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Abstract

Heart failure represents a major cause of morbidity and mortality worldwide. Single-cell 

transcriptomics have revolutionized our understanding of cell composition and associated gene 

expression. Through integrated analysis of single-cell and single-nucleus RNA-sequencing data 

generated from 27 healthy donors and 18 individuals with dilated cardiomyopathy, here we 

define the cell composition of the healthy and failing human heart. We identify cell-specific 

transcriptional signatures associated with age and heart failure and reveal the emergence 

of disease-associated cell states. Notably, cardiomyocytes converge toward common disease-

associated cell states, whereas fibroblasts and myeloid cells undergo dramatic diversification. 
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Endothelial cells and pericytes display global transcriptional shifts without changes in cell 

complexity. Collectively, our findings provide a comprehensive analysis of the cellular and 

transcriptomic landscape of human heart failure, identify cell type-specific transcriptional 

programs and disease-associated cell states and establish a valuable resource for the investigation 

of human heart failure.

Single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq, respectively) 

represent powerful new tools to identify cell types and their respective transcriptional 

signatures that reside within healthy and diseased tissues. Before the development of these 

technologies, our understanding of the cells that comprise human tissues and organs was 

restricted to routine histology and immunostaining analyses performed many decades ago. 

The rapid deployment of single-cell sequencing has revolutionized the field and resulted in 

the identification of previously unrecognized cell populations, including disease-specific cell 

states across a wide range of structures, including the brain, lung, liver, kidney and various 

malignancies1-5.

Heart failure represents a major cause of morbidity and mortality worldwide and imparts 

large costs on healthcare systems ($30–50 billion year−1 in the United States)6,7. Despite 

advancements in patient care, heart failure remains prevalent (lifetime risk of 20–45%) 

and portends 5-year morality rates approaching 50%, highlighting the clinical need to 

develop new therapies8. While bulk RNA-seq has yielded important insights into disease 

mechanisms that contribute to heart failure pathogenesis9, cell-specific information is lost 

and much remains to be learned regarding the roles of individual cell types. Identification 

of cell-specific disease-associated programs may provide the insights and opportunities 

necessary to develop new approaches for heart failure.

Recently, scRNA-seq and snRNA-seq was performed on healthy human heart tissue10,11. 

These studies yielded new information pertaining to common and rare cell populations 

within the healthy heart. Cardiomyocytes, fibroblasts, endothelial cells, pericytes, smooth 

muscles cells, myeloid cells, lymphoid cells, adipocytes and neural cells were readily 

identified and analyzed across anatomical sites. Distinct transcriptional states of atrial and 

ventricular cardiomyocytes were identified and validated using RNA in situ hybridization. 

Notable diversity was also observed among perivascular and immune cell types, including 

transcriptional signatures specific to different regions of heart.

At present, little is understood regarding the functional relevance of cell diversity within 

major human cardiac cell populations. Furthermore, the impact of human cardiac disease 

on cell composition remains to be rigorously investigated. While extensive work has been 

carried out in mouse models of heart failure, current scRNA-seq datasets exploring human 

heart failure are small and lack the sample size necessary to elucidate the impact of disease 

on common and rare cardiac cell types12-21.

Herein, we performed snRNA-seq and scRNA-seq on a large cohort of heart specimens 

obtained from healthy individuals and patients with chronic heart failure. We identified 

15 major cardiac cell types from 45 individuals and explored the extent of cell diversity 

within each of these populations. Unsupervised clustering, differential gene expression and 
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trajectory analyses revealed cell type-specific transcriptional programs and emergence of 

disease-associated cell states in the context of heart failure. We uncovered cell-specific 

influences of age on gene expression that differed based on disease state. Our data provide 

a comprehensive analysis of the cellular and transcriptomic landscape of the healthy and 

failing human heart and will serve as a valuable resource to the scientific community.

Results

snRNA-seq and scRNA-seq reveal the cellular landscape of the human heart.

To define the cellular and transcriptional landscape of the healthy and failing human heart, 

we obtained left ventricular (LV) cardiac tissue specimens from 28 non-diseased donors 

(donation after brain death) and 17 individuals with dilated (non-ischemic) cardiomyopathy 

(DCM). Non-diseased tissues were acquired from prospective donor hearts with normal LV 

function that were not used for transplantation due to the lack of a suitable recipient. DCM 

tissue was obtained from individuals undergoing implantation of an LV assist device or 

explanted hearts collected at the time of transplantation. Transmural myocardial samples 

from the apical and anterior segments of the LV were processed for either snRNA-seq (n 
= 38) or scRNA-seq (n = 7) using the 10X Genomics 5′ Single Cell platform (Fig. 1a, 

Extended Data Fig. 1 and Supplementary Table 1).

Single-nucleus and single-cell libraries were sequenced, aligned to the human reference 

genome, filtered for quality control (QC). Unsupervised clustering, integration and 

differential expression analysis performed using Harmony and Seurat (Fig. 1b, Extended 

Data Fig. 1 and Supplementary Tables 2 and 3). Following QC, nuclei samples had average 

gene and feature counts per cell of 2,849 and 1,496, respectively, whereas those counts for 

cells were 4,893 and 1,966, respectively. The final integrated dataset consisted of 220,752 

nuclei and 49,723 cells representative of 15 major cell types (Fig. 1c). Cell identities were 

validated by expression of cell-specific marker genes (Fig. 1d) and transcriptional signatures 

(Extended Data Figs. 2 and 3). Cell types identified in both snRNA-seq and scRNA-seq 

datasets included fibroblasts, endothelial cells, myeloid cells, pericytes, smooth muscle cells, 

T cells and natural killer (NK) cells, neurons/glia and B cells. A notable benefit of snRNA-

seq is the ability to obtain reads from additional cell types that are not efficiently recovered 

from enzymatically digested tissue including cardiomyocytes, adipocytes, endocardial cells, 

lymphatics, epicardial cells and mast cells (Fig. 1e and Extended Data Figs. 2 and 3).

The analyzed dataset was powered to investigate the influence of age, sex and disease 

state and severity on gene expression. Differential expression analysis using pseudobulk 

and single-cell approaches demonstrated substantial overlap (Supplementary Tables 4 and 

5). Disease state had the most powerful influence on differential gene expression across 

cell types (Fig. 2a and Supplementary Table 21). Heart failure severity, as assessed by 

INTERMACS profile/score (predictor of outcomes in the advanced heart failure population) 

revealed evidence of differential expression in cardiomyocytes, endothelial, endocardial, 

fibroblast and myeloid cells (Fig. 2b and Supplementary Table 22)22,23. We also observed 

changes in cardiac cell composition as a function of disease state. Individuals with DCM 

had decreased numbers of cardiomyocytes, pericytes and mast cells; and increased numbers 

of fibroblasts, myeloid cells, T/NK cells and lymphatics (Supplementary Table 6). Many of 
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these changes were observed in both men and women (Supplementary Tables 7 and 8). Heart 

failure severity was not associated with changes in cell composition (Supplementary Table 

9).

Substantially fewer differentially expressed genes (DEGs) were detected comparing sex 

in either non-diseased donors or individuals with DCM. The majority of differentially 

expressed transcripts were located on the X and Y chromosomes including XIST, TSIX and 

TTTY genes (Fig. 2c and Extended Data Fig. 4). We did not detect clear differences in 

cell composition between male and female donors or individuals with DCM (Supplementary 

Tables 10, 11, 23 and 24).

To identify changes in cardiac cell composition and gene expression associated with age, 

we computed positive and negative relationships using Pearson correlation. This analysis 

was separately performed in donor and DCM cohorts to account for the possibility that 

relationship between age, cell composition and gene expression may differ in the context 

of health and heart failure. We observed that myeloid cell number was associated with 

older age in donor hearts, a finding that was most evident in females. We did not 

observe significant age-associated alterations in major cell populations in DCM hearts 

(Supplementary Tables 12, 13, 25 and 26). In contrast, we identified multiple genes that 

were associated with younger and older age across cell types in donor and DCM hearts 

(Fig. 2d). We constructed age-associated gene signatures by selecting genes with Pearson 

correlation coefficients >0.6 or <−0.6. Regression analysis revealed robust age-associated 

gene signatures across cell types. Notably, age-associated gene expression signatures were 

cell type-specific, differed by disease state and similarly evident in male and female patients 

(Extended Data Fig. 5 and Supplementary Tables 14-17). We also detected distinct pathways 

associated with age in donor controls and individuals with DCM (Supplementary Tables 18 

and 19).

Given that disease state was associated with the most robust changes in cell composition 

and gene expression, we chose to focus our analysis on how heart failure influences major 

cardiac cell populations, including cardiomyocytes, myeloid cells, fibroblasts, pericytes/

smooth muscle cells, endothelial cells and endocardial cells. These populations displayed the 

greatest differences in gene expression (Fig. 2a).

Cardiomyocytes phenotypically converge in dilated cardiomyopathy.

Principal-component analysis (PCA) of pseudobulk data indicated that disease state and 

sex had the greatest influence on gene expression variance in cardiomyocytes (Fig. 3a). 

Overlaying age distribution onto the PCA plot did not suggest a dominant relationship with 

age across all cardiomyocytes, although regression analysis did identify gene expression 

signatures associated with age (Fig. 2d and Extended Data Fig. 5). Genes associated 

with age differed in donor and DCM specimens and were distinct from genes that were 

differentially expressed between donor versus DCM cardiomyocytes (0.1% and 3.7% 

overlap, respectively). Pseudobulk differential expression analysis between men and women 

indicated robust differences in a modest number of genes encoded on the X and Y 

chromosome, possibly accounting for separation observed by PCA (Extended Data Fig. 

4). Differential expression analysis by pseudobulk and single-cell approaches across disease 
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state revealed a large number of genes significantly upregulated (NPPA, NPPB, ACE2 and 

KIF13A) and downregulated (MYH6, ADRB2 and CKM) in DCM samples compared to 

non-diseased donors (Fig. 3b). Pathway analysis identified multiple differentially regulated 

pathways upregulated (MAPK, FLT3, HIPPO/YAP and GCPR signaling) and downregulated 

(metabolism) in DCM (Extended Data Fig. 6).

Unsupervised clustering identified seven cardiomyocyte states with differing gene 

expression signatures (Fig. 3c,d and Extended Data Fig. 6). Cardiomyocytes from donor 

samples existed in all seven states marked by MYH6 (Cm1), ACTA1 (Cm2), MYL7 (Cm3), 

ADGRL3 (Cm4), GRIK2 (Cm5), NPPA/NPPB (Cm6) and BMPR1B (Cm7) expression. 

DCM samples displayed a bias toward ADGRL3-expressing cardiomycytes, trend toward 

more NPPA/NPPB-expressing cardiomyocytes and marked reduction in MYH6- and 

GRIK2-expressing cardiomyocytes (Fig. 3e). Cardiomyocyte clusters marked by MYH6, 

MYL7 and GRIK2 displayed stronger expression of signature genes in donor samples, 

whereas cardiomyocyte clusters marked by ACTA1, ADGRL and NPPA/NPPB displayed 

stronger expression of signature genes in DCM samples (Extended Data Fig. 6). In addition, 

we observed a global decrease in MYH6 expression and increases in ANKRD1, NPPA 
and ADGRL3 expression in DCM (Fig. 3f). To validate shifts in cardiomyocyte state and 

gene expression in DCM at the tissue level, we performed RNA in situ hybridization. 

Compared to donor controls, we observed significant increases in NPPA, NPPB and 

ANKRD1-expressing cells and significant reduction in MYH6-expressing cells in DCM 

(Fig. 3g,h).

Pathway and transcription factor enrichment analyses performed on each cardiomyocyte 

cell state identify pathways that distinguished cardiomyocytes states including metabolism, 

muscle contraction, Semaphorin, NOTCH, MAPK signaling and potassium channels. This 

analysis also identified transcription factors that were predicted to regulate gene expression 

within each of the cardiomyocyte states (Extended Data Fig. 6).

To explore the temporal relationship between cardiomyocyte states, we performed 

pseudotime trajectory analysis using Palantir, a Python package that employs probabilistic 

models to discern complex and diverse lineage relationships24. We calculated pseudotime 

and entropy values for each cardiomyocyte cluster to predict putative states of cell 

differentiation (Fig. 3i and Extended Data Fig. 6). We plotted entropy versus pseudotime 

values for each cell and superimposed cluster designations. Donor cardiomyocytes were 

predicted to contain two highly differentiated cell states marked by MYL7 and ACTA1 
expression. In contrast, DCM samples displayed two distinct highly differentiated cell states 

marked by ARGRL3 and NPPA/NPPB expression (Fig. 3i). Collectively, these observations 

suggest a convergence toward disease-associated cardiomyocyte phenotypes in DCM.

Monocyte expansion and inflammatory macrophage diversification.

Macrophages, monocytes and dendritic cells are increasingly studied in mouse models 

of cardiac injury and heart failure25-29. We identified large populations of macrophages, 

monocytes and dendritic cells in donors and individuals with DCM (Fig. 1c,e). PCA 

of pseudobulk data indicated that disease state and sex had the greatest effect on gene 

variance in this population (Fig. 4a). Differential expression analysis by pseudobulk and 
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single-cell approaches across disease state revealed a large number of genes significantly 

upregulated (CCL3, NLRP3, NFKB2 and EGR1) and downregulated (VSIG4, LYVE1, 

FMN1 and CD163) in DCM samples compared to non-diseased donors (Fig. 4b). Similar 

to cardiomyocytes, pseudobulk differential expression analysis between males and females 

indicated robust differences in a small number of genes encoded on the X and Y 

chromosomes, including XIST, JPX and TTTY10 (Extended Data Fig. 4). Pathway 

analysis identified upregulation of multiple pathways in DCM samples including T-cell co-

stimulation, PD-1 and NGF signaling, whereas metabolism pathways were downregulated in 

DCM (Fig. 4c).

Unsupervised clustering of the integrated dataset revealed the presence of large numbers of 

macrophages and smaller populations of monocytes, dendritic and proliferating cells. We 

identified two populations of macrophages, including a subset that expressed tissue-resident 

markers (Mac1: MRC1, SIGLEC1, CD163, LYVE1 and F13A1)30-32 and a subset that 

expressed chemokines and cytokines (Mac2: CCL3, CCL4, CXCL3, CXCL8 and IL1β). 

Compared to donor controls, we observed a reduction in proliferating macrophages and 

expansion of monocytes and dendritic cells in individuals with DCM. We also observed 

a reduction in the tissue-resident macrophage signature and increase in the inflammatory 

macrophage signature in DCM (Fig. 4d-h and Extended Data Fig. 7). RNA in situ 

hybridization confirmed reduction in CD163+ cells in DCM samples compared to donor 

controls (Fig. 4i).

Visualization of snRNA-seq and scRNA-seq data within the integrated object indicated 

a bias in recovered cell populations. While each dataset contained all of the identified 

cell types, the scRNA-seq dataset displayed a bias toward monocytes, dendritic cells 

and non-resident macrophages. The snRNA-seq dataset contained a substantially larger 

number of resident macrophages (Fig. 4j). To further evaluate the diversity of monocytes, 

dendritic cells and non-resident macrophages, we chose to focus on the scRNA-seq data. 

Analysis of cell composition using cluster annotations defined within the integrated dataset 

demonstrated increased dendritic cells and Mac2 (chemokine/cytokine-expressing) and 

reduced Mac1 (tissue-resident signature) in DCM (Fig. 4k).

Unsupervised clustering revealed the presence of discrete monocytes (Mono1, nonclassical-

FCGR3A; Mono2, classical-CD14; Mono3, intermediate-OLR1), macrophages (Mac1, 

TREM2; Mac2, FOLR2/LYVE1; Mac3, LYVE1/HSPH1; Mac4, CCL3; Mac5, KLF2) and 

dendritic cells (CD1C) (Fig. 5a,b). We observed shifts in monocyte, macrophage and 

dendritic cell composition between donor and DCM groups. Donor samples contained 

classical and nonclassical monocytes as well as two populations of LYVE1+ resident 

macrophages (Mac2 and Mac3). DCM samples displayed reduced numbers of resident 

macrophages and a greater number of intermediate monocytes, dendritic cells and three 

additional macrophage populations (Mac1, Mac4 and Mac5). Classical and intermediate 

monocytes and macrophages marked by CCL3, TREM2 and KLF2 expressed robust levels 

of inflammatory mediators including IL1A, IL1B, TNF, AREG and EREG and multiple 

chemokines (Fig. 5c).
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To infer the differentiation state of monocyte, dendritic cell and macrophage populations, 

we utilized Palantir. Calculation of pseudotime and entropy values demonstrated that 

CD14+ monocytes (Mono2) represented the most progenitor-like state. CD16+ monocytes 

(Mono1), dendritic cells and resident macrophages (Mac2 and Mac3) represented the 

most differentiated cells, each with distinct trajectories. Compared to donors, we observed 

an accumulation of cells with intermediate differentiation states along the macrophage 

trajectory in DCM samples. Superimposing cluster identities revealed that these cells 

belonged to the intermediate monocyte (Mono3), TREM2 (Mac1), CCL3 (Mac4) and KLF2 
(Mac5) clusters, suggesting that they are monocyte-derived (Fig. 5d,e). Transcription factor 

analysis identified enrichment for targets of transcription factors, including CLOCK, RELA, 

MYB, RUNX2, SMAD2/3 and IRF8 in the inflammatory macrophage states (Mac1, Mac4 

and Mac5; Fig. 5f). Comparison of pathways across cell states identified enrichment of 

unique pathways in individual states included pathways involved in inflammation, interferon 

and interleukin signaling (Fig. 5g). These data provide a link between monocyte-derived 

macrophages and inflammation in DCM.

Fibroblasts diversify in dilated cardiomyopathy.

We identified a large population of cardiac fibroblasts in donor controls and DCM hearts. 

PCA demonstrated that variability across fibroblast samples was driven by disease state and 

sex (Fig. 6a). Differences between males and females were driven by a small number of 

genes encoded on the X and Y chromosomes, including XIST, JPX and ZFYAS1 (Extended 

Data Fig. 4). Pseudobulk and single-cell differential expression analysis identified a large 

number of genes that were significantly upregulated (POSTN, MEOX1/2, TLL1, EDNRA, 

SVEP1 and FRZB) and downregulated (APOD, NPPC, ANGPTL1, FIGF and ACE2) in 

DCM samples compared to non-diseased donors. Pathway analysis identified upregulated 

(extracellular matrix synthesis and organization, MAPK and nephrin signaling) and 

downregulated (metabolism, biosynthesis, complement and muscle contraction) pathways 

in DCM (Extended Data Fig. 8).

Unsupervised clustering of the integrated dataset revealed multiple distinct populations of 

fibroblasts (Fig. 6c). The majority of fibroblasts in both donor and DCM hearts displayed a 

conserved gene expression signature characteristic of fibroblasts (Fb1, Fb2). We identified 

two fibroblast subpopulations primarily present in donor controls that expressed GPX3 (Fb3) 

and PLA2G2A (Fb4), respectively. We observed additional minor fibroblast subpopulations 

characterized by the expression of ELN (Fb5), TNC (Fb6), CCL2 (Fb7), THBS4 (Fb8) 

and SERPINE1 (Fb9). Epicardial cells were also represented (Epi). POSTN, a marker of 

disease-associated fibroblasts was expressed in Fb8 33. Fb5 and Fb8 were found at increased 

abundance in DCM (Fig. 6c-e and Extended Data Fig. 8). Fibroblasts in DCM hearts 

displayed a robust activation signature that included FAP, CTGF, LUM, ACTB, COL1A1, 

BGN and MGP expression. Donor fibroblasts selectively expressed a signature represented 

by GPX3, PID1, TGFBR3, ACSM3 and APOD (Fig. 6f). Palantir identified fibroblasts 

marked by ELN, TNC and SERPINE1 expression as the most differentiated cell states 

based on low entropy and high pseudotime values. All other fibroblasts seemed to exist 

in a state of high entropy, suggesting substantial plasticity within these populations (Fig. 

6g). Pathway analysis comparing fibroblast states identified distinct pathway enrichment, 
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including pathways involved in extracellular matrix synthesis and assembly, protein 

translation, messenger RNA processing, cell death, type I interferon signaling, TLR4 

signaling, metabolism and the ubiquitin–proteome system. Transcription factor analysis 

identified enrichment of targets of specific transcription factors in the majority of fibroblast 

cell states (Extended Data Fig. 8).

We validated shifts in fibroblast composition between donor controls and DCM hearts 

using RNA in situ hybridization for select fibroblast populations. The overall numbers of 

fibroblasts (marked by DCN expression) remained similar between donor control and DCM 

hearts. Notably, we observed that fibroblast subpopulations were located either within the 

interstitial space between cardiomyocytes (PCOLCE2-Fb2, CCL2-Fb7 and POSTN-Fb8), 

adjacent to distal vasculature (PLA2G2A-Fb4) or surrounding epicardial coronary arteries 

(ELN-Fb5). The number of POSTN CCL2, and PCOLCE2-expressing fibroblasts was 

increased in DCM samples. PLA2G2A-expressing fibroblasts were increased in donor hearts 

(Fig. 6h,i and Extended Data Fig. 8).

Pericytes and smooth muscle cells.

Unsupervised clustering of pericytes and smooth muscle cells revealed minimal 

heterogeneity within each of these populations. PCA demonstrated that variability across 

samples was driven by disease state and sex. Differences between males and females were 

driven by a small number of genes encoded on the X and Y chromosomes (Extended Data 

Fig. 4). Pseudobulk and single-cell differential expression and pathway analyses identified 

genes and pathways enriched in DCM pericytes and smooth muscle cells compared to 

non-diseased donors. Within pericytes, TRPC6, ITGA1, XAF1, CYR61 and CTGF were 

upregulated in DCM and TIMP1, CCL2, AGT, ACE2, IFITM2/3 and TGFB3 were 

downregulated in DCM. Among smooth muscle cells, RORA, PLXNDC2, LTBP3/4 and 

SEMA5A were upregulated in DCM and ACTG1/2, ACTB, LGALS3, LDHA, IFITM2/3 
and NGF were downregulated in DCM (Extended Data Fig. 9).

Endothelial cells display shifts in global gene expression.

Endothelial cells within the heart include arterial, venous, capillary, lymphatic and 

endocardial cells. PCA of artery, vein and capillary pseudobulk data identified disease 

state and sex as the most distinguishing features (Fig. 7a). Differences between males and 

females were driven by a small number of genes encoded on the X and Y chromosomes 

(Extended Data Fig. 4). Pseudobulk and single-cell differential expression analysis in 

vascular endothelial cells (arteries, veins, capillaries) identified a large number of genes 

significantly upregulated (DUSP5/6, PDE4B/D, EGR1, FGFR1, SMAD3/6, VEGF-A/C and 

APLNR) and downregulated (LDHB, ALDOA, IFITM3, TBX3 and AQP3) in DCM samples 

compared to donors (Fig. 7b).

Vascular endothelial cells and endocardial cells displayed distinct transcriptional signatures 

and clustered separately (Fig. 7c,d and Extended Data Fig. 10). Within the integrated 

object, the snRNA-seq dataset contained all major endothelial cell populations, whereas 

the scRNA-seq dataset displayed a bias toward arterial (Ec3), venous (Ec2) and capillary 

(Ec1) endothelial cells. Few endocardial (Ecd1 and Ecd2) or lymphatic (Ec4) cells were 
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recovered from scRNA-seq data (Extended Data Fig. 10). Quantification of endothelial cell 

populations revealed an increase in arterial endothelial cells (Ec3) and a shift in endocardial 

cell state in DCM (Extended Data Fig. 10). We did not observe further diversification of 

arterial, venous, capillary, lymphatic or endocardial cells. Instead, we observed global shifts 

in gene expression between control and DCM samples (Fig. 7c,d and Extended Data Fig. 

10). Utilizing RNA in situ hybridization, we visualized expression of recognized venous 

(ACKR1), capillary (BTNL9) and lymphatic (CCL21) markers identified from Seurat 

differential expression analysis (Extended Data Fig. 10)34,35.

Pseudobulk and single-cell differential gene expression analysis of snRNA-seq data revealed 

that endocardial cells and capillaries displayed the greatest number of DEGs between 

donor control and DCM conditions. Arterial and venous endothelial cells displayed a 

modest number of DEGs and lymphatics had few differentially expressed genes (Fig. 7e). 

Among vascular endothelial cells, capillaries displayed enrichment for pathways associated 

with NGF signaling in DCM and metabolism, ER-phagosomes and hedgehog signaling in 

donor controls. Venous endothelial cells displayed enrichment for pathways involved in 

TGF-β, NGF, NTRK1 and MAPK signaling in DCM and mitosis, ER-phagosome, planar 

cell polarity and ROBO signaling in donor controls. Arterial endothelial cells displayed 

enrichment for pathways involved in NGF, NTRK1, type I interferon and MAPK signaling 

in DCM and gluconeogenesis and muscle contraction in donor controls (Fig. 7f-h). We also 

identified cell-specific signatures associated with disease state. FABP5, A2M, IFITM3 and 

F8 expression was enriched in donor capillaries, whereas CREB5, SLC9C1 and SASH1 
expression was enriched in DCM capillaries. Donor venous cells selectively expressed a 

signature represented by CALCRL, IGFBP5 and ABCB1 expression (Fig. 7i).

Similar to other populations, PCA of endocardial pseudobulk data identified disease state 

and sex as the most distinguishing features (Fig. 8a). Within endocardial cells, we observed 

a large number of genes to be significantly upregulated (BMP4/6, GDF6, NRG1, SVEP1, 

ELN, CTGF, EDN1 and CYR61) and downregulated (SEMA3A, NPPC, EDNRB, VEGF-C, 

WNT9B, IGFBP4/6, CD55 and ITGA6/9) in DCM samples compared to non-diseased 

donors (Fig. 8b). Endocardial cells were independently clustered across disease state (Fig. 

8c). Donor endocardial cells (Edc1) expressed NRG3. Endocardial cells from DCM samples 

(Edc2) displayed strong upregulation of NRG1 and reduced NRG3 expression (Fig. 8d,e). 

Pathway analysis identified enrichment of pathways associated with extracellular matrix 

components and organization in DCM (Ecd2) and platelet activation, ERBB2 signaling, 

FGFR1 signaling, metabolism and muscle contraction in donor controls (Ecd1; Fig. 8f,g). 

We also identified enrichment for targets of transcription factors, including FOXA2, AR, 

SMAD4 and CEBPD in Ecd2 (NRG1 endocardial cells) and ZNF217, WT1, TBX20 and 

RELA in Ecd1 (NRG3 endocardial cells; Fig. 8h).

Discussion

Single-cell technologies offer powerful new tools to dissect cell types that reside within 

healthy and diseased tissues. Recently, these approaches were leveraged to provide a 

deeper understanding of the cellular composition of the healthy human heart10,11. While 

considerable interest exists, only limited data are available to decipher how the cellular 
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and transcriptional landscape of the heart is impacted by disease12,13. Using an approach 

that integrated snRNA-seq and scRNA-seq data from 45 individuals encompassing 220,752 

nuclei and 49,723 cells, we identified 15 major cardiac cell types, uncovered cell type-

specific transcriptional programs, revealed age and disease-associated gene expression 

signatures and observed the emergence of cell states associated with heart failure.

Aging is associated with a decline in cardiac function and subsequent adverse clinical 

outcomes, including heart failure. Very little is known regarding how individual cardiac 

cell types transcriptionally change as an individual ages. We leveraged pseudobulk methods 

to dissect age-associated cell type-specific gene signatures in donor and DCM hearts. The 

pseudobulk approach allowed us to focus on patient-level data and minimize noise inherent 

at the single-cell scale.

We did not observe profound associations between cellular composition and age. Only 

myeloid cells were found to be increased with age in donor hearts; however, we did uncover 

specific transcriptional signatures across most cell types that were associated with age and 

differed between donor and DCM hearts. For example, TOLLIP expression correlated with 

increasing age in donor cardiomyocytes, consistent with mouse data that Tollip expression 

correlates with aging and structural cardiac changes in older mice36. TGFBI and NFIL3 
positively correlated with aging in DCM cardiomyocytes. Previous studies have implicated 

Nfil3 in the gene regulatory network involved in cardiac senescence and aging and Tgfbi 
as an upstream regulator of mTOR activation in Drosophila models of aging and cardiac 

disease37,38. Notably, TGFBI and NFIL3 expression positively correlated with age only 

in DCM and not donor cardiomyocytes. We also identified age-related changes in genes 

associated with mechanical sensing in pericytes and myeloid cells. PIEZO1 expression 

positively correlated with age in donors but not those with DCM. Previous reports have 

implicated PIEZO1 activation as an upstream signal to trigger TRPV4 channel opening, 

which we recently showed regulates activation of resident cardiac macrophages and cardiac 

adaptive remodeling39-41. Together, these findings highlight the presence of cell type- and 

disease state-specific transcriptional networks modulating aging.

We did not detect marked differences in cellular composition related to sex. However, we 

did detect genes that were robustly increased in men and women across cell types. Many of 

the identified genes (XIST, JPX, ZFYAS1, TTTY10 and TSIX) are encoded on the X and 

Y chromosomes. This observation is consistent with a recent publication indicating that sex 

chromosomes control transcriptional and proteomic differences between male and female 

hearts that arise before gonad formation in mice42. While we did not identify sex-dependent 

effects on cell-type-specific gene expression in the contexts of aging and disease state, we 

cannot exclude the possibility that sex may have effects that were not readily identified in 

our analysis.

With respect to disease state, we observed robust changes in gene expression across nearly 

all myocardial cell types and considerable variation in how different cardiac cell populations 

responded to heart failure. Cardiomyocytes converged toward common disease-associated 

cell states, whereas fibroblasts and myeloid cells underwent dramatic diversification 

including the acquisition of disease-specific phenotypes. In contrast, endothelial cells, 
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endocardial cells and pericytes displayed global transcriptional shifts without changes in 

cell complexity.

Previous studies examining differences across cardiac chambers have identified evidence 

of cardiomyocyte heterogeneity in the healthy human heart10,11. We identified multiple 

transcriptionally distinct cardiomyocyte states within the LV of non-diseased donors and 

individuals with DCM. Donor hearts contained seven cardiomyocyte states marked by 

MYH6, MYL7, GRIK2, NPPA/NPPB, ADGRL3, ACTA1 and BMPR1B expression. DCM 

cardiomyocytes uniformly expressed high levels of ANKRD1, contained fewer MYH6 
or GRIK2-expressing cardiomyocytes and instead, were enriched for states identified 

by ADGRL3 and NPPA/NPPB expression. NPPA and NPPB expression are known to 

identify diseased cardiomyocytes in humans13. Notably, ANKRD1 expression was recently 

found to be enriched in cardiomyocytes from patients with adolescent versus pediatric 

DCM and increased in cardiomyocytes from mouse hearts that fail to regenerate12,14. 

Pseudotime trajectory analysis identified three highly differentiated cardiomyocyte states 

(MYL7, ACTA1 and NPPA/NPPB) in donor hearts. In contrast, we observed two highly 

differentiated cardiomyocyte states in DCM marked by ADGRL3 and NPPA/NPPB 
expression. These observations suggest that cardiomyocytes converge toward a common 

disease-associated state in DCM. Further understanding of the instructive cues and 

parental cardiomyocyte populations that give rise to ADGRL3 and NPPA/NPPB-expressing 

cardiomyocytes may provide new insights and opportunities to intervene in the pathogenesis 

of human heart failure.

We observed notable transcriptional changes in non-cardiomyocyte populations (fibroblasts, 

macrophages, endothelial cells and endocardial cells) between healthy controls and DCM 

samples. Previous snRNA-seq studies have reported astounding diversity among fibroblasts 

in the healthy human heart10,11,43,44. Fibroblasts are known to expand in heart failure 

and acquire an activated phenotype characterized by the expression of fibroblast activated 

protein (FAP) and periostin (POSTN)33,45-50. While previous single-cell studies have 

identified cardiac fibroblast subsets in the healthy human heart, little is known regarding 

how these populations are influenced by disease. We identify multiple distinct fibroblast 

populations in both healthy and diseased samples with differing transcriptional signatures 

and spatial distribution, including elastin (ELN)-expressing macrophages located within the 

medium of coronary arteries. Fibroblasts marked by POSTN, CCL2 and PCOLCE2 were 

enriched in DCM, whereas GPX3- and PLA2G2A-expressing fibroblasts were enriched 

in donor controls. In addition, we identified an activation signature that included FAP, 

CTGF, LUM, ACTB, COL1A1, BGN and MGP that was selectively expressed in fibroblasts 

from DCM hearts. Differential expression analysis comparing donor and DCM fibroblasts 

identified upregulation of POSTN, MEOX1/2, TLL1, EDNRA and FRZB in DCM. Meox1 
is a homeodomain-containing transcription factor that regulates fibroblast activation in the 

mouse heart following stress. Meox1 directly binds to and activates the Postn promotor 

in mice51. Elimination of FAP-expressing fibroblasts is sufficient to ameliorate myocardial 

fibrosis in mice52. TLL1 regulates mature collagen formation and is linked to coronary 

artery disease53. Endothelin and Wnt signaling are known regulators of fibrosis54,55. These 

findings provide further evidence that phenotypic shifts in fibroblasts are a hallmark of heart 

failure.
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Heterogeneity of myeloid populations, including macrophages, is increasingly appreciated 

to contribute to the variety of cardiac pathologies including heart failure19,56-60. The 

majority of these studies have focused on mouse models with only targeted validation in 

human specimens20,27,28,61. Consistent with small animal models, we observe a variety 

of monocyte, macrophage and dendritic cell populations within the human heart. The 

abundance of macrophages expressing a tissue-resident signature is reduced in DCM, 

a finding evident in mouse models of cardiac injury19,59. The number of proliferating 

macrophages was reduced in DCM, consistent with the concept that self-replication may 

be a trait of tissue-resident macrophages. We also observed an emergence of monocyte 

and macrophage populations expressing inflammatory mediators in the failing heart. Cell 

trajectory analysis predicted that many of these inflammatory populations represented 

intermediate states derived from CD14+ monocytes. Indeed, inhibition of monocyte 

recruitment or administration of anti-inflammatory agents is sufficient to reduce cardiac 

inflammation and myocardial fibrosis18,59,62,63. Future studies are needed to draw causal 

links and define signaling mechanisms by which inflammatory populations of macrophages 

regulate fibroblast activation.

While scRNA-seq and snRNA-seq provided sufficient resolution to identify major 

perivascular populations (arteries, veins, capillaries, pericytes, smooth muscle cells, 

lymphatics and endocardial cells), we did not observe additional diversity within these 

populations; however, we did uncover global shifts in gene expression within each of these 

populations between control and DCM specimens. Previous studies have identified similar 

shifts in global endothelial cell expression but were unable to parse contributions from each 

major endothelial cell type13. Endocardial cells displayed robust numbers of DEGs between 

control and DCM specimens. NRG1 and NRG3 were exclusively expressed in DCM and 

control endocardial cells, respectively. Notably, mouse studies identified that cardiomyocyte 

specific loss of NRG3 receptors (ErbB2 and ErbB4) results in spontaneous heart failure 

suggesting a potential role for NRG3 in regulating cardiac homeostasis64-67.

snRNA-seq captured cell types that are difficult to recover from enzymatically digested 

tissue, including cardiomyocytes, adipocytes, mast cells, epicardium, endocardium and 

lymphatics. Using data integration and reference mapping, we were able to effectively 

combine snRNA-seq and scRNA-seq data and identify at least 15 major cardiac cell 

populations. Current scRNA-seq datasets exploring human heart failure are small and lack 

the sample size necessary to elucidate the impact of disease on common and rare cardiac cell 

types12,13. scRNA-seq data provided greater depth at the expense of biased cell recovery. 

For example, within myeloid cells, scRNA-seq data was biased toward monocytes and 

intermediate macrophage populations with fewer resident macrophages recovered. These 

datasets were leveraged to provide additional granularity into monocytes and inflammatory 

macrophage populations.

This study is not without limitations. We categorized patients with DCM into a single cohort 

based on the lack of underlying coronary artery disease. It is likely that the exact etiology 

of DCM contributes to shifts in cell diversity and transcriptional state. Our dataset includes 

only transcriptomic information. Addition of cell-surface protein expression and chromatin 

accessibility information may offer additional resolution. In conclusion, this study represents 
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a large analysis of the cellular and transcriptomic landscape of the healthy and failing human 

heart. We provide valuable insights into how cardiac cell populations change during heart 

failure including the emergence of disease-specific cell states. These data provide a valuable 

resource that will open up new areas of investigation and opportunities for therapeutic 

development and innovation.

Methods

Statement on human specimens.

This study complies with all relevant ethical regulations and was approved by the 

Washington University Institutional Review Board (study no. 201104172). All samples were 

procured and informed consent obtained by Washington University School of Medicine. No 

compensation was provided for participation. Biospecimen Reporting for Improved Study 

Quality data including distribution of sex, age and race can be found in Supplementary 

Tables 1 and 20.

Sample preparation for scRNA-seq.

Fresh cardiac tissues from LVAD cores or identical regions from the apex of explanted 

donors were minced with a razor blade and transferred into a 15-ml conical tube containing 

DMEM with Collagenase I (450 U ml−1), DNase I (60 U ml−1) and hyaluronidase (60 U 

ml−1) and incubated at 37 °C for 1 h with agitation. Digestion was then stopped by addition 

of HBB buffer (2% FBS and 0.2% BSA in HBSS) and filtered through a 40-μm filter into 

a 50-ml conical tube, transferred to a clean 15-ml conical tube and centrifuged at 350g 
for 5 min at 4 °C. Supernatant was then removed and pellet resuspended in 1 ml ACK 

lysing buffer (Gibco, A10492) and incubated at room temperature for 5 min followed by 

the addition of 9 ml DMEM. Suspension was then centrifuged under the above conditions, 

followed by removal of supernatant and resuspension in 5 ml FACS buffer (2% FBS and 2 

mM EDTA in calcium/magnesium-free PBS). Centrifugation was repeated under the above 

conditions, the supernatant was removed and the pellet was resuspended in 300 μl cell 

resuspension buffer (0.04% BSA in 1× PBS) and 1 μl each of DRAQ5 (Thermo Fisher 

Scientific, 62251) and 4,6-diamidino-2-phenylindole (DAPI; BD Biosciences, 564907) and 

allowed to incubate for 5 min before sorting. DRAQ5+/DAPI− cells were collected in 

cell resuspension buffer. Collected cells were then re-centrifuged according to the above 

parameters and resuspended in cell resuspension buffer to a target concentration of 1,000 

cells μl−1. Cells were counted on a hemocytometer and the concentration was adjusted as 

necessary.

Sample preparation for snRNA-seq.

Frozen cardiac tissues from LVAD cores or identical region from the apex of explanted 

donors were minced with a razor blade and transferred into a small (5 ml) Dounce 

homogenizer containing 1–2 ml of chilled lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM 

NaCl, 3 mM MgCl2 and 0.1% NP-40 in nuclease-free water). Samples were homogenized 

gently using five passes without rotation, then incubated on ice for 15 min. Lysate was 

then gently filtered through a 40-μm filter into 50-ml conical tube, followed by rinsing the 

filter once with 1 ml lysis buffer and transfer of lysate to a new 15-ml conical tube. Nuclei 
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were then centrifuged at 500g for 5 min at 4 °C, followed by resuspension in 1 ml Nuclei 

Wash Buffer (2% BSA and 0.2 U μl−1 RNase inhibitor in 1× PBS) and filtered through a 

20-μm pluristrainer into a fresh 15-ml conical tube. Centrifugation was repeated according 

to the above parameters. Supernatant was then removed and nuclei were resuspended in 

300 μl Nuclei Wash Buffer and transferred to a 5-ml tube for flow sorting. Then, 1 μl 

DRAQ5 (5 mM solution; Thermo Fisher, cat. no. 62251) was added, mixed gently and 

allowed to incubate for 5 min before sorting. DRAQ5+ nuclei were sorted into Nuclei 

Wash Buffer on a BD FACS Melody (BD Biosciences) using a 100-μM nozzle. Recovered 

nuclei were centrifuged again under the above parameters and were gently resuspended in 

Nuclei Wash Buffer to a target concentration of 1,000 nuclei μl−1. Nuclei were counted on a 

hemocytometer and concentration was adjusted as necessary.

sc/snRNA-seq analysis.

Cells and nuclei were processed using the Chromium Single Cell 5′ Reagent V1.1 kit from 

10X Genomics. A total of 10,000 cells or nuclei per sample were loaded into a Chip G 

for GEM generation. Reverse transcription, barcoding, complementary DNA amplification 

and purification for library preparation were performed according to the Chromium 5′ 
V1.1 protocol. Sequencing was performed on a NovaSeq 6000 platform (Illumina) targeting 

100,000 reads per cell or nucleus. Cells were aligned to the human GRCh38 transcriptome 

and nuclei were aligned to the whole genome pre-MRNA reference generated from the 

GRCh38 transcriptome using the CellRanger V3 software (10X Genomics) according to the 

10X Genomics’ instructions. Filtering, unsupervised clustering, differential expression and 

additional analysis were completed using R and Python, including Seurat V3 and V4 and 

ClusterProfiler packages for R and the Palantir Python package.24,68-70

QC, filtering and clustering.

For independent cell and nuclei analyses, individual sample matrices were imported into 

the Seurat v.3.2.3 R package and combined into a Seurat object. Cells were filtered for 

mitochondrial reads <10% and 2,000 < nCount_RNA < 10,000. Nuclei were filtered for 

mitochondrial reads <5% and 1,000 < nCount_RNA < 10,000. No filtering was applied 

based on nFeature_RNA. The objects were then saved for easy import after manual 

doublet removal. For each object, transformation and normalization was performed using 

SCTransform to fit a negative binomial distribution and regress out mitochondrial read 

percentage. Principle components (PCs) were then calculated (60 PCs for cells and 80 

PCs for nuclei) and an elbow plot generated to select the cutoff for significant PCs to 

use for downstream analysis. UMAP dimensional reduction was then computed using the 

selected significant PCs (40 for cells and 80 for nuclei). Unsupervised clustering was then 

performed using the FindNeighbors and FindClusters function, again using the selected 

significant PC level as above, calculating clustering at a range of resolutions between 0.01–

1. Differential gene expression was performed using the FindAllMarkers command using 

default parameters at high clustering resolution to aid in manual doublet discovery.

We utilized a supervised doublet removal method. Criteria to annotate cells as doublets 

included (1) high unique molecular identifier (UMI) counts and (2) gene expression 

signatures of two or more cell populations. Doublets often appear as clusters expressing 
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markers of multiple cell populations within the dataset that overlapped with expression of 

nearby clusters71-74. Identification of doublet clusters was performed by generating z score 

expression profiles of each major cell population and plotting these signatures as well as 

UMI counts using UMAP/t-distributed stochastic neighbor embedding projections and heat 

maps. Cells annotated as doublets were removed and the list of remaining cells was saved. 

Raw objects from above were then loaded, subset to include cells that remained after doublet 

removal and clustering was repeated, starting with transformation and normalization. The 

supervised doublet removal process was repeated twice for the cell object and three times for 

the nuclei object until no doublet clusters were apparent.

To substantiate our supervised doublet removal method and compare our strategy to other 

doublet removal techniques, we ran Scrublet on our raw dataset. Using a Scrublet score 

of >0.2 (default setting) to identify doublets, we directly compared methodologies. We 

found a high concordance between cells annotated as doublets (86.7%) and cells retained in 

the final dataset (98.4%). Cell clusters identified as doublets using our supervised method 

corresponded to cells with a Scrublet score of >0.2. Furthermore, within the final integrated 

dataset analyzed in the manuscript, we did not identify any specific clusters that were 

composed of cells with high Scrublet scores (Supplementary Figs. 1 and 2).

Final resolutions used for analysis were selected following detection of DEGs at multiple 

resolutions and identifying the highest resolution at which significantly enriched genes were 

still present in each cluster (final resolution used was 0.6 for cell object and 0.5 for nuclei 

object). Metadata for condition, age, sex and cell type name were also added to the final 

objects.

Integration of single-cell and single-nuclei datasets.

Integration of single-cell and single-nuclei datasets was performed using the R package, 

Harmony75. Filtered and SCTransformed objects from the single-cell and nucleus datasets 

were merged using the Seurat merge command and the RunHarmony command was then 

used to generate harmonized dimension reduction components using sequencing technology 

as the grouping variable. As recommended, we utilized 80 Harmony dimensions equal to 

the 80 PCA dimensions utilized in the single-nuclei dataset for performing re-clustering 

using the FindNeighbors and FindClusters Seurat commands at multiple resolutions between 

0.1–1. No doublet exclusion or filtering was necessary as mapping and integration was 

performed on already filtered objects. The final resolution was selected to be 0.3 as this 

resolution captured the distinct cell types identified in the single-cell and nucleus datasets to 

be used for further analysis. Metadata for condition, age, sex and cell type name were also 

added to the final object.

Effectiveness of integration was evaluated by calculation of iLISI (integration local inverse 

Simpson’s index) scores using the R package, lisi75,76. The Harmony integration method 

was also compared to Seurat integration and reference mapping software. iLISI scores range 

from 1 (poor integration) to 2 (perfect integration). The iLISI scores for the three methods 

tested were, Harmony: 1.60, Seurat integration: 1.23 and Seurat reference mapping: 1.07, 

indicating high levels of integration using Harmony compared to other methods.
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Detection of differentially expressed genes.

Detection of DEGs between clusters was performed using the FindAllMarkers command, 

specifying return of only upregulated genes with a log2FC cutoff of 0.1. For downstream 

analysis, DEGs were further filtered by log2FC and P value as described for that analysis. 

For individual cell types, differential expression comparing only two groups by condition, 

sex or age was performed using the FindMarkers function specifying no minimum 

percentage of cells expressing an individual gene, return of both positively and negatively 

changed genes and no cutoffs for log2FC or P value to obtain even nonsignificant changes in 

expression for every gene present in the analysis. Filtering of this DEG table was performed 

by log2FC and P value for further analysis as described in the manuscript. For all DEG 

calculations the default ‘SCT’ assay and ‘data’ slot were used and performed using the 

default Wilcoxon rank-sum method. Results are presented for all major cell types observed 

(Supplementary Table 27).

Calculation of population z scores.

Z score values were calculated using R v.3.6.2 and v.4.0.1. For each population where 

z scores were calculated, gene sets used were selected based on high enrichment in a 

population based on the DEG analysis described above. The expression matrix used to 

calculate z scores was extracted from a Seurat object using the GetAssayData function 

from the Seurat package from the default ‘SCT’ assay and ‘data’ slot. Z scores were then 

calculated for each gene set for each individual cell or nuclei in the dataset by scaling gene 

expression within the matrix, setting NA values introduced by conversion from a sparse 

matrix to 0 and using the following formula (no. of cells in dataset + sum of expression of 

genes in gene set) / no. of genes in gene set.

These calculated z scores were appended to a table to be saved as well as each z score added 

as metadata to the Seurat object for use in making feature plots.

Pseudobulk RNA-seq.

Pseduobulk RNA-seq analysis was performed using the DESeq2 package for R. A gene 

expression matrix was extracted from the Seurat object using the GetAssayData Seurat 

function specifying the ‘RNA’ assay and ‘counts’ slot to extract raw sequencing counts 

for each gene and cell. Counts in this matrix were then summed per gene for each sample 

into a new matrix. The resulting matrix was normalized using DESeq2 by estimating size 

factors and performing normalization with the counts function, resulting in a new matrix 

with normalized counts for each gene and sample similar to the output of a traditional bulk 

sequencing experiment. The DESeq function was then utilized to calculate differential gene 

expression based on negative binomial distribution. Pairwise comparisons were completed 

by condition of interest (disease state, sex and age group) using the Wald test and an α 
value of 0.5 for independent filtering and adding log2FC using the lfcShrink function with 

‘ashr’ adaptive shrinking. We specified no cutoffs for log2FC or P value to obtain even 

nonsignificant changes in expression. Filtering of this DEG table was performed by logFC 

and P value for further analysis as described in the manuscript.
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Analysis of associations with age.

Using cell type identities from the single-nuclei dataset, we aggregated counts and metadata 

to the sample level (split into donor and DCM separately) for each subject within each 

cell population and utilized DESeq2 to normalize the data using median of ratios to 

normalize counts and a regularized log transform of the normalized counts. We then used the 

normalized counts matrix to calculate Pearson correlation coefficients using the scipy stats 

function pearsonr to measure the linear relationship between each gene and age. Using genes 

with a Pearson correlation coefficient > ∣0.6∣ and P value <0.05, we constructed positive 

(Pearson coefficient >0.6) and negative (Pearson coefficient <−0.6) age-associated gene set 

z scores. We used the scipy stats linregress package in Python to perform linear regression 

analysis on the positive and negative aging signature as a function of age.

Pathway analysis.

Pathway analysis was completed using the ClusterProfiler R package. A list of genes 

present in both the Seurat and Pseudobulk differential expression analyses by disease 

state with log2FC > 0.1 and adjusted P value <0.05 was utilized in the pathway analysis 

(Supplementary Fig. 3). Genes with negative and positive log2FC values were separated 

to identify enrichment in either the non-diseased or diseased condition, respectively. 

The enrichWP function was used to return a table with pathway enrichments from the 

WikiPathways database.

For comparison of enriched pathways between multiple populations/states, the 

compareCluster function was utilized on a matrix from the output Seurat differential 

expression analysis filtered for log2FC > 0.1 and adjusted P value <0.05 that contained the 

column specifying in which population/state the gene was upregulated. This analysis utilized 

the enrichPathway database from ClusterProfiler to return a table of enriched pathways in 

each population/state.

Transcription factor analysis.

Transcription factor analysis was performed using the Enrichr web utility (https://

maayanlab.cloud/Enrichr/enrich). Genes upregulated in a population/state based on Seurat 

differential expression analysis filtered for log2FC > 0.1 and adjusted P value <0.05 

(Supplementary Fig. 3) were entered into the Enrichr and results from enrichment in the 

ChEA 2016 ChIP-seq database were downloaded and loaded as a matrix in R v.4.0.3 for the 

generation of dot plots.

Trajectory analysis.

Trajectory analysis was performed using the Palantir package for Python. Using the 

normalized and scaled gene counts for the 3,000 highly variable genes, a matrix was 

exported as the input. Using the matrix, PCs were calculated and then diffusion maps were 

calculated as an estimate of the low dimensional phenotypic manifold of the data. Then, 

the actual Palantir was run by specifying a start cell state (the progenitor cell type from the 

dataset). Palantir then returned the terminal cell states, entropy values, pseudotime values 

and the probability of ending up in each of the terminal states for all cells.
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RNAScope in situ hybridization.

RNA was visualized using RNAScope Multiplex Fluorescent Reagent kit v2 Assay, 

RNAScope 2.5 HD Detection Reagent – RED and RNAScope 2.5 HD Duplex Assay 

kits (Advanced Cell Diagnostics, ACDBio) using probes designed by Advanced Cell 

Diagnostics for ANKRD1, MYH6, NPPA, NPPB, CD163, DCN, POSTN, PLA2G2A, 

CCL2, PCOLCE2, ELN and RGS5 (ref. 77). Samples were fixed for 24 h at 4 °C in 

10% neutral buffered formalin. Samples were washed in 1× PBS, equilibrated in 30% 

sucrose, embedded in OCT medium (Sakura Finetek) and stored at −80 °C (fluorescence) 

or washed in 1× PBS, dehydrated in ethanol and embedded in paraffin (red and duplex). 

OCT-embedded sections were cut at 12 μm and paraffin-embedded sections were cut 

at 8 μm. Fluorescent images were collected using a Zeiss LSM 700 laser scanning 

confocal microscope. Chromogenic/brightfield images were acquired using a Zeiss Axioscan 

Z1 automated slide scanner. Image processing was performed using Zen Blue and Zen 

Black (Zeiss), FIJI/ImageJ78,79 and Photoshop (Adobe). The following RNAScope probes 

produced by ACDBio were utilized: ANKRD1 (524241), MYH6 (555381), NPPA (531281), 

NPPB (448511), CD163 (417061), DCN (589521), POSTN (409181), PLA2G2A (581101), 

CCL2 (423811), PCOLCE2 (566861), RGS5 (533421), ELN (408261), ACKR1 (525131), 

BTNL9 (430351) and CCL21 (474371).
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Extended Data

Extended Data Fig. 1 ∣. Sample processing and QC Plots.
A, Diagram of tissue processing and flow cytometry cell sorting strategies for single 

cell RNA sequencing (top) and single-nucleus RNA sequencing (bottom). Plots are 

representative density plots (blue indicates low density while yellow indicates higher 

density. B, Violin plots of the number of genes per cell/nuclei split by sequencing 

technology for the integrated Seurat object before and after QC filtering (left) and after 

QC filtering split by cell type (right). C, Violin plots of the percent mitochondrial reads per 

cell/nuclei split by sequencing technology for the integrated Seurat object before and after 

QC filtering (left) and after QC filtering split by cell type (right).
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Extended Data Fig. 2 ∣. Integration of single cell RNA sequencing and single-nucleus RNA 
sequencing data allows for combined analysis of samples from different technologies.
A, UMAP projection showing unsupervised clustering of the integrated dataset. B, UMAP 

projection split by technology. C, UMAP projection colored by disease state. D, Heat 

map of the top 10 genes by log2FC enriched in each cluster. E, Z-score feature plots for 

transcriptional signatures enriched in each cell type. Genes used for cell type identification 

(blue) were selected based on enrichment from Seurat differential expression analysis.
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Extended Data Fig. 3 ∣. Single-cell and nucleus RNA sequencing identifies major cell populations 
within the LV myocardium.
A, UMAP projection showing unsupervised clustering of single-nucleus RNA sequencing 

data. B, Heatmap of the top 10 genes by log2FC enriched in each cluster within single-

nucleus RNA sequencing dataset. C, UMAP projection showing unsupervised clustering of 

single cell RNA sequencing data. D, Heatmap of the top 10 genes by log2FC enriched in 

each cluster within single cell RNA sequencing dataset. E-F, Violin plots split by cluster 

displaying the expression of characteristic cell marker genes in the single-nucleus RNA 

sequencing (E) and single cell RNA sequencing (F) datasets.
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Extended Data Fig. 4 ∣. Pseudobulk differential expression reveals the contribution of disease 
state, sex and disease severity across major cell types.
A, Volcano plots of pseudobulk differential expression analysis of single-nucleus RNA 

sequencing data performed on each cell type comparing donor control vs. dilated 

cardiomyopathy (DCM). B, Volcano plots of pseudobulk differential expression analysis 

of single nucleus RNA sequencing data performed on each cell type comparing disease 

severity (INTERMACS score 3+4 vs 1+2, lower score indicates more advance disease). 

C-D, Volcano plots of pseudobulk differential expression analysis of single nucleus RNA 

sequencing data performed on each cell type comparing sex separated by donor (C) and 
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DCM (D). Insets represent values outside of the plotted area. See Supplementary Tables 

21-26 for complete list of genes.

Extended Data Fig. 5 ∣. Pseudobulk differential expression reveals gene expression correlation 
with age in donor and diseased hearts.
A-B, Plot of genes versus Pearson correlation coefficient (left) and linear regression 

using the top 10 genes correlated with age ranked by Pearson coefficient. Line of 

best fit is displayed (red-positively correlated, blue-negatively correlated, genes listed in 

respective colors, points represent individual samples, p-values calculated using 2-tailed 

linear regression Wald test with t-distribution, shaded areas represent 95% confidence 

interval, Donor; n=25, DCM; n=13) for donor (A) and DCM (B). Pearson Coefficients 

were calculated for all expressed genes from single nucleus dataset in relation to age as a 

continuous variable. See Supplementary Tables 25-26 for complete list of genes.
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Extended Data Fig. 6 ∣. Supplement to Fig. 3 – Cardiomyocytes.
A, Z-score feature plots for transcriptional signatures enriched in each cardiomyocyte 

state. Genes used for cell type identification (blue) were selected based on enrichment 

from Seurat differential expression analysis. Dot plot displays relative expression values 

for each Z-score split by disease state. B, Heatmap displaying top 5 enriched genes 

in each cell state from Seurat differential expression analysis on integrated dataset. C, 

enrichPathways analysis identifies pathways top differentially enriched pathways by cell 

state. Genes used in the analysis were selected from Seurat differential expression analyses 

with adjusted p<0.05. p-value calculated using hypergeometric distribution and corrected for 

multiple comparisons. D, enrichPathway analysis comparing enrichment of top pathways 

between disease states. Genes used in the analysis selected from intersection of pseudobulk 
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and Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated using 

hypergeometric distribution and corrected for multiple comparisons. E, Transcription factor 

analysis displaying top enriched transcription factors in each cell state using ChEA 2016 

database (https://maayanlab.doud/Enrichr). Genes used in the analysis selected from Seurat 

differential expression with p<0.05 and log2FC>0.1. p-value calculated using Fisher exact 

test. F, Palantir pseudotime and entropy values overlaid on UMAP projection split by disease 

state.

Extended Data Fig. 7 ∣. Supplement to Figs. 4 and 5 – Monocytes, macrophages and dendritic 
cells.
A, Z-score feature plots for transcriptional signatures enriched in each monocytes, 

macrophages, and dendritic cells state. Genes used for cell type identification (blue) were 

selected based on enrichment from Seurat differential expression analysis from single cell 

dataset (from Fig. 5). Z-scores are overlaid on the single cell RNA sequencing (left) and 

integrated UMAP (right) projections. B, Heatmap displaying top 5 enriched genes in each 

cell state from Seurat differential expression analysis on integrated dataset. C, Heatmap 

displaying top 5 enriched genes in each cell state from Seurat differential expression analysis 

on single cell dataset.
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Extended Data Fig. 8 ∣. Supplement to Fig. 6 – Fibroblasts.
A, Z-score feature plots for transcriptional signatures enriched in each fibroblast state. 

Genes used for cell type identification (blue) were selected based on enrichment from 

Seurat differential expression analysis. Z-scores are overlaid on the integrated UMAP 

projections. Dot plot displays relative expression values for each Z-score split by disease 

state. B, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential 

expression analysis on integrated dataset. C, WikiPathways analysis identifies pathways 

differentially enriched by disease state. Genes used in the analysis included the intersection 

of pseudobulk and Seurat differential expression analyses with adjusted p<0.05. p-value 

calculated using hypergeometric distribution and corrected for multiple comparisons. D, 

Transcription factor analysis displaying top enriched transcription factors in each cell state 
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using ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes used in the analysis 

selected from Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated 

using Fisher exact test. E, enrichPathway analysis comparing enrichment of pathways 

between cell states. Genes used in the analysis selected from Seurat differential expression 

with p<0.05 and log2FC>0.1. p-value calculated using hypergeometric distribution and 

corrected for multiple comparisons. F, RNA in situ hybridization for PLA2G2A and ELN 

(red). Representative images showing perivascular staining of PLA2G2A in the myocardium 

of donor samples. Minimal staining was observed in DCM samples. ELN staining was 

observed in the media of epicardial coronary arteries in both donor and DCM samples.

Extended Data Fig. 9 ∣. Pericytes and smooth muscle cells exhibit global changes in gene 
expression in dilated cardiomyopathy.
A, Unsupervised clustering of pericytes and fibroblasts within the integrated dataset split 

by disease state. Inset panel (right) colored by disease state demonstrates mixing within 

cell states. B, Heatmap displaying top 5 enriched genes in each cell population from Seurat 

differential expression analysis on integrated dataset. C-D, Principal-component analysis 

(PCA, DESeq2) plots of pericyte (C) and smooth muscle cell (D) pseudobulk single nucleus 

RNA sequencing data colored by sex and disease state and age. Each data point represents 

an individual subject. Heatmaps displaying the top 100 upregulated and downregulated 
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genes ranked by log2 fold-change comparing donor control to dilated cardiomyopathy 

(DCM). Differentially expressed genes were derived from the intersection of pseudobulk 

(DESeq2) and single cell (Seurat) analyses. E, WikiPathways analysis identifies top 

differentially enriched pathways in pericytes (top) and smooth muscle cells (bottom) by 

disease state. No pathway enrichment was detected in DCM pericytes. Genes used in the 

analysis included the intersection of pseudobulk and Seurat differential expression analyses 

with adjusted p<0.05 and log2FC>0.1. p-value calculated using hypergeometric distribution 

and corrected for multiple comparisons. F, Representative images of RGS5 staining for 

pericytes by RNA in situ hybridization.

Koenig et al. Page 28

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 10 ∣. Supplement to Fig. 7 – Endothelial cells.
A, UMAP projection of the integrated dataset split by technology (single cell vs. single 

nucleus RNA sequencing) and colored by subpopulation. B, Distribution of nuclei in the 

integrated object divided by major cell type (*<0.05, **<0.01, ***<0.001 by Welch’s T-test, 

two-tailed, data represents mean ± standard deviation, Donor; n=25 samples, DCM; n=13 

samples). p-values for clusters comparing Donor to DCM are; Ec1:1.9e-1, Ec2: 3.0e-1, Ec3: 

1.5e-3, Ec4: 1.1e-1, Ecd1: 3.3e-5, Ecd2: 6.7e-3. C, Z-score feature plots for transcriptional 

signatures enriched in endothelial and endocardial cell populations. Genes used for cell type 

identification (blue) were selected based on enrichment from Seurat differential expression 
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analysis. Z-scores are overlaid on the integrated dataset. D, Dot plot of relative expression 

values for each Z-score split by disease state. E, Heatmap displaying top 5 enriched 

genes in each cell state from Seurat differential expression analysis on integrated dataset. 

F. Transcription factor analysis displaying top enriched transcription factors in each cell 

state using ChEA 2016 database (https://maayanlab.cloud/Enrichr). p-value calculated using 

Fisher exact test. Genes used in the analysis selected from Seurat differential expression 

with p<0.05 and log2FC>0.1. G, Representative RNAScope images of vascular (top) and 

lymphatic (bottom) endothelial cells. ACKR1 – venous, BTNL9 – capillary, CCL21 – 

lymphatic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This project was made possible by funding provided from the National Heart, Lung, and Blood Institute 
(R01 HL138466, R01 HL139714, R01 HL151078, R35 HL161185, T32 HL134635 and T32 HL125241), 
Leducq Foundation Network (20CVD02), Burroughs Welcome Fund (1014782), Children’s Discovery Institute of 
Washington University and St. Louis Children’s Hospital (CH-II-2015-462, CH-II-2017-628 and PM-LI-2019-829), 
Foundation of Barnes-Jewish Hospital (8038-88), as well as an Aging Biology Foundation award to M.N.A. 
Histology was performed in the Digestive Diseases Research Core Centers advanced imaging and tissue analysis 
core supported by grant no. P30 DK52574. Imaging was performed in the Washington University Center for 
Cellular Imaging, which is funded, in part by the Children’s Discovery Institute of Washington University and St. 
Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish 
Hospital (3770). We acknowledge the staff at the McDonnel Genome Institute for their assistance in designing and 
performing the microarray and RNA-seq analysis as well as the Mallinckrodt Institute of Radiology Center for 
High Performance Computing and Washington University Research Infrastructure Services for use of their cluster 
computing platforms. The Artyomov laboratory was supported by grant from Aging Biology Foundation. Figure 1a 
was created with BioRender.com.

Data availability

The processed single-cell objects, raw expression matrices and raw sequence files 

that support the findings of this study are available on the Gene Expression 

Omnibus (GSE183852). Alignment was performed to the publicly available transcriptome 

GRCh38-1.2.0.

References

1. Dulken BW et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 
571, 205–210 (2019). [PubMed: 31270459] 

2. Zilionis R et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved 
myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019). [PubMed: 
30979687] 

3. Travaglini KJ et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. 
Nature 587, 619–625 (2020). [PubMed: 33208946] 

4. Park J et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of 
kidney disease. Science 360, 758–763 (2018). [PubMed: 29622724] 

5. Rudman-Melnick V et al. Single-cell profiling of AKI in a murine model reveals novel 
transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. 
Nephrol 31, 2793–2814 (2020). [PubMed: 33115917] 

Koenig et al. Page 30

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://maayanlab.cloud/Enrichr
http://BioRender.com


6. Lesyuk W, Kriza C & Kolominsky-Rabas P Cost-of-illness studies in heart failure: a systematic 
review 2004-2016. BMC Cardiovasc. Disord 18, 74 (2018). [PubMed: 29716540] 

7. Ziaeian B & Fonarow GC Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol 13, 368–
378 (2016). [PubMed: 26935038] 

8. Virani SS et al. Heart disease and stroke statistics-2020 update: a report from the American Heart 
Association. Circulation 141, e139–e596 (2020). [PubMed: 31992061] 

9. Yang K-C et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs 
in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–
1021 (2014). [PubMed: 24429688] 

10. Litviňuková M et al. Cells of the adult human heart. Nature 588, 466–472 (2020). [PubMed: 
32971526] 

11. Tucker NR et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–
482 (2020). [PubMed: 32403949] 

12. Nicin L et al. Single nuclei sequencing reveals novel insights into the regulation of cellular 
signatures in children with dilated cardiomyopathy. Circulation 143, 1704–1719 (2021). [PubMed: 
33618539] 

13. Wang L et al. Single-cell reconstruction of the adult human heart during heart failure and recovery 
reveals the cellular landscape underlying cardiac function. Nat. Cell Biol 22, 108–119 (2020). 
[PubMed: 31915373] 

14. Cui M et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative 
cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 53, 102–116 (2020). 
[PubMed: 32220304] 

15. Tombor LS et al. Single cell sequencing reveals endothelial plasticity with transient mesenchymal 
activation after myocardial infarction. Nat. Commun 12, 681 (2021). [PubMed: 33514719] 

16. Ni S-H et al. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven 
CD72-positive macrophages induce cardiomyocyte injury. Cardiovasc. Res 10.1093/cvr/cvab193 
(2021).

17. Hesse J et al. Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts 
within the infarcted murine heart. eLife 10, e65921 (2021). [PubMed: 34152268] 

18. Revelo X et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ. 
Res 10.1161/CIRCRESAHA.121.319737 (2021).

19. Bajpai G et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate 
monocyte recruitment and fate specification following myocardial injury. Circ. Res 124, 263–278 
(2019). [PubMed: 30582448] 

20. Martini E et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload–
driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019). 
[PubMed: 31661975] 

21. Ren Z et al. Single-cell reconstruction of progression trajectory reveals intervention principles in 
pathological cardiac hypertrophy. Circulation 141, 1704–1719 (2020). [PubMed: 32098504] 

22. Ej M et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann. Thoracic Surg 
10.1016/j.athoracsur.2020.12.038 (2021).

23. Kittleson MM et al. An early relook identifies high-risk trajectories in ambulatory advanced heart 
failure. J. Heart Lung Transplant 10.1016/j.healun.2021.09.003 (2021).

24. Setty M et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. 
Biotechnol 37, 451–460 (2019). [PubMed: 30899105] 

25. Lavine KJ et al. The macrophage in cardiac homeostasis and disease: JACC macrophage in CVD 
series (Part 4). J. Am. Coll. Cardiol 72, 2213–2230 (2018). [PubMed: 30360829] 

26. Libby P, Nahrendorf M & Swirski FK Leukocytes link local and systemic inflammation in 
ischemic cardiovascular disease: an expanded ‘cardiovascular continuum’. J. Am. Coll. Cardiol 67, 
1091–1103 (2016). [PubMed: 26940931] 

27. Hulsmans M et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med 215, 423–440 
(2018). [PubMed: 29339450] 

Koenig et al. Page 31

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Sager HB et al. Proliferation and recruitment contribute to myocardial macrophage expansion in 
chronic heart failure. Circ. Res 119, 853–864 (2016). [PubMed: 27444755] 

29. Hoyer FF et al. Tissue-specific macrophage responses to remote injury impact the outcome of 
subsequent local immune challenge. Immunity 51, 899–914 (2019). [PubMed: 31732166] 

30. Töröcsik D, Bárdos H, Nagy L & Adány R Identification of factor XIII-A as a marker 
of alternative macrophage activation. Cell. Mol. Life Sci 62, 2132–2139 (2005). [PubMed: 
16132226] 

31. Chakarov S et al. Two distinct interstitial macrophage populations coexist across tissues in specific 
subtissular niches. Science 10.1126/science.aau0964 (2019).

32. Beckers CML et al. Cre/lox studies identify resident macrophages as the major source of 
circulating coagulation factor XIII-A. Arterioscler. Thromb. Vasc. Biol 37, 1494–1502 (2017). 
[PubMed: 28596376] 

33. Fu X et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted 
mouse heart. J. Clin. Invest 128, 2127–2143 (2018). [PubMed: 29664017] 

34. Kriehuber E et al. Isolation and characterization of dermal lymphatic and blood endothelial 
cells reveal stable and functionally specialized cell lineages. J. Exp. Med 194, 797–808 (2001). 
[PubMed: 11560995] 

35. Schupp JC et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144, 
286–302 (2021). [PubMed: 34030460] 

36. Ma Y et al. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory 
signalling in senescence. Cardiovascular Res. 106, 421–431 (2015).

37. Monnier V et al. dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS 
Genet. 8, e1003081 (2012). [PubMed: 23209438] 

38. Chang K et al. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac 
health through inhibition of MTORC2. Autophagy 16, 1807–1822 (2020). [PubMed: 31884871] 

39. Swain SM & Liddle RA Piezo1 acts upstream of TRPV4 to induce pathological changes in 
endothelial cells due to shear stress. J. Biol. Chem 296, 100171 (2021). [PubMed: 33298523] 

40. Swain SM et al. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by 
Piezo1 activation. J. Clin. Invest 130, 2527–2541 (2020). [PubMed: 31999644] 

41. Wong NR et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 
54, 2072–2088 (2021). [PubMed: 34320366] 

42. Shi W et al. Cardiac proteomics reveals sex chromosome-dependent differences between males and 
females that arise prior to gonad formation. Dev. Cell 56, 3019–3034 (2021). [PubMed: 34655525] 

43. Soliman H & Rossi FMV Cardiac fibroblast diversity in health and disease. Matrix Biol. 91–92, 
75–91 (2020).

44. Tallquist MD Cardiac fibroblast diversity. Annu. Rev. Physiol 82, 63–78 (2020). [PubMed: 
32040933] 

45. Humeres C & Frangogiannis NG Fibroblasts in the infarcted, remodeling, and failing heart. JACC 
Basic Transl. Sci 4, 449–467 (2019). [PubMed: 31312768] 

46. Tillmanns J et al. Fibroblast activation protein α expression identifies activated fibroblasts after 
myocardial infarction. J. Mol. Cell. Cardiol 87, 194–203 (2015). [PubMed: 26319660] 

47. Alex L, Russo I, Holoborodko V & Frangogiannis NG Characterization of a mouse model 
of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure 
with preserved ejection fraction. Am. J. Physiol. Heart. Circ. Physiol 315, H934–H949 (2018). 
[PubMed: 30004258] 

48. Kong P, Christia P, Saxena A, Su Y & Frangogiannis NG Lack of specificity of fibroblast-specific 
protein 1 in cardiac remodeling and fibrosis. Am. J. Physiol. Heart. Circ. Physiol 305, H1363–
H1372 (2013). [PubMed: 23997102] 

49. Takeda N et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to 
pressure overload. J. Clin. Invest 120, 254–265 (2010). [PubMed: 20038803] 

50. Simon JC & Jeffery DM Periostin as a heterofunctional regulator of cardiac development and 
disease. Curr. Genomics 9, 548–555 (2008). [PubMed: 19516962] 

Koenig et al. Page 32

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Alexanian M et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 
595, 438–443 (2021). [PubMed: 34163071] 

52. Aghajanian H et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 
(2019). [PubMed: 31511695] 

53. Cresci S et al. Peroxisome proliferator-activated receptor pathway gene polymorphism associated 
with extent of coronary artery disease in patients with type 2 diabetes in the bypass angioplasty 
revascularization investigation 2 diabetes trial. Circulation 124, 1426–1434 (2011). [PubMed: 
21911782] 

54. Clozel M & Salloukh H Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Ann. 
Med 37, 2–12 (2005). [PubMed: 15902842] 

55. Haybar H, Khodadi E & Shahrabi S Wnt/α-catenin in ischemic myocardium: interactions and 
signaling pathways as a therapeutic target. Heart Fail. Rev 24, 411–419 (2019). [PubMed: 
30539334] 

56. Bajpai G et al. The human heart contains distinct macrophage subsets with divergent origins and 
functions. Nat. Med 24, 1234–1245 (2018). [PubMed: 29892064] 

57. Yang J, Zhang L, Yu C, Yang X-F & Wang H Monocyte and macrophage differentiation: 
circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res 2, 1 
(2014). [PubMed: 24398220] 

58. Epelman S et al. Embryonic and adult-derived resident cardiac macrophages are maintained 
through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 
(2014). [PubMed: 24439267] 

59. Lavine KJ et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery 
and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 
(2014). [PubMed: 25349429] 

60. Randolph GJ Emigration of monocyte-derived cells to lymph nodes during resolution of 
inflammation and its failure in atherosclerosis. Curr. Opin. Lipidol 19, 462–468 (2008). [PubMed: 
18769227] 

61. Zhou L et al. Cardioprotective role of myeloid-derived suppressor cells in heart failure. Circulation 
138, 181–197 (2018). [PubMed: 29437117] 

62. Leuschner F et al. Silencing of CCR2 in myocarditis. Eur. Heart J 36, 1478–1488 (2015). 
[PubMed: 24950695] 

63. Majmudar MD et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in 
atherosclerosis-prone mice. Circulation 127, 2038–2046 (2013). [PubMed: 23616627] 

64. Odiete O, Hill MF & Sawyer DB Neuregulin in cardiovascular development and disease. Circ. Res 
111, 1376–1385 (2012). [PubMed: 23104879] 

65. García-Rivello H et al. Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am. J. 
Physio. Heart Circ. Physiol 289, H1153–H1160 (2005).

66. Crone SA et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med 8, 
459–465 (2002). [PubMed: 11984589] 

67. Özcelik C et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to 
dilated cardiomyopathy. PNAS 99, 8880–8885 (2002). [PubMed: 12072561] 

68. Hao Y et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). 
[PubMed: 34062119] 

69. Stuart T et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). 
[PubMed: 31178118] 

70. Yu G, Wang L-G, Han Y & He Q-Y clusterProfiler: an R package for comparing biological themes 
among gene clusters. OMICS 16, 284–287 (2012). [PubMed: 22455463] 

71. Bach K et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA 
sequencing. Nat. Commun 8, 2128 (2017). [PubMed: 29225342] 

72. Wang YJ et al. Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65, 3028–
3038 (2016). [PubMed: 27364731] 

73. Rosenberg AB et al. Single-cell profiling of the developing mouse brain and spinal cord with 
split-pool barcoding. Science 360, 176–182 (2018). [PubMed: 29545511] 

Koenig et al. Page 33

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74. Farbehi N et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular 
and immune cells in health and injury. eLife 8, e43882 (2019). [PubMed: 30912746] 

75. Korsunsky I et al. Fast, sensitive, and accurate integration of single cell data with Harmony. 
10.1101/461954 (2018).

76. Luecken MD et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. 
Methods 10.1038/s41592-021-01336-8 (2021).

77. Wang F et al. RNAScope. J. Mol. Diagn 14, 22–29 (2012). [PubMed: 22166544] 

78. Schneider CA, Rasband WS & Eliceiri KW NIH Image to ImageJ: 25 years of image analysis. Nat. 
Methods 9, 671–675 (2012). [PubMed: 22930834] 

79. Schindelin J et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 
676–682 (2012). [PubMed: 22743772] 

Koenig et al. Page 34

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 ∣. Cellular composition of the healthy and failing human heart.
a, Schematic depicting design of the snRNA-seq and scRNA-seq experiments. Transmural 

sections were obtained from the apical anterior wall of the left ventricle during donor 

heart procurement, LVAD implantation or heart transplantation for comparison of disease, 

sex and age (snRNA-seq, n = 25 donor control, n = 13 dilated cardiomyopathy; scRNA-

seq, n = 2 donor control, n = 5 dilated cardiomyopathy). Dashed box indicates location 

where sample was collected. LVAD, left ventricular assist device. b, The analysis pipeline 

included tissue processing and single-cell barcoded library generation (10X Genomics 5′ v1 

kit), sequence alignment (Cell Ranger) and further analysis using R and Python packages 

(Seurat, Harmony, DEseq2, Palantir, ClusterProfiler and Enrichr). c, Unsupervised Uniform 

Manifold Approximation and Projection (UMAP) clustering of 220,752 nuclei, 49,723 

cells and an integrated dataset combining snRNA-seq and scRNA-seq data after QC and 

data filtering using Harmony integration. d, Violin plots generated from the integrated 

dataset displaying characteristic marker genes of each identified cell population. e, Pie chart 

showing the proportion of cells within the snRNA-seq, scRNA-seq and integrated datasets.
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Fig. 2 ∣. Differential influence of disease state, sex and age on cell type-specific gene expression.
a–c, Dot plots showing pseudobulk (DESeq2) based differential gene expression across 

major cell populations. Differential expression was calculated from snRNA-seq data for 

disease (a, Donor versus DCM), INTERMACS score (b, 1 and 2 versus 3 and 4) and sex 

(c, male versus female) are shown. d, Genes correlated with age by Pearson coefficient are 

also shown. Genes with adjusted P value <0.05 are colored in red and genes with adjusted P 
value >0.05 are colored in gray (P value calculated using Wald test adjusted for multiple test 

correction). Number of upregulated and downregulated genes with adjusted P value <0.05 

per cell type is displayed in parenthesis. Supplementary Tables 21-26 contain a complete list 

of genes.

Koenig et al. Page 36

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 ∣. Acquisition of disease-associated cardiomyocyte states in dilated cardiomyopathy.
a, PCA, DESeq2 plots of cardiomyocyte pseudobulk snRNA-seq data colored by sex 

and disease state (left) and age (right). Each data point represents an individual. b, 

Heat map displaying the top 100 upregulated and downregulated genes ranked by log2 

fold-change comparing donor control to DCM. DEGs were derived from the intersection 

of pseudobulk (DESeq2) and single-cell (Seurat) analyses. c, Unsupervised re-clustering 

of donor and DCM cardiomyocytes within the integrated dataset split by disease state. 

Major cardiomyocyte states are labeled. Inset (right) colored by disease state demonstrates 

mixing within cell states. d, Dot plot displaying z scores for transcriptional signatures 

that distinguish cardiomyocyte states (genes selected by enrichment in Seurat differential 

expression analysis, listed in box below plot). e, Distribution of cardiomyocyte states by 

cluster (*P < 0.05, **P < 0.01, ***P < 0.001, Welch’s t-test, two-tailed, data represents 

mean ± s.d., donor; n = 25 samples, DCM; n = 13 samples). P values for clusters comparing 

donor to DCM are Cm1: 3.8 × 10−4; Cm2, 1.8 × 10−1; Cm3, 3.2 × 10−1; Cm4, 8.1 × 
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10−3; Cm5, 5.4 × 10−2; Cm6, 1.1 × 10−1; Cm7, 1.1 × 10−1. f, Violin plots of MYH6, 

ANKRD1, NPPA and ADGRL3 expression in donor control and DCM cardiomyocytes. 

g, Quantification of the number of cardiomyocytes expressing ANKRD1, MYH6, NPPA 
and NPPB mRNA in donor control and DCM samples (P value from Welch’s t-test, two-

tailed, data represents mean ± s.d. For ANKRD1, donor; n = 6 samples, DCM; n = 6 

samples. For MYH6, NPPA and NPPB, donor; n = 4 samples, DCM; n = 4 samples). h, 

Representative RNA in situ hybridization images (RNAScope) of indicated genes. i, Palantir 

pseudotime trajectory analysis of cardiomyocytes showing entropy and pseudotime scores 

overlaid on the UMAP projection (left). Entropy versus pseudotime plots of donor and 

DCM cardiomyocytes identifying differing trajectories of healthy and disease-associated 

cardiomyocyte states (right).
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Fig. 4 ∣. Dilated cardiomyopathy is associated with shifts in macrophage composition and gene 
expression favoring inflammatory populations.
a, PCA, DESeq2 plots of monocyte, macrophage and dendritic cell pseudobulk snRNA-seq 

data colored by sex and disease state (left) and age (right). Each data point represents 

an individual. b, Heat map displaying the top 100 upregulated and downregulated genes 

ranked by log2 fold-change comparing donor control to DCM. DEGs were derived from 

the intersection of pseudobulk (DESeq2) and single-cell (Seurat) analyses. c, WikiPathways 

analysis comparing top enriched pathways in each condition. Genes were selected from 

the intersection of pseudobulk (DESeq2) and single-cell (Seurat) analyses with P < 0.05 

and log2FC >0.1. P value calculated using hypergeometric distribution and corrected for 

multiple comparisons. d, UMAP of unsupervised re-clustering of monocytes, macrophages 

and dendritic cells within the Harmony integrated dataset split by disease state. Major 

cell states are labeled. Inset (right) colored by disease state demonstrates mixing within 

cell states. e, Z score feature plot of the two macrophage populations identified split by 

disease state (left, Mac1; right, Mac2). Genes (in blue) were selected by enrichment in the 
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respective populations. f,g, Dot plots displaying the z scores for transcriptional signatures 

that distinguish monocyte, macrophage and dendritic cell populations by cell state (f) and 

split by disease state (g) (genes selected by enrichment in Seurat differential expression 

analysis are listed in box below plot). h, Distribution of myeloid states by cluster (*P < 

0.05, ***P < 0.001, Welch’s t-test, two-tailed, data represents mean ± s.d., derived from 

single-nucleus data, donor; n = 25 samples, DCM; n = 13 samples). P values for clusters 

comparing donor to DCM are Mac1, 2.7 × 10−1; Mac2, 5.4 × 10−1; DCs, 2.6 × 10−2; 

Prolif, 9.0 × 10−4; Mono, 3.4 × 10−2. i, Representative RNA in situ hybridization images 

(RNAScope) for CD163 (red and blue, hematoxylin) and quantification of CD163+ cells in 

donor and DCM samples (P value from Welch’s t-test, two-tailed, data represents mean ± 

s.d., donor; n = 6 samples, DCM; n = 6 samples). CD163 is a marker of tissue-resident 

macrophages. j, UMAP plot of clusters split by sequencing technology. k, Distribution of 

myeloid states by cluster Welch’s t-test, two-tailed, data represents mean ± s.d., derived 

from only single-cell data, donor; n = 2 samples, DCM; n = 5 samples). P values for clusters 

comparing donor to DCM are Mac1, 2.1 × 10−1; Mac2, 6.6 × 10−2; DCs, 6.6 × 10−2; Prolif, 

5.1 × 10−1; Mono, 1.5 × 10−1.
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Fig. 5 ∣. Dilated cardiomyopathy is associated with the emergence of inflammatory monocyte-
derived populations.
a, UMAP projection of unsupervised re-clustering of myeloid cells from the scRNA-seq 

dataset. Major cell states are labeled. Inset (right) colored by disease state demonstrates 

mixing within cell states. b, Dot plot displaying the z scores for transcriptional signatures 

that distinguish each monocyte, macrophage and dendritic cell state by cell state (above) 

and disease state (below) (genes selected by enrichment in Seurat differential expression 

analysis, listed in box below plot). c, Z score feature plot overlaying an inflammatory 

gene expression signature (genes in blue) on the scRNA-seq UMAP projection split by 

disease state. d,e, Palantir pseudotime trajectory analysis of myeloid scRNA-seq data. 

Entropy and pseudotime overlayed on UMAP projection split by disease state (d) and 

entropy versus pseudotime plots split by disease state identify major cell trajectories 

(nonclassical monocytes, resident macrophages and dendritic cells). Inflammatory cell 

states that emerge in DCM have high entropy and low pseudotime values, suggesting an 

intermediate state of differentiation. f, Transcription factor analysis for genes upregulated 

in inflammatory macrophage states (Mac1, Mac4 and Mac5) using ChEA 2016 database 

(https://maayanlab.cloud/Enrichr). Genes used in the analysis selected from Seurat 

differential expression with P < 0.05 and log2FC>0.1. P value calculated using Fisher’s 

exact test. g, enrichPathway analysis displaying the top five enriched pathways in each cell 
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state. Genes used in the analysis selected from Seurat differential expression with P < 0.05 

and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for 

multiple comparisons.
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Fig. 6 ∣. Phenotypic shifts and emergence of disease-associated fibroblasts in dilated 
cardiomyopathy.
a, PCA, DESeq2 plots of fibroblast pseudobulk snRNA-seq data colored by sex and 

disease state (left) and age (right). Each data point represents an individual. b, Heat map 

displaying the top 100 upregulated and downregulated genes ranked by log2 fold-change 

comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk 

(DESeq2) and single-cell (Seurat) analyses. c, Unsupervised re-clustering of donor and 

DCM fibroblasts and epicardium within the integrated dataset split by disease state. Major 

fibroblast states are labeled. Inset (right) colored by disease state demonstrates mixing 

within cell states. d, Distribution of fibroblast states by cluster (*P < 0.05, **P < 0.01, 

***P < 0.01, Welch’s t-test, two-tailed, data represents mean ± s.d., donor; n = 25 samples, 

DCM; n = 13 samples). P values for clusters comparing donor to DCM are Fb1, 8.3 × 

10−1; Fb2, 3.0 × 10−1; Fb3, 4.2 × 10−4; Fb4, 5.1 × 10−3, Fb5; 5.9 × 10−2; Fb6, 2.6 

× 10−1; Fb7, 5.3 × 10−1; Fb8, 7.5 × 10−3; Fb9, 4.0 × 10−1; Epi, 9.1 × 10−1. e, Dot 
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plot displaying the z scores for transcriptional signatures that distinguish fibroblast states 

(genes selected by enrichment in Seurat differential expression analysis, listed in box below 

plot). f, Z score feature plot of transcriptional signatures associated with DCM (top) and 

with donor (bottom) fibroblast states. Plot is split by disease state. DCM fibroblasts are 

enriched in genes associated with activation. Enriched genes (blue) were defined using 

Seurat differential gene expression analysis. g, Palantir pseudotime trajectory analysis of 

integrated fibroblast RNA-seq data. Entropy and pseudotime overlayed on UMAP projection 

split by disease state. h, Representative RNA in situ hybridization images (RNAScope) 

of indicated genes (red) counterstained with hematoxylin (blue). i, Quantification of the 

number of cells expressing DCN, POSTN, PLA2G2A, CCL2 and PCOLCE2 mRNA in 

donor control and DCM samples (P value from Welch’s t-test, two-tailed, data represent 

mean ± s.d., donor; n = 6 samples, DCM; n = 6 samples).
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Fig. 7 ∣. Endothelial cells exhibit global gene expression shifts in dilated cardiomyopathy.
a, PCA, DESeq2 plots of vascular endothelial cell pseudobulk snRNA-seq data colored 

by sex and disease state (left) and age (right). Each data point represents an individual. 

b, Heat map displaying the top 100 upregulated and downregulated genes ranked by log2 

fold-change comparing donor control to DCM. DEGs were derived from the intersection 

of pseudobulk (DESeq2) and single-cell (Seurat) analyses. c, Unsupervised re-clustering 

of donor and DCM endothelial and endocardial cells within the integrated dataset split by 

disease state. Major endothelial states are labeled. Inset (right) colored by disease state 

demonstrates mixing within cell states. d, Dot plot displaying z scores for transcriptional 

signatures that distinguish endothelial cell populations (genes selected by enrichment in 

Seurat differential expression analysis, genes listed in the box to right of plot). e, Bar graph 

of the number of DEGs per endothelial population (intersection of DESeq2 and Seurat 

differential expression analyses with adjusted P < 0.05 (Wilcoxon rank-sum), log2FC > 

0.1). f, WikiPathways analysis identifying top differentially enriched pathways in donor 
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and DCM capillary endothelial cells. Genes used in the analysis selected from intersection 

of pseudobulk and Seurat differential expression with P < 0.05 and log2FC > 0.1. P 
value calculated using hypergeometric distribution and corrected for multiple comparisons. 

g, WikiPathways analysis identifying top differentially enriched pathways in donor and 

DCM venous endothelial cells. Genes used in the analysis selected from intersection of 

pseudobulk and Seurat differential expression with P < 0.05 and log2FC > 0.1. P value 

calculated using hypergeometric distribution and corrected for multiple comparisons. h, 

WikiPathways analysis identifying top differentially enriched pathways in donor and DCM 

arterial endothelial cells. Genes used in the analysis selected from intersection of pseudobulk 

and Seurat differential expression with P < 0.05 and log2FC > 0.1. P value calculated using 

hypergeometric distribution and corrected for multiple comparisons. i, Z score feature plots 

of transcriptional signatures associated with donor and DCM groups in capillary and venous 

endothelial cells split by disease state. Genes (blue) were selected by enrichment in the 

differential expression analyses.
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Fig. 8 ∣. Endocardial cells exhibit distinct gene signatures in dilated cardiomyopathy.
a, PCA, DESeq2 plots of endocardial cell pseudobulk snRNA-seq data colored by sex and 

disease state and age. Each data point represents an individual. b, Heat map displaying the 

top 100 upregulated and downregulated genes ranked by log2FC comparing donor control 

to DCM. DEGs were derived from the intersection of pseudobulk (DESeq2) and single-cell 

(Seurat) analyses. c, Unsupervised re-clustering of donor and DCM endocardial cells split 

by disease state. d, UMAP feature plots of NRG1 and NRG3 split by disease state. e, 

Violin plots displaying NRG1 and NRG3 expression in endocardial cells from donor and 

DCM samples. f, WikiPathways analysis identifying top differentially enriched pathways in 

donor and DCM endocardial cells. Genes used in the analysis selected from intersection 

of pseudobulk and Seurat differential expression with P < 0.05 and log2FC > 0.1. P value 

was calculated using hypergeometric distribution and corrected for multiple comparisons. g, 

WikiPathways analysis identifying top differentially enriched pathways in endocardial cell 

states. Genes used in the analysis selected from Seurat differential expression with P < 0.05 

and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for 

multiple comparisons. h, Transcription factor analysis displaying top enriched transcription 

factors in each cell state using the ChEA 2016 database (https://maayanlab.cloud/Enrichr). 
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Genes used in the analysis selected from Seurat differential expression with P < 0.05 and 

log2FC > 0.1. P value calculated using Fisher’s exact test. TBX20a and TBX20b represent 

enrichment identified from two independent CHIP-seq experiments (ChEA_term 22080862, 

22328084).
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