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Abstract

Large whole-genome sequencing projects have provided access to much rare variation in human populations, which is
highly informative about population structure and recent demography. Here, we show how the age of rare variants can be
estimated from patterns of haplotype sharing and how these ages can be related to historical relationships between
populations. We investigate the distribution of the age of variants occurring exactly twice (f2 variants) in a worldwide
sample sequenced by the 1000 Genomes Project, revealing enormous variation across populations. The median age of
haplotypes carrying f2 variants is 50 to 160 generations across populations within Europe or Asia, and 170 to 320
generations within Africa. Haplotypes shared between continents are much older with median ages for haplotypes shared
between Europe and Asia ranging from 320 to 670 generations. The distribution of the ages of f2 haplotypes is informative
about their demography, revealing recent bottlenecks, ancient splits, and more modern connections between populations.
We see the effect of selection in the observation that functional variants are significantly younger than nonfunctional
variants of the same frequency. This approach is relatively insensitive to mutation rate and complements other
nonparametric methods for demographic inference.
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Introduction

The recent availability of large numbers of fully sequenced

human genomes has allowed, for the first time, detailed

investigation of rare genetic variants. These are highly differen-

tiated between populations [1,2], may make an important

contribution to genetic susceptibility to disease [3–7], and provide

information about both demographic history, and fine-scale

population structure [8,9]. While patterns of rare variant sharing

are informative in themselves, knowing the age of the variants

allows us to observe changes in structure over time, and thus to

infer the dates of demographic events.

Rare variants are typically more recent than common variants

and in fact, the age of a variant can be estimated directly from its

frequency [10–12]. However there are two problems with this

approach. First, using only the frequency information means that

we cannot distinguish differences between the ages of variants

which are at the same frequency which, as we demonstrate here,

can be both large and important. Second, in order to use this

approach, we have to know the demographic history of the

populations involved. In this article, we describe an alternative

approach which uses the fact that the lengths of shared haplotypes

around variants are informative about their ages [13–15].

Specifically, we estimate the time to the most recent common

ancestor (TMRCA) for f2 haplotypes, which are regions where two

chromosomes are each other’s closest relative in a sample. More

precisely, f2 haplotypes are genomic regions where two chromo-

somes are each other’s unique closest relative within at least some

of the region and where their TMRCA is constant. To find these

regions, we look for variants which occur exactly twice in the

sample (f2 variants, or doubletons). We then use the length of, and

number of mutations on, these haplotype to infer their ages, and

therefore a lower bound for the age of the variants they carry.

Every f2 variant identifies an f2 haplotype, but we do not detect all

f2 haplotypes because not all of them carry mutations. This

approach is highly scalable and finds shared haplotypes directly

from genotype data, which avoids the need for statistical phasing.

We apply this method to the 1000 Genomes phase 1 dataset [16],

to quantify the distribution of the ages of variants shared within

and between populations, and between variants in different

functional classes. We demonstrate dramatic differences between

the ages of variants shared across different populations, and

observe the effects of both demography and selective constraint.

Results

We first give a brief outline of our approach (Figures 1, S1,

Methods). Given a sample of individual genotypes, we find all f2

variants. That is, variants which have exactly two copies (in

different individuals) in the sample. This tells us that, in the

absence of repeat mutations and assuming that the f2 variant is

derived, those individuals must share an f2 haplotype at that

position. We then scan left and right along the genome, until we

reach a point where the two individuals have inconsistent

homozygote genotypes (0 and 2, Figure 1A), which gives us an

(over-) estimate of the distance to the first recombination breaking

the haplotype.

Using both the genetic and physical lengths of the region, and

the number of singletons, we compute an approximate likelihood

for the age of the haplotype (Figure 1B). We use the data to
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estimate error terms to take into account the fact that the

algorithm described above does not find the shared haplotypes

precisely. Then, for each haplotype, we find the maximum

likelihood estimate (MLE) of the age of each haplotype. We

investigate the distribution of these MLEs for different classes of f2

variants, for example those shared within or between specific

populations.

Simulation results
To test our approach, we ran whole genome simulations for a

sample of 100 diploid individuals with MaCS [17], using the

combined HapMap 2 recombination maps [18], and a mutation

rate (m) of 1:2|10{8 per-base per-generation, assuming a

constant effective population size (Ne) of 14,000; chosen to reflect

parameters relevant to human genetic variation. We investigated

both our power to detect the f2 haplotypes and how accurately we

could estimate the distribution of f2 ages (Figure 2). We detected

around 26% of all f2 haplotypes. Unsurprisingly, we have more

power to detect very long haplotypes, but we detected many small

haplotypes as well: 19% of our total had true genetic length less

than than 0.1 cM. Having imperfect power to detect f2 variants

does not have a large effect on our power to detect f2 haplotypes

since most detected haplotypes carry more than one f2 variant. We

have higher power for more recent haplotypes because they are

longer but, at least for a population of constant size, this effect is

cancelled to some extent for older haplotypes because the

branches above them tend to be longer and therefore more likely

to carry mutations.

There is high uncertainly in the age of any individual haplotype

(Figure 2A). However, we can compute well-calibrated confidence

intervals (Figure S2). In this example, the median MLE of the age

of the detected haplotypes is 179 generations and the true median

is 192 generations. The median width of the 95% confidence

interval is 730 generations. Information about the ages comes

mainly from the genetic length, and the principal advantage of the

singleton information is for very old haplotypes where the length-

based estimator is otherwise biased (Figure S3).

In addition, we ran simulations to check that the model was

robust to more complicated demographic scenarios including

splits, bottlenecks and expansions, as well as mis-specification of

Ne (Figure S4). We also investigated the effect that these scenarios

had on the distribution of the ages of the f2 haplotypes,

demonstrating that we could detect the signatures of demographic

events. For example, population bottlenecks lead to a high density

of f2 haplotypes during the bottleneck and, following a population

split haplotypes shared between populations have median age

roughly equal to the split time (Figure S5).

1000 Genomes data
We applied our estimator to the phase 1 data release of the 1000

Genomes Project [16], which consists of whole-genome variant

calls for 1,092 individuals drawn from 14 populations (Table 1).

We used two of the 1000 Genomes callsets; one made from

sequence data, and one made using a dense genotyping array.

Restricting our analysis to the autosomes, we extracted f2 variants

from the sequence data callset, and then detected haplotype

lengths around them (that is, the distances to incompatible

homozygotes), using only the array data, to minimise the effect of

genotyping errors. We then counted f1 variants on these

haplotypes from the sequence data callset. From 4,066,530 f2

variants we detected 1,893,391 f2 haplotypes, with median genetic

and physical lengths of 0.7 cM and 600 kb respectively. The

median number of singletons spanned by each f2 haplotype was 3.

Of the 1.9 million f2 haplotypes, 0.7 million were shared within

Figure 1. Algorithm and model for haplotypes. A: Algorithm for detecting f2 haplotypes. For each f2 variant in the sample (green), we scan left
and right until we find inconsistent homozygote genotypes (red), record the physical and genetic length of this region (blue), and the number of
singletons (purple). B: Model for haplotype age t. Consider the 4 chromosomes (grey) of the two individuals sharing an f2 haplotype (blue). We model
the total genetic length of the inferred haplotype, Lg , as the sum of the true genetic length L�g and an error Dg . Similarly, we model the number of

singletons S as the sum of the number on the shared chromosome (S�) and the number on the unshared chromosomes, DS . We ignore the fact that
we overestimate Lp and therefore that some of the singletons might lie in the unshared part of the chromosome.
doi:10.1371/journal.pgen.1004528.g001

Author Summary

In this paper we describe a method for estimating the age
of rare genetic variants. These ages are highly informative
about the extent and dates of connections between
populations. Variants in closely related populations gen-
erally arose more recently than variants of the same
frequency in more diverged populations. Therefore,
comparing the ages of variants shared across different
populations allows us to infer the dates of demographic
events like population splits and bottlenecks. We also see
that rare functional variants shared within populations
tend to have more recent origins than nonfunctional
variants, which is consistent with the effects of natural
selection.
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populations and 1.5 million were shared within continents.

Sharing of f2 variants largely reflects expected patterns of

relatedness on a population level, and also reveals substructure

in some populations, notably GBR (Figure S6).

We used the combined recombination rate map from HapMap 2

to determine genetic lengths, and assumed a mutation rate of

0:4|10{8 per-base per-generation (reflecting a true mutation rate

of 1:2|10{8 multiplied by a power of
1

3
to detect singletons

[16,19]). We then computed MLEs for the ages of all the f2

haplotypes shared between every pair of populations (Figures 3, S7,

Tables S1–S5). By considering the distribution of the distance

between inconsistent homozygous SNPs, we estimated that on most

chromosomes the median overestimate in haplotype length due to

the sparsity of informative SNPs was 0.1–0.15 cM (but more on

chromosomes 1, 9 and 15). We also estimated that h (estimated from

singletons) was around 3:7|10{3 and 2:4|10{3 per-base for

African and Non-African populations respectively (Table S6).

For haplotypes shared within populations (Figure 3A), the

MLEs of haplotypes within most European and Asian populations

Figure 2. Estimating f 2 age from simulated data. We simulated whole genomes for 100 individuals (200 chromosomes), with Ne~14,000,
m~1:2|10{8 and HapMap 2 recombination rates. A: Estimated age against true age. The grey dots are the MLEs for each detected haplotype. The
blue line is a quantile-quantile (qq) plot for the MLEs (from the 1st to 99th percentile). B–D Power to detect f2 haplotypes as a function of B: genetic
length, C: physical length and D: haplotype age; in each case the darker line represents the power to detect f2 haplotype with 100% power to detect
f2 variants, and the lighter line the power with 66% power.
doi:10.1371/journal.pgen.1004528.g002

Table 1. Short descriptions of the 1000 Genomes populations.

Abbreviation Sample size Description

ASW 61 African Ancestry in SW USA

LWK 97 Luhya in Webuye, Kenya

YRI 88 Yoruba in Ibadan, Nigera

CLM 60 Colombians in Medellı́n, Colombia

MXL 66 Mexican Ancestry in Los Angeles, CA, USA

PUR 55 Puerto Ricans in Puerto Rico

CHB 97 Han Chinese in Beijing, China

CHS 100 Han Chinese South

JPT 89 Japanese in Tokyo, Japan

CEU 85 Utah residents with ancestry from northern and western Europe

FIN 93 Finnish in Finland

GBR 89 British from England and Scotland

IBS 14 Iberian Populations in Spain

TSI 98 Toscani in Italy

doi:10.1371/journal.pgen.1004528.t001
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are clustered around 100 generations ago. For example, the

median age of GBR-GBR haplotypes is 90 generations. PUR and,

to a lesser extent, CLM have many very recent haplotypes

(peaking around 11 generations ago), consistent with a historical

bottleneck in these populations 300–350 years ago. FIN haplo-

types peak around 14 generations (400–450 years) ago. African

populations have many recent haplotypes but also a much longer

tail than the other populations, with ancestry apparently extending

back for thousands of generations. For example the median age of

LWK-LWK haplotypes is 320 generations, but the 95% quantile is

8,500 generations.

Between-population sharing is largely consistent with the

historical relationships among populations (Figure 3B–D). Within

continents, sharing within Asia or Europe has a median of 50–160

generations, depending on the populations, and sharing within

Africa 170–340 generations. Sharing between continents is much

older, with median Asian-European sharing 320–670 generations

old, and Asian-African sharing rather older, with a median around

2,300 generations ago for LWK and 1,700 generations ago for YRI.

The age of European-African sharing varies between populations,

from 1,000 to 2,000 generations ago, but is more recent than Asian-

African sharing, perhaps suggesting greater subsequent migration

between these continents. We discuss these figures in the context of

split times and migrations in the Discussion.

Admixed populations have age distributions that are combina-

tions of the distributions of the admixing populations (Figure 3E–F).

Even in these populations we can see signs of more subtle history.

For example, GBR-CLM haplotypes have an age distribution

which looks more like GBR-TSI or GBR-IBS than GBR-CEU,

presumably representing the fact that the major contribution to

European admixture in the Americas is from southern Europe

(Figure S8).

We also looked at the distribution of the ages of f2 variants

broken down by functional annotation (Figure 4, Methods). We

found that for variants shared within a single population, loss-of-

function (LOF) variants are younger than coding variants, which

are younger than functional noncoding variants, and all annotated

variants are younger than unannotated variants. The median ages

of these variants are 58, 83, 112 and 125 generations for LOF,

coding, functional noncoding and unannotated variants respec-

tively. This is presumably because purifying selection against

damaging mutations means that functional variants are less likely

to become old (though positive selection for beneficial mutations

would have the same effect). This effect has previously been both

predicted and observed [20,21]. However, it is not strictly true for

variants shared between different populations and, in fact, the

effect is partially reversed (median ages are 176, 205, 186 and 195

generations for LOF, coding, functional noncoding and unanno-

tated variants). One possible explanation is that functional variants

surviving long enough to be shared between populations are

selectively neutral or recessive and thus unaffected by selection at

low frequency. This suggests that studies looking for disease-causing

Figure 3. The estimated age distribution of f 2 haplotypes. A: The distribution of the MLE of the ages of haplotypes shared within each
population. B–F: The distribution of the MLE of the ages of haplotypes shared between one population and all other populations, shown for each of
GBR, JPT, LWK, ASW, and PUR. Populations are described in Table 1. Density estimates are computed in log10 space, using the base R density function
with a Gaussian kernel.
doi:10.1371/journal.pgen.1004528.g003
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rare variants should concentrate on variants private to a single

population, since variants shared across populations are unlikely to

have large phenotypic effects.

Robustness
This analysis requires us to estimate several parameters, and in

this section, we investigate how robust it is to varying them.

The parameter k is related to the probability of discovering f2

haplotypes. We know that 1ƒkƒ2. k~1 implies that the

probability that we discover a haplotype is independent of its

length while k~2 implies that this probability increases linearly

with length. We chose k~1:5 based on simulations, but it may be

the case that this is not optimal for real data. To test how much of

an impact this might have, we re-ran the analysis of the 1000

Genomes data using k~1 and k~2. Larger values of k increase

our age estimates. For example, the median CEU-CHB age is 403,

481 and 560 generations using k~1, 1.5 and 2 respectively.

Overall, setting k~2 increases the median age estimates by

between 6 and 30%, depending on population, with more recent

ages more sensitive to k.

The parameters ke and le are the shape and rate of the (gamma)

distribution of the overestimate of haplotype lengths (Methods).

We estimated these parameters separately from the array data for

each chromosome (Table S6). We noticed that chromosomes 1, 5

and 9 had estimated parameters that implied a greater overesti-

mate (larger ke, smaller le), presumably due to the density of

markers on the array for those chromosomes. In addition, these

chromosomes had older estimated haplotype ages, for example we

estimated that the median age of f2 haplotypes on chromosome 1

was 16% higher than the median age of haplotypes on

chromosome 2, suggesting that our error model is not fully robust

to variation in marker density.

Discussion

We described an approach to estimate the age of f2 haplotypes,

without making any prior assumptions about population structure

or history. Though the age of any individual haplotype is

uncertain, major features of the distribution of haplotype ages

are detected, demonstrating qualitative differences between

populations that are almost certainly due to past demographic

events. The next important question is to what extent we can use

these distributions as quantitative estimates of the ages of

demographic events.

Consider the split between European and East Asian popula-

tions. Model based estimates of this split time have ranged from 14

to 40 thousand years ago (kya) [22–24]. However these are likely

to be too low because they assumed a mutation rate, m, of

2{2:5|10{8 per-base per-generation, now thought to be an

overestimate [19] and so a more reasonable range of estimates

might be 22–80 kya. The nonparametric PSMC approach [25]

estimated a split time of around 22 kya (if a lower mutation rate of

1:25|10{8 is used, 11 kya with the higher rate), and a similar

method, MSMC, estimates a split time of 20–40 kya [26]

(Figure 5A). Simulations suggest that, under a clean split model,

the median of our estimated ages is close to or slightly below the

split time, at least for recent splits (less than 1,000 generations;

Figures S5 and S9). Comparing CEU to each of CHB, CHS and

JPT, taking the median of our haplotype ages, and assuming a

generation time of 30 years [27], would imply split times of 14, 17

and 18 kya respectively. Other European populations give

different estimates, but mostly between 15 and 20 kya.

Similarly, when we looked at f2 variants shared between East

Asia and America (CHB-MXL, but restricting to regions homozy-

gous for Native American ancestry in MXL; Methods), we found

that the median age was around 10 kya, substantially more recent

than the 20 kya split time estimated using MSMC [26] (Figure 5B).

This seems low, given geological evidence that the Bering land

bridge was submerged by 11–13 kya, although a seasonal or

maritime route likely remained open after that time [28–30].

Our dates are all around or below the low end of published

estimates, even after we take into account the fact that the median

might be lower than the split time (we estimate about 11% lower

for a 500-generation old split; Figure S5D). There are several non-

exclusive explanations for this observation. First, post-split gene

flow could explain the discrepancy. As we have greater power to

detect f2 haplotypes if they are more recent, when the split is not

clean many of the haplotypes we observe will derive from the post-

split gene flow rather than from before the initial split (Figure S9B).

In this scenario, we would be detecting the most recent haplotypes,

and our dates would be closer to the most recent date of contact,

rather than the initial split date.

An alternative explanation might be systematic errors in our

estimates. As we described in the Results, the approach is

sensitive to the estimated parameters k, ke and le. At the

extreme, increasing k from 1.5 to its maximum value of 2 would

increase the median age of CEU-CHB haplotypes from 14 kya to

17 kya. To investigate sensitivity to ke and le, we repeated the

analysis, but using sequence data rather than array data to find

the length of the haplotypes (Figure 5). We note that when we

estimated ke and le using sequence data they vary very little

across chromosomes (Table S6). The ages estimated using

sequence data were older than those estimated using array data

(median age of CEU-CHB haplotypes 23 kya, Figure 5A–B). We

might expect that sequence data, being denser than array data,

would find haplotypes more accurately. However we would also

expect that genotype errors, more common in sequence than

Figure 4. The ages of haplotypes around f 2 variants with
different functional annotations. Density is indicated by the width
of the shape, and horizontal bars show the median. We show separately
the densities for f2 variants shared within a population (left, blue), and
f2 variants shared between populations (right, red). Numbers in
brackets show the number of variants in each class. Bars show the
pairwise differences in means, and t test p-values for a difference in log
means between groups.
doi:10.1371/journal.pgen.1004528.g004
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array data, would make all haplotypes look older, by incorrectly

breaking haplotypes. Removing indels and low complexity

regions (LCRs; Methods) thought to be enriched for genotyping

errors from the sequence data reduced the difference (median

CEU-CHB age of 19 kya), suggesting that around half the

increase in age is driven by errors. Further, the haplotype ages

estimated from sequence data do not contain the very young

(long) haplotypes within CLM, FIN and PUR, which we

independently believe to be correct (Figure 5C), and also contain

a long tail of extremely old haplotypes which seems unlikely

(Figure 5D).

Another source of systematic errors could be the use of incorrect

mutation or recombination rates. There is considerable uncer-

tainty about the mutation rate in humans, but our approach is

relatively insensitive to this, so if the true rate is higher than

m~1:25|10{8 per-base per-generation then mutational clock

based methods which scale linearly with mutation rate will

overestimate the ages of events, thus reducing the discrepancy.

On the other hand, our approach might be sensitive to errors in

the recombination map. We tested this by running simulations

with a different genetic map to the HapMap map that we used to

determine genetic length. We tested a population-based African

Figure 5. Comparison with MSMC, and the effect of estimating haplotypes with sequence data. A: The age distribution of f2 haplotypes
shared between CHB and CEU estimated with array, sequence and ‘‘clean’’ sequence (with indels and low complexity regions removed; Methods).
Coloured dashed lines show the medians of each distribution. The grey stepped line shows relative cross-population coalescence rates estimated by
MSMC (S. Schiffels, personal communication), and the grey dashed line shows the earliest date in the oldest time interval where this rate is less that
0.5. In both cases, we assume 30 years per generation and m~1:25|10{8 . B: As in A but for f2 haplotypes shared between CHB and MXL, restricted
to haplotypes where the MXL individual is inferred to be homozygous for Native American ancestry. C–D: Age distributions inferred using ‘‘clean’’
sequence data, comparable to Figure 3A–B (Note the extended x-axis).
doi:10.1371/journal.pgen.1004528.g005
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American map [31], a map derived from an Icelandic pedigree

[32] and a chimpanzee map from a small population [33], but

none of these made a substantial difference to the results and we

conclude that the length of the haplotypes we investigate is

sufficiently large that they are robust to the uncertainty in the

recombination map (Figure S10).

Finally, systematic errors might occur due to homoplasy (where

the same mutation occurs independently on two different lineages).

While this rate is expected to be low, it may be locally high in some

parts of the genome, for example in CpG islands which have an

order of magnitude higher mutation rate than the genomic

background. If such false positives do occur, they would appear as

very short haplotypes that we would infer to be very old, so they

cannot explain our systematically lower ages. On the other hand, it

is likely that some of the very old haplotypes we see are, in fact,

due to repeat mutations and, in particular, this might explain some

of the very old haplotypes discovered with sequence data.

However, while systematic biases in our estimates might explain

some of the difference between our estimated ages and indepen-

dent split time estimates, they are unlikely to explain the

observation that the age distributions vary greatly between

different pairs of populations. This strongly suggests that there is

variation in the extent of gene flow. For example, Asian-FIN

sharing seems to be more recent than other Asian-European

sharing, suggesting relatively recent contact between East Asian

and Finnish populations, compared to other European popula-

tions. It seems likely that worldwide demographic history is

sufficiently complicated that trying to estimate a single Asian-

European (or African-Non African) split time is futile, and that a

complex model of many splits, migrations and admixtures is

required to explain the relationship between different populations.

Ultimately, we would like to be able to make explicit estimates

of parameters like historical effective population size, and the dates

of demographic events. Though the approach we describe here is

limited in in this respect, there is a clear path to extend it to do so.

We could first use a similar approach to estimate the ages of

variants at frequency three and higher. Then, treating the

estimates of haplotype ages as estimates of coalescent times, we

could use the empirical distribution of coalescent times to estimate

population sizes and cross-population migration rates as a function

of time. Another improvement would be to use information from

the full likelihood surface for each haplotype, rather than just the

point estimate of the age as we do here. Since, for large samples,

we would have good estimates of recent coalescent rates, we expect

that this approach would be very accurate at inferring recent

history, making it a complementary approach to sequential

Markovian coalescent based methods which are typically accurate

in the ancient past, but less so for very recent history.

Methods

Definitions
Suppose we have a sample of size N of genotypes from a single

genetic region. Define an f2 variant to be one which occurs exactly

twice in the sample in different individuals. That is, either two

individuals have genotype 1 and all the others have genotype 0, or

two individuals have genotype 1 and the others have genotype 2.

We assume that the minor allele is the derived allele. Under the

neutral coalescent, for a sample of 2N chromosomes, an f2 minor

allele will be the derived allele with probability
2N{1

2Nz1
&1 for

large N so this is a reasonable assumption for large samples.

Define an f2 haplotype shared between chromosomes a and b to

be a region satisfying the following two conditions: 1) The time to

the most recent common ancestor (TMRCA) of a and b does not

change over the region. 2) At one or more sites in the region, a and

b coalesce with each other before either of them coalesce with any

other chromosome. In other words, they are unique genealogical

nearest neighbours (Figure S1). We call the TMRCA of a and b
the age of the haplotype. Additionally, we say that individuals i
and j (i=j) share an f2 haplotype if a is one of i’s two

chromosomes and b is one of j’s two chromosomes.

The problem we solve is to find the f2 haplotypes and then

estimate their ages. Since each f2 variant must lie in an f2

haplotype, the variants provide a simple way of detecting the

haplotypes. We use the algorithm described in the main text to

find regions which should be larger than the f2 haplotypes. The

next problem is to determine the likelihood of the age. We describe

our approximate likelihood below but first, as an example, we

describe exact inference in the absence of confounding factors.

Exact case
Suppose we knew the exact genetic and physical lengths of an f2

haplotype and the number of singletons it carries. Call these

quantities L�g,L�p and S�. Let the age of this haplotype be t

generations, or t in coalescent time (t~
t

2Ne

). Then, for a

randomly chosen f2 haplotype (but not a haplotype at a randomly

chosen position, discussed in the next section), L�g has an

exponential distribution with parameter 4Net and S� has a

Poisson distribution with parameter hL�pt where h~4Nem and m is

the per-base per-generation mutation rate. Therefore (ignoring

terms that do not depend on t), the log-likelihood of t given L�g,L�p
and S� is

‘ t; l�g ,l�p ,s�
� �

~ 1zs�ð Þ log tð Þ{4Netl�g{hl�pt

and the maximum likelihood estimator of t is therefore

t̂t~
1zs�

2 l�gzml�p

� � :

Approximate likelihood for genetic length
There are two corrections to the likelihood for genetic length.

The first relates to the ascertainment process of the haplotypes,

and the second to the overestimate in the length due to the way we

detect the endpoints.

The ascertainment problem is as follows. Suppose we pick a

haplotype at random, then its length is exponentially distributed

(i.e. gamma with shape parameter 1). However, if we pick a point

on the sequence at random then the distribution of the length of

the haplotype in which it falls is gamma distributed with shape

parameter 2. This is an example of the ‘‘inspection paradox’’ and

it is because in the second case, we are sampling haplotypes

effectively weighted by their length. In our case, we detect

haplotypes if they contain one or more f2 variants. Therefore the

probability that we find a haplotype is increasing with its physical

length (because longer haplotypes are more likely to carry f2

variants), but sub-linearly. The probability also increases with

genetic length, but in a complex way that depends on the variation

of recombination and mutation rate along the genome, the age of

the haplotype and the demographic history of the population. For
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example, in a constant sized population, older haplotypes are likely

to have longer branches above them, and therefore to have more

f2 variants, but in an expanding population the opposite may be

true. Rather than trying to take all of these effects into account, we

made the simplifying assumption that we could model the genetic

length L�g as a gamma distribution with shape parameter k where

1vkv2 and rate 4Net. Simulations suggested that k around 1.5

was optimal (Figure S11), and we used this value throughout.

The second correction involves the overestimate of genetic

length. We tried to detect the ends of the haplotype by looking for

inconsistent homozygote genotypes, but of course in practice, after

the end of the f2 haplotype, there will be some distance before

reaching such a site. This (genetic) distance Dg is the amount by

which we overestimate the length of the haplotype. We estimate

the distribution of Dg for a given sample by sampling pairs of

genotype vectors, then sampling sites at random and computing

the sum of genetic distance to the first inconsistent homozygote site

on either side. We then fit a gamma distribution with (shape, rate)

parameters (ke,le) to this distribution, for each chromosome. The

likelihood of t is given by the convolution density of L�g and Dg,

L(t; lg)~

ðlg

0

fc x; k,4Netð Þð Þfc lg{x; ke,leð Þ
� �

dx ð1Þ

where fª x; (k,l)ð Þ~ 1

C(k)
lkxk{1e{lx is the density of a gamma

distribution with (shape, rate) parameters (k,l). This integral, and

therefore the loglikelihood ‘(t; lg)~ log L(t; lg)
� �

can be expressed

in terms of the confluent hypergeometric function 1F1 (ignoring

terms that do not depend on t),

‘(t; lg)~k log (t)z log 1F1 k,kzke,lg le{4Netð Þ
� �� �

: ð2Þ

Where, recall, we assume k~1:5. Note that if we replace 2Net
with t, and drop constant terms, then we get an expression for the

likelihood of t that does not depend on Ne, so our estimate of time

in generations does not depend on Ne.

‘(t; lg)~k log (t)z log 1F1 k,kzke,lg le{2tð Þ
� �� �

: ð3Þ

Finally, note that the rate at which recombination events occur

on the branch connecting the two shared haplotypes is 4Net. We

assume that the first such event marks the end of the haplotype.

However, there is a non-zero probability that a recombination

event occurring on this branch does not change the MRCA of a
and b. Simulations suggest that for large numbers of chromo-

somes, this probability is extremely small (Figure S12) and so we

assume it is 0. In practice, for small samples, this might be a non-

negligible effect.

Approximate likelihood for singleton count
Recall that the physical length of the shared haplotype is Lp

bases. We assume that we can find this exactly. Then assuming a

constant mutation rate m per base per generation, the sum of the

number of singletons on the shared haplotypes, S� has a Poisson

distribution with parameter hLpt, where h~4Nem.

Now consider the distribution of singletons on the unshared

haplotypes. To approximate this distribution, we make the

following three assumptions: 1) There is no recombination on

the unshared haplotypes over the region. 2) No other lineage

coalesces with the shared haplotype before it is broken. 3) The

distribution of the time to first coalescence of the unshared

haplotypes is exponential with parameter N (Recall that N is the

number of sampled individuals). In fact the true distribution is a

mixture of exponentials but the approximation at least matches the

correct mean,
1

N
[34]. The variance is too small because of the first

assumption, however.

Consider one of the unshared haplotypes. Conditional on the

time (t1) at which it first coalesces with any other haplotype, the

number of singleton mutations it carries is Poisson with parameter

hLpt1 and so, using the assumptions above, the unconditional

distribution is geometric (on 0, 1 . . .) with parameter
1

1z
hLp

2N

.

Therefore the distribution of the number of mutations on both

unshared haplotypes, DS , is the sum of two geometric distributions

which is negative binomial with parameters 2,
hLp

hLpz2N

� 	
. The

density of the total number of singletons, S is the convolution of

these two densities

L(t; lp,s)~
Xs

x~0

fPo x; hlpt
� �

fNB s{x; 2,
hlp

hlpz2N

� 	� 	
ð4Þ

where fPo x; lð Þ~ lxe{l

x!
is the density of a Poisson distribution

with parameter l and fNB x; n,pð Þð Þ~ xzn{1

x

� 	
(1{p)npx is

the density of a negative binomial distribution with parameters

(n,p). As with the genetic length, we can write this in terms of t, the

haplotype age in generations,

L(t; lp,s)~
Xs

x~0

fPo x; 2mlpt
� �

fN B s{x; 2,
hlp

hlpz2N

� 	� 	
ð5Þ

In practice we assume m is known and estimate h separately for

each individual, for each chromosome, by counting the number of

singletons, multiplying by the number of chromosomes in the

sample, and dividing by the chromosome length. Then for each

pair, we use use the average of these values in Equation 5. A more

accurate approach would be to compute the likelihood as a double

convolution over the distribution of both haplotypes with different

values for h. An extension would be to estimate h separately for

different regions of the genome.

Approximate full likelihood
We can now write the approximate log-likelihood for t as the

sum of Equation 3 and the log of Equation 5, assuming that the

recombination process is independent of the mutational process,

‘(t; lg,lp,s)~‘(t; lg)z log L(t; lp,s)
� �

: ð6Þ

We maximise it numerically with respect to t in order to find the

maximum likelihood estimate (MLE). It is possible for this

likelihood to be bimodal, in which case we might find a local

but not global optimum. However, this seems to be rare.

1000 Genomes data
The 1000 Genomes data was obtained from ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/. The phase 1 release sequence

data is in phase1/analysis_results/integrated_call_sets, and the
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array data is in phase1/analysis_results/supporting/omni_haplo-

types. In order to generate the ‘‘clean’’ sequence data, we removed

any sites that fell in the list of low complexity regions found in

technical/working/20140224_low_complexity_regions/hs37d5-

LCRs.txt. Functional annotations are in phase1/analysis_results/

functional_annotation. Detailed explanations of the annotations can

be found there, but briefly the classifications are as follows:

N Loss-of-function: Includes premature stop codons, and essen-

tial splice site disruptions.

N Coding: Variants in coding regions.

N Functional noncoding: Including variants in noncoding RNAs,

promoters, enhancers and transcription factor binding sites.

N Unannotated: Any variant not included in any of the above

categories.

We included haplotypes in more than one of these categories if

they contained multiple variants.

Code
All the code we used to run simulations and analyse the 1000

Genomes data is available from www.github.com/mathii/f2.

Supporting Information

Figure S1 Example of an f2 haplotype. Recombination events

are shown as a series of marginal trees, as we move left to right

along a sequence, so the tree above point x is constant between

x and xz1. In the blue region, a and b share an f2 haplotype.

At sites 2 and 3, a and b are unique nearest neighbours. A

mutation at site 2 (green), will be detected as an f2 variant. At

site 4, they are no longer unique nearest neighbours, but the

TMRCA is unchanged. At site 5, the TMRCA has changed and

the haplotype breaks. In the other direction, at site 1 the

haplotype breaks because the TMRCA of a and b changes, even

though they are still unique nearest neighbours. We count this

as breaking the haplotype, even though we cannot detect this

event.

(PDF)

Figure S2 Confidence intervals. A: Coverage of approximate

confidence intervals. We performed simulations as described in

Figure 2, but only for chromosome 20. We computed approxi-

mate a-confidence intervals using the x2 approximation to the

distribution of the log-likelihood. This figure shows the proportion

of true haplotype ages that lie inside their approximate confidence

intervals. B: Confidence intervals for the simulations in Figure 2.

For each haplotype, we plot its true age against the upper and

lower end of the two-tailed 95% confidence interval.

(PDF)

Figure S3 The contributions of different terms of the likelihood.

This shows plots comparable to Figure 2, based on whole-

genome simulations of 100 individuals. Grey dots show the

estimated age of each f2 haplotype against the true age. The blue

line is a qq plot of the distribution of the MLEs (from 1% to 99%

quantiles) Each subfigure shows the result of using different

information. A, C and E use just the genetic length and B, D and

F use both the genetic length and the number of singletons. A and

B show the results if the true values are used in the likelihood. C
and D show the corresponding results when the observed length

is used without accounting for the overestimate, E and F (the

same as Figure 2A) show the full likelihood, including the

correction to Lg.

(PDF)

Figure S4 The effect of demography on the accuracy of

inference. These plots were generated with the same parameters

as Figure 2 (Ne~14,000, m~1:2|10{8), but show only chromo-

some 20. Grey dots show the estimated age of each detected f2

haplotype against the true age (in generations). The blue line is a

qq plot of the distribution of the MLEs (from 1% to 99%

quantiles). We simulated different demographic scenarios. A: A

bottleneck which reduces the population by 99% between 14 and

17 generations in the past (dotted lines). B: A population of size

14,000 which split into two isolated populations, each of size

14,000, 560 generations ago (dotted line). C: A population

growing exponentially by about 0.02% per generation, to a

present size of 140,000. D: A population where Ne is actually

140,000 but we ran inference assuming it to be 14,000.

(PDF)

Figure S5 The effect of demography on inferred age distribu-

tions. Solid lines show the density estimate of the distribution of

the MLEs of the ages of detected f2 haplotypes under different

demographic scenarios. Dashed lines show the true distributions.

Parameters as in Figure 2. A: A recent bottleneck. Dotted lines

show the time of the bottleneck (population size reduced by 99%

for 3 generations). B: Population split 1120 generations ago with

no subsequent migration. The dotted line shows the time of the

population split. The blue line shows the estimated age of f2

variants shared within a population and the red line the estimated

age of f2 variants shared between populations. The vertical red

dotted line shows the median of this distribution and the black

dotted line shows the split time. C: Age distributions for different

bottlenecks. Different colours show results for bottlenecks at

different times. As in A, dashed lines show the true distribution of

f2 ages and solid lines of the same colour show the estimated

distributions. Parameters as in A, but now the bottleneck reduces

the population size by 90% for 5 generations and the

recombination map is from chromosome 10 instead of 20. D:

Median within and between population ages, both estimated (solid

line) and true (dashed line), for different split times. As in B, but

again using the chromosome 10 recombination map.

(PDF)

Figure S6 f2 variant sharing across 1000 Genomes individuals.

Colours from white to blue to red show the number of f2 variants

shared between each pair of individuals, normalised by the total in

each row. Individuals are ordered by populations, but only by

sample name within each population.

(PNG)

Figure S7 1000 Genome Project f2 haplotype MLE age

distributions. For the nine populations not included in Figure 3.

Each of these subfigures shows the distribution of ages of

haplotypes shared between one population and each of the others.

(PDF)

Figure S8 GBR-American sharing. The density of the ages of f2

haplotypes shared between GBR (UK) and each of CEU (NW

European), CLM (Columbian), IBS (Spanish), MXL (Mexican),

PUR (Puerto Rican) and TSI (Tuscan). See Table 1 for more

complete descriptions of the populations.

(PDF)

Figure S9 The effect of post-split migration. Comparison of the

distribution of the age of f2 variants shared between populations

(blue) and the gene flow estimated by MSMC with 4 haplotypes

(red). Ne~14,000, m~1:2|10{8, using the chromosome 20

recombination map. In each case, the blue dashed line shows the

median of the f2 age distribution. A: A scenario where the two

populations split 1120 generations ago (black dashed line). B: A
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scenario where two populations split 1120 generations ago, but

there is migration at a rate of 1% per year for 560 generations

(black dashed lines at 560 and 1120 generations). Note that in B,

the peak of the f2 age density is shifted to the left relative to A,

indicating that many of the f2 variants shared between populations

derive from post-split migration rather than predating the split.

(PDF)

Figure S10 The effect of errors in the recombination map. We

simulated haplotypes with a different recombination map to the

one used to determine genetic length. The left column shows true

versus estimated ages for detected haplotypes, and a qq plot of the

MLEs, as in Figure 2A. The right column shows the coverage of

the asymptotic confidence intervals as in Figure S2A. Each row

shows the results of simulations using a different map (references in

main text), but in every case the HapMap combined map was used

to determine the genetic length of the detected haplotypes: A,B:

Simulated using the HapMap map. C,D: Simulated using a map

derived from African Americans. E,F: Simulated using a map

derived from an Icelandic pedigree. G,H: Simulated using a map

derived from chimpanzees, rescaled to have the same total length

as the human map. In each case, we simulated Chromosome 20

for 100 individuals with m~1:2|10{8 per-base per-generation

and Ne~14,000.

(PDF)

Figure S11 Effect of varying k. This figure shows the effect on

the density estimate of varying k, the shape parameter of the

gamma distribution used to model the genetic length of the

haplotypes. This shows qq plots generated from simulations as in

Figure 2, but for chromosome 20 only, for k~1, 1.5 and 2.

(PDF)

Figure S12 Probability that recombinations do not change the

TMRCA. We used simulations to estimate the probability that the

first recombination on the branch between two haplotypes which

are nearest neighbours does not change their TMRCA. For

varying sample sizes n, we simulated sequences with recombina-

tion using the SMC’ algorithm [35]. We find pairs of nearest

neighbours, then count along the sequence until the first

recombination on the branch connecting them. The plot shows

the probability that this recombination does not change the

TMRCA (t) of those two samples, as a function of t. Solid circles

show 5% and 95% quantiles of the distribution of coalescence

times. The dashed lines show the theoretical lower bounds on this

probability;
1

n
1{

1

nt
1{e{ntð Þ

� 	
, exact for n~2, which is

achieved if there are no coalescences on the tree except the one

between the two nearest neighbour lineages. The numbers in

brackets in the legend show the probability that a recombination

does not change the TMRCA, averaged over all events. Note that

as n increases, for fixed t, the probability of not changing the

TMRCA decreases, but in addition the distribution of t becomes

smaller which also decreases the overall probability of not

changing the TMRCA.

(PDF)

Table S1 1000 Genomes f2 haplotype total counts. Counts of f2

haplotypes shared between each pair of populations.

(TXT)

Table S2 1000 Genomes f2 haplotype mean counts. Mean

number of f2 haplotypes shared between each pair of individuals,

for each pair of populations.

(TXT)

Table S3 1000 Genomes f2 haplotype medians. Median

estimated age (in generations) of the MLE of the f2 haplotypes

shared between each pair of populations, using array data to

estimate the haplotypes.

(TXT)

Table S4 1000 Genomes f2 haplotype 5% quantiles. 5%

quantile of estimated age (in generations) of the MLE of the f2

haplotypes shared between each pair of populations, using array

data to estimate the haplotypes.

(TXT)

Table S5 1000 Genomes f2 haplotype 95% quantiles. 95%

quantile of estimated age (in generations) of the MLE of thef2

haplotypes shared between each pair of populations, using array

data to estimate the haplotypes.

(TXT)

Table S6 Estimated error parameters for 1000 Genomes data.

We show error parameters ke and le for each chromosome

estimated with both array and sequence data, and h (|10{3)

estimated by counting singletons, for each chromosome, showing

the median value for non-African (N.Afr) and African (Afr)

populations separately. Note that there is substantial variation in

error parameters between chromosomes using array but not

sequence data, suggesting that this is due to variations in the

density of markers on the array, when we use array data to

estimate the haplotypes.

(TXT)
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