans of the liver. For

example, Cercueil et al. (2015), Riexinger et al. (2019) and

Chevallier et al. (2019) all assessed the use of a tri-exponential

model of the liver compared to a bi-exponential model and

showed an improvement in the Akaike information criterion for

the tri-exponential model amongst others. To our knowledge, we

are the first to assess the use of a tri-exponential model with an

extra fast diffusion component in patients with liver disease. Our

results also support the use of a tri-exponential model, seen by a

higher adjusted R2 in the majority of subjects.

The clinical added value of the extra compartment is less

clear in our cohort, as both the bi- and tri-exponential models

showed comparable correlations with histopathology. However,

NAFLD is known to cause vascular changes (Pasarín et al., 2017),

thus particularly the evaluation of the additional perfusion

parameter f2 could be of interest, as this signal originates

from larger vessels (Chevallier et al., 2021). We (visually)

observed a large decrease in f2 volumes with increasing levels

of fibrosis (Figure 4), which could lead to radiological markers for

disease severity.

While our cohort contained the full spectrum of NAFLD

disease severity, only a single patient had fibrosis stage 4 and two

with fibrosis grade 0. Similarly, for disease activity, only a single

patient exhibited grade A4. This is a large limitation of the

current study and future studies with larger cohorts with

more patients in the higher and lower ranges of disease

severity will be required to confirm the results and potentially

improve disease severity stratification.

The use of a neural network for the generation of IVIM

parameter maps resulted in higher quality images when

compared to a least-squares fit, and in a fraction of the time.

Simulated data shows a smaller error for the IVIM3-NET than

LSQ fit, in particular at lower SNRs, confirming the results seen for

the bi-exponential IVIM-NET (Kaandorp et al., 2021). A higher

correlation was found between histopathology and neural network

IVIM parameters compared to LSQ fits, highlighting a promising

application for the use of the IVIM-NET and IVIM3-NET

parameters as a non-invasive biomarker in NAFLD. Moreover,

with the improved image quality, additional information may be

available. Improved image quality allows for the analysis of images in

a voxel-wise manner and may be able to provide more insights into

disease pathophysiology. The visual decrease of areas with high

signal intensity on f1 and f2 images with increasing fibrosis grades

may, for example, be indicative of the before mentioned vascular

changes in NAFLD. Thus voxel-wise assessment of images, such as

volume of voxels with higher signal intensities, could be an

interesting route to explore. Furthermore, while IVIM studies

tend to focus on quantitative measures, improved parameter map

quality may allow for qualitative assessment of images, for example

aiding diagnosis of liver lesions such as presented in Figure 5.

For healthy volunteers, an overview of average tri-

exponential IVIM-values was published in a recent review

(Chevallier et al., 2021). Values for D ranged between

FIGURE 10
IVIM3-NET parameters versus disease activity. All parameters except Dp

1 showed a significant correlation with disease activity, yet no significant
differences between medians of disease activity grades were found.
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0.98–1.35 *10–3 mm2/s which is in line with what we found with

the IVIM3-NET and higher than our tri-exponential LSQ fit as

seen in Table 1. Dp
1 values were similar to values found in our

patient cohort, with reported values ranging between 15.4 and

81.3 *10–3 mm2/s. The largest variation was found in the Dp
2

parameter, with values between 270 and 2,453 *10–3 mm2/s. The

Dp
2 values of both tri-exponential models in our study fit fall in

this range, however, the IVIM3-NET values were at the high end

of the range. The f1 values of both methods fell within the

reported range of 7.8–17.6%, while f2 was lower than reported

values of 10.8–17.1 for the IVIM3-NET only.

Discrepancies between values found in this study and

previous studies could in part be explained by intrinsic effects

caused by NAFLD. We would expect the values in the literature

derived from healthy volunteers to be most comparable to

patients exhibiting a lesser NAFLD severity, i.e. low levels of

fibrosis and disease activity. From Figures 9, 10 it is clear thatDp
2

increases with disease activity and fibrosis stage and other

parameters including f2 decrease, suggesting that healthy

volunteers could have a lower Dp
2 and higher D, Dp

1, f1 and

f2 than we find in our population.

The wide spread in Dp
2 could in part be due to the b-value

distribution. Riexinger et al. investigated the effects of the number

of b-values acquired, showing that in particular Dp
2 was highly

influenced by the number of low b-values due to an increase in fit

accuracy, with an increase in Dp
2 as the number of b-values is

increased (Riexinger et al., 2020). The b-value distribution used in

this study was optimized for a bi-exponential model and included

fewer low b-values than the recommended five to eight b-values <
6 s/mm2. Despite this, our IVIM3-NET showed Dp

2 values in the

high end of the range of previously published work. This could in

part be explained by the fact that the IVIM3-NET is relatively

uninfluenced by the presence of noise compared to the LSQ fit.

Comparison of other optimisation techniques such as free-

breathing acquisitions versus respiratory or navigator triggering,

as well as motion correction methods are not yet available for tri-

exponential fitting and are likely to influence absolute parameter

values. In future work these effects will need to be further assessed

to optimise and standardize scan protocols.

Bayesian fitting techniques resulted in comparable parameter

map quality to the IVIM-NET for bi-exponential fitting,

however, are impractical for tri-exponential fitting due to long

calculation times (Kaandorp et al., 2021). Setting tighter fit

constraints for the least-squares model may result in less

noisy parameter maps. However, the same is true for the

neural network, which had identical constraints in this work.

Our chosen fit constraints were relatively broad to encompass an

expected large spread in values between participants, but further

work will be required to determine the optimal settings in this

population. Finally, denoising the DWI data (Manjón et al., 2013;

Gurney-Champion et al., 2019) as a pre-processing step may

reduce the noise in the parameter maps of the least-squares fit.

However, we opted against denoising as it often introduces

blurring of images. Furthermore, denoising could equally well

be performed before the neural networks to further reduce the

noise in the output.

In this study, we adapted the IVIM-NET physics-informed deep

neural network to include tri-exponential fitting. We chose a physics

informed loss function as it allows for training on patient data

without inputting any ground-truth answers. Conventional loss

functions are also available (Bertleff et al., 2017; Lee et al., 2021),

but they either need to be trained on simulated data, or try to recreate

the least-squares fit results in patient data. Therefore, we believe a

physics-informed approach hasmore potential.We tried tominimize

the changes to the already optimized IVIM-NET that we adapted the

network from, to achieve comparable performance. However, tri-

exponential fitting is more challenging and some adjustments were

made to address this. The main differences were the implementation

of a scheduler for the learning rate and splitting the network in three

parts, which we found to improve the tri-exponential fit. Potentially,

the network can be further improved in the future by adding spatial

awareness with convolutional layers, such as done for e.g. DCE (Ulas

et al., 2019).

In conclusion, the use of a tri-exponential IVIMmodel can be

applied in patients with NAFLD and the IVIM3-NET can be used

to produce high quality IVIM parameter maps, displaying less

noise than a tri-exponential LSQ fit and providing strong

correlations with liver histopathology scores, the current gold

standard to diagnose and grade NAFLD.
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