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TEN1 protein is a key component of CST complex, implicated in maintaining the telom-
ere homeostasis, and provides stability to the eukaryotic genome. Mutations in TEN1 gene
have higher chances of deleterious impact; thus, interpreting the number of mutations and
their consequential impact on the structure, stability, and function is essentially important.
Here, we have investigated the structural and functional consequences of nsSNPs in the
TEN1 gene. A wide array of sequence- and structure-based computational prediction tools
were employed to identify the effects of 78 nsSNPs on the structure and function of TEN1
protein and to identify the deleterious nsSNPs. These deleterious or destabilizing nsSNPs
are scattered throughout the structure of TEN1. However, major mutations were observed
in the α1-helix (12–16 residues) and β5-strand (88–96 residues). We further observed that
mutations at the C-terminal region were having higher tendency to form aggregate. In-depth
structural analysis of these mutations reveals that the pathogenicity of these mutations are
driven mainly through larger structural changes because of alterations in non-covalent inter-
actions. This work provides a blueprint to pinpoint the possible consequences of pathogenic
mutations in the CST complex subunit TEN1.

Introduction
Telomeres consist of non-coding ends of eukaryotic linear chromosomes and play a vital role in the repli-
cation, regulation, and protection of genome [1,2]. Ends of eukaryotic chromosomes can be identified by
recombination and repair system of the cells as DNA strand breaks that often proceed to end-to-end fu-
sion and instability of genome [3,4]. Shelterin complex is composed of six subunits (TRF1, TRF2, RAP1,
TIN2, TPP1, and POT1) which are located primarily to single- and double-stranded telomeric DNA [5].
In addition to repressing DDR and chromosome fusion, shelterin complex also caps the telomeric ends
by facilitating the formation of T-loop. It is also acting as a processivity factor via recruiting telomerase to
chromosomes end [6,7].

The CST complex is composed of three subunits, conserved telomere maintenance component 1
(CTC1), suppressor of CDC thirteen homolog (STN1), and telomere length regulation protein TEN1
homolog (TEN1) [8], specifically localizes to the ssDNA) of telomere and is involved in telomere cap-
ping and regulation of telomere length [9–11]. However, increasing evidence has demonstrated that
the STN1-TEN1 complex possesses some extra telomeric functions. It is involved in resolving repli-
cation fork stalling during replication stress [12,13]. CST complex is also involved in the removal of
G-quadruplexes (G4: G-rich repeats) [14]. The G-rich region of the telomere is very prone to form G4
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throughout telomeric DNA and poses severe challenges for telomere replication machinery [15]. In addition, CST
complex binds to the 3′ ends of telomeres and regulates polymerase α-mediated syntheses of C-strand [16]. Some
important reports on the structure and function of the CST complex can be found elsewhere [17–20].

In addition to polymerase α-mediated syntheses of C-strand, a subunit of CST (CTC1-STN1) regulates
telomerase-mediated extension of G-rich overhang which is critical for the cell proliferation. Deficiency of
CTC1-STN1 complex leads to overextension of G-rich overhangs which initiate DDR [21,22]. In this process, the
role of TEN1 is indispensable as it is essential to provide stability to CTC1-STN1 complex. Disruption of TEN1 re-
sults in progressive shortening of telomere more like caused by telomerase deficiency. As telomere maintenance is
paramount to genome stability, mutations in the genes encoding essential components of CST are associated with
varieties of genetic abnormalities including cancer [23], coat plus [24–26], and dyskeratosis congenita [27,28].

Prediction of nsSNPs affecting protein structure and function in detail may be investigated by the aid of
cutting-edge computational methods. In many cases, nsSNPs have little or no effect on protein structure and func-
tions, but often a single mutation is highly lethal [29]. Experimental studies suggested that about one-third of nsSNPs
are deleterious to human health [30]. Thus, identification of such deleterious nsSNPs is of serious concern in terms
of diagnosis and therapeutic perspective. In vitro mutational studies by Bryan et al., suggested that mutation in some
important residue in TEN1 gene directly affect the interaction with STN1 to many fold. During structure analysis, we
have observed that mutant R27Q caused a marked reduction in the polar interactions between TEN1-STN1complex
(Supplementary Figure S1). Disruption in TEN1-STN1 interaction leads to the development telomere malfunctions
and thus telomeropathies [31]. A little report is available on the mutational analysis of nsSNPs in TEN1 gene. Taking
this opportunity into consideration and the fact that TEN1 plays crucial role in the telomere maintenance; we have
predicted the structural and functional effects of about 78 nsSNPs in the coding region of TEN1 gene. The present
study will offer in-depth understanding of the role of nsSNPs on the structure and function of TEN1 protein.

Materials and methods
Data collection
Distribution of nsSNPs in human TEN1 gene was retrieved from dbSNP [32], Ensembl [33], and HGMD [34]
databases. Data enrichment was carried out by removing the variant duplicates of different databases. The hu-
man TEN1 amino acid sequence was obtained in FASTA format from UniProt database (UniProt ID: Q86WV5)
(http://www.uniprot.org/). A 3D structure of TEN1 (PDB ID: 4JOI) was downloaded from the Protein Data Bank
(PDB) [35]. Functional annotations of all SNPs were extracted from the dbSNP database; for example, whether the
SNPs present in an intron or exon, in the 3′ or 5′-UTR, or downstream or upstream of the TEN1 gene.

Sequence-based prediction of deleterious nsSNPs
Sorting Intolerant from Tolerant (SIFT) (http://sift.jcvi.org/) algorithm was used to predict the amino acid substitu-
tion as tolerable and intolerable depending upon the physical and sequence-homology features. Substitutions with
normalized probabilities of ≥0.05 and ≤0.05 were predicted as tolerated and deleterious, respectively [36,37]. There
were about 78 nsSNPs identified from Ensembl and dbSNP databases. Prediction of tolerated and deleterious ef-
fect of these nsSNPs in human TEN1 gene was predicted using SIFT. Protein variation effect analyzer (PROVEAN)
(http://provean.jcvi.org/) tool was used to predict the consequences of amino acid substitution on protein function
[38]. It predicts nsSNPs as ‘deleterious’ if the score is less than the threshold value (cutoff is −2.5), and ‘neutral’ if the
predicted score is more than the cut-off value. All the nsSNPs in human TEN1 gene were calculated and analyzed
using this cut-off value.

PolyPhen-2 (polymorphism phenotyping-2) (http://genetics.bwh.harvard.edu/pph2/) was used to calculate func-
tional predictions of coding variants. It uses a particular empirical rule comprises of both comparative and physical
considerations to predict the probable functional impacts of mutation on the structure–function relationship. FASTA
format of protein sequence was used as input to calculate the effects of a particular substitution [39]. It calculates
a position-specific independent count (PSIC) score for each substitution and then estimates the score deviations. A
mutation is considered as possibly destructive mutation if the PSIC score is ≥0.9.

Structure-based prediction of destabilizing nsSNPs
STRUM (https://zhanglab.ccmb.med.umich.edu/STRUM/) tool was used to predict the stability differences between
WT and mutant proteins. Initially, from protein sequences, a 3D model was generated by I-TASSER simulation and
used to train STRUM model through gradient boosting regression. STRUM predicts the possible effects of nsSNPs
on the structure and function of a protein using conservation score from an alignment of the multiple-threading
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template. The query sequence used as input in FASTA format and calculated the impact of a particular substitution
in a given sequence [40]. SDM2 (site direct mutator 2) (http://structure.bioc.cam.ac.uk/sdm2) is a knowledge-based
tool used to estimate the impact of mutations on the stability of protein [41]. It uses constrained environment-specific
substitution tables (ESSTs) to calculate the differences in the protein stability upon mutation [41,42]. SDM2 uses PDB
as an input file, and point variants to estimate the stability difference score between the WT and mutants.

PoPMuSiC (http://babylone.ulb.ac.be/popmusic/) tool was used to predict changes in thermodynamic stability
upon mutation. PoPMuSiC employing a linear combination of statistical potentials whose coefficients depend on the
solvent accessibility of the substituted residues. It uses PDB as an input file. DUET server was used to predict the
impact of mutations on the stability of TEN1 protein using PDB code. DUET calculates a combined or consensus
predictions of SDM and mCSM (mutation Cutoff Scanning Matrix) using support vector machines (SVMs) in a
non-linear regression fashion. The output it provides is in the form of change in Gibbs free energy (��G), where
negative sign indicates destabilizing mutation [43]. MCSM was implicated to predict the impact of mutations on
the stability of proteins using graph-based structural signatures. It predicts protein–protein and protein–nucleic acid
interaction [44].

Identification of diseased phenotype
MutPred (http://mutpred.mutdb.org/) tool was used to predict the association of nsSNPs with disease phenotype
[45]. It employs several attributes associated with structure, function, and evolution using PSI-BLAST [46], SIFT
[36], and Pfam profiles [47] together with structure disorder prediction tools such as TMHMM [48], DisProt [49],
and MARCOIL [50]. Score with g-value more than 0.75 and a p-value less than 0.05 is considered as a confident
hypothesis. PhD-SNP, (http://snps.biofold.org/phd-snp/phd-snp.html) is online SVM based prediction tool, was used
to predict the pathological effects of a given mutation [51].

Aggregation propensity analysis
SODA (protein solubility from disorder and aggregation propensity) was used to predict the change in protein sol-
ubility upon mutation by comparing the sequence profile of WT and mutants. The aggregation or intrinsic disorder
score obtained from PASTA [52], and ESpritz [53], and a combined result obtained from Kyte-Doolittle [54] and
FELLS [55]. SODA also predicts types of variation, including insertion and deletion in a given sequence [56].

Sequence conservation analysis
The importance of a particular amino acid in the structure and functions of protein can be generally retrieved from
its conservation score using multiple sequence alignment. The blueprint of amino acid conservation was identified
by ConSurf tool, which measures the degree of conservation of each amino acid at a particular position along with
the evolutionary profile of amino acid sequence [57]. Conservation score ranged from 1 to 9, where 1 depicts rapidly
evolving (variable), 5 indicates region which is evolving moderately, and 9 shows slowly evolving (evolutionarily con-
served) position. Exposed residues with high conservation score are being considered as functional whereas buried
residues with high conservation score are believed as structural residues.

Analysis of solvent accessibility
Relative side-chain solvent accessibility (RSA), residue depth and residue-occluded packing density (OSP) of WT, and
mutant TEN1 protein have been performed using SDM2 server [41]. It uses ESSTs table to calculate the differences in
their RSA, residue depth, and OSP of WT and mutant proteins. RSA has been calculated based on Lee and Richards
method [58]. Three classes of relative RSA were defined based on the method of Lee and Richards, whereby a probe
of given radius is rolled around the surface of the molecule [58].

Results and discussion
All reported SNPs of TEN1 gene was extracted from Ensembl (http://www.ensembl.org/) and dbSNP databases (http:
//www.ncbi.nlm.nih.gov/snp). A total of about 5712 SNPs were mapped and classified into nine different functional
classes. Four major classes of SNPs in TEN1 gene are shown in Figure 1. About 5250 SNPs were mapped in the intronic
region and approximately 78 were found in the coding non-synonymous/missense region. The 5′- and 3′-UTR regions
have 277 and 91 SNPs, respectively. In addition, 61 SNPs in coding synonymous, five SNPs in frameshift, and three
SNPs in each 3′ and 5′ splice site regions are also observed. The present study focuses only on missense mutations
mapped in the coding region. A total of 78 nsSNPs were taken for further analysis.
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Figure 1. Representation of number of SNPs in TEN1 gene using dbSNP database

To identify the structural and functional impact on missense mutations in TEN1 gene, we have employed a
multi-tier approach. To collect high confidence nsSNPs in the TEN1 gene, all mapped TEN1 nsSNPs were first sub-
jected to sequence-based prediction using PolyPhen-2, PROVEAN and SIFT, followed by structure-based stability
predictions using PoPMuSiC, SDM2, DUET, mCSM, and STRUM web-servers. Further, distributions of high confi-
dence nsSNPs were analyzed on the basis of their structure descriptors and phenotypic association. In consistence,
we discuss pathogenic mutations in relation to their sequence conservation, functional importance, and aggrega-
tion propensities. Finally, we expand our analysis and extensively analyzed the structural and functional impact of
pathogenic mutations on the local environment of the TEN1 protein. An overview of computational methods used
in the present study is depicted in Figure 2.

Identification of deleterious nsSNPs
To pinpoint the structural and functional consequences of nsSNPs in TEN1 gene, we have performed an extensive
structural analysis. The reason for using multiple tools is to improve the confidence level of prediction. Accumu-
lation of deleterious nsSNPs using a single approach may not always be satisfactory as some mutations that have
scored very close to cut-off value are prone to false prediction. Therefore, using multiple tools in both sequence- and
structure-based predictions may provide an accurate result. The nsSNPs predicted to be deleterious in at least two
methods from sequence-based prediction methods and three tools depict destabilizing effects from structure-based
prediction were collected and termed as ‘high confidence nsSNPs’.

Sequence-based prediction of all nsSNPs in TEN1 gene was calculated by SIFT, PROVEAN, and PolyPhen-2. A
total of 78 nsSNPs of human TEN1 gene were considered for analysis. Sequence-and structure-based predictions are
listed in Supplementary Table S1 and 2. SIFT, PolyPhen-2, and PROVEAN predicted that out of 78 nsSNPs, 40 (51%),
42 (53%), 36 (46%) nsSNPs, respectively, were deleterious (Figure 3). Similarly, STRUM, mCSM, DUET, SDM2, and
PoPMuSiC predicted that 40 (51%), 70 (89%), 62 (79%), 60 (76%), and 58 (74%) nsSNPs, respectively, as protein
destabilizing (Figure 3). We have further focussed only on those mutations which are predicted to be deleterious and
identified 34 mutations showing a destabilizing behavior.
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Figure 2. Overview of computational approaches used to identify the deleterious or pathogenic mutations in the TEN1

protein at structural and functional level

Figure 3. Distribution of predicted deleterious (red) and neutral (green) nsSNPs in TEN1 gene

Sequence conservation analysis
A relative analysis of amino acid residue conservation based on protein sequence provides an understanding of the
significance of particular amino acid residue and reveals its localized evolution. ConSurf results indicate that the
amino acid residues stretch ranges, 26–32, 62–65, 75–78, and 91–99, were highly conserved (Figure 4). The stretches
of amino acids residues range, 32–61 and 100–121, are not conserved. Further, structure-based conservation analysis
suggested that amino acid residue belongs to β1 (25–36 residues) and L1-2 (37–40 residues) (loop connecting β1
and β2), β4 (72–80 residues) and β5 (88–96 residues) are more conserved than β2 (41–48 residues) and β3 (51–58
residues) of TEN1 protein. Amongst these structural components,β5 (88-96 residues) is highly conserved while L4-5
(81–87 residues) (loop connecting β4 and β5) is the least conserved. Figure 5.
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Figure 4. Conservation analysis of the TEN1 protein using ConSurf

ConSurf analysis also entails structural importance of a particular residue along with conservation score.

Figure 5. Distribution of deleterious/destabilizing and neutral nsSNPs in different structural components in TEN1 protein

Distribution of deleterious or destabilizing nsSNPs
TEN1 comprises of 123 amino acid residues and have one OB (oligonucleotide or oligosaccharides)-fold domain
(Figure 6) [31]. The OB-folds domain was originally identified from a group of yeast and bacteria [59]. The OB-fold
domain can bind and establish protein-DNA, protein-RNA, and protein–protein interactions [60,61]. Amongst these
functions, the interaction of OB-folds with ssDNA is extensively studied and characterized [13,62]. Structurally, the
OB-folds are β-barrel consisting of five antiparallel β-strands capped by one α-helix at one end has a binding cleft
on the other end. The variability in length amongst OB-folds domain is mainly due to the differences in the lengths
of variable loops connecting the conserved secondary structure elements [62].

Identification of relative percentage of high confidence nsSNPs in the OB-fold of TEN1 protein provides informa-
tion about the relationship of a particular secondary structure component to be neutral or pathogenic. The secondary
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License 4.0 (CC BY).



Bioscience Reports (2019) 39 BSR20190312
https://doi.org/10.1042/BSR20190312

Figure 6. Cartoon representation of TEN1 protein (PDB ID: 4JOI)

structure components; α1, β1, β2, β3, L3-4 (loop connecting the β3 and β4), β4, β5, α2, respectively have 75, 60,
28, 50, 45, 22, 77, and 35% deleterious or destabilizing mutations (Figure 6). Mutations in the α1 and β5 are having
more than 75% chance to be deleterious, while β1, β3, and L3-4 have about 50% chance. In addition, mutations in
L1-2, L2-3, L4-5, and L5-α2 (loop connecting β5 and α2) suggested that nsSNPs occurring in these region have neg-
ligible chance to be deleterious. From these results, we can suggest that mutations in the α1, β1, and β5 are possibly
more lethal than in other parts of TEN1. These observations were further complemented by sequence conservation
analysis, which suggested that residues belonging to α1, β1, and β5 of TEN1 are highly conserved.

Evaluation of disease phenotype
High confidence nsSNPs (deleterious and destabilizing) were analyzed for their phenotypic association using Mut-
Pred and PhD-SNP methods (Table 1). These methods predict a particular mutation as benign or pathogenic based
on prediction score. MutPred and PhD-SNP methods depict 14 (58%) and 10 (29%), respectively mutations are asso-
ciated with the disease phenotype. Of the 34 high confidence nsSNPs, we have identified only eight (24%) mutations
(W13G, L26P, C58Y, G70A, G77R, R92H, R92C, and C96Y) as pathogenic from both prediction methods. We can
conclude that eight (10%) of the total mutation, 78 (100%), found in TEN1 gene are pathogenic in nature.

Analysis of conformational changes in protein structure
Root mean square deviation (RMSD) is a commonly used quantitative measure of the similarity between two super-
imposed atomic coordinates, considered as a relative measure of structural and conformational changes in a given
protein structure [63]. We have performed a comparative analysis of modeled tertiary structure of mutant proteins
with the WT to deduce possible structural and functional consequences imposed by pathogenic nsSNPs in TEN1
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Table 1 Prediction of disease phenotype analysis of high confidence nsSNPs in TEN1 gene using PhD-SNP and MutPred
prediction tools

S. No. Variant ID Variants PhD-SNP MutPred2
Remark Score Remark

1. rs1322628164 M2V Neutral 0.329 Benign

2. rs892524367 P4L Neutral 0.543 Pathogenic

3. rs1212831970 Y9C Disease 0.326 Benign

4. rs1333358260 W13G Disease 0.684 Pathogenic

5. rs1224481693 E14D Neutral 0.528 Pathogenic

6. rs1175908725 V15 F Neutral 0.584 Pathogenic

7. rs1328038606 G18V Disease 0.325 Benign

8. rs964588646 G23E Neutral 0.744 Pathogenic

9. rs376979590 T25M Neutral 0.171 Benign

10. rs1262136645 L26P Disease 0.855 Pathogenic

11. rs1223059981 D36N Neutral 0.301 Benign

12. rs1250997925 R41S Neutral 0.221 Benign

13. rs1178755431 L44V Neutral 0.286 Benign

14. rs1412009927 C58Y Disease 0.581 Pathogenic

15. rs977512123 L61M Neutral 0.168 Benign

16. rs1032051988 L61W Neutral 0.575 Pathogenic

17. rs889310547 P64T Neutral 0.510 Pathogenic

18. rs951187486 G70A Disease 0.482 Pathogenic

19. rs1180274799 G70S Neutral 0.545 Pathogenic

20. rs1445270614 Y73C Neutral 0.901 Pathogenic

21. rs1358892195 G77R Disease 0.880 Pathogenic

22. rs562062613 V88G Neutral 0.488 Benign

23. rs1401886733 A91V Neutral 0.831 Pathogenic

24. rs1016457057 R92H Disease 0.831 Pathogenic

25. rs759839415 R92C Disease 0.909 Pathogenic

26. rs905216603 V93M Neutral 0.543 Pathogenic

27. rs1286634889 C96Y Disease 0.922 Pathogenic

28. rs1286634889 C96F Neutral 0.906 Pathogenic

29. rs368827427 V97M Neutral 0.707 Pathogenic

30. rs1216398771 E106D Neutral 0.226 Benign

31. rs1230794805 R110W Neutral 0.130 Benign

32. rs1158635929 E111G Neutral 0.280 Benign

33. rs772974788 R119G Neutral 0.382 Benign

34. rs772974788 R119W Neutral 0.277 Benign

protein. We have superimposed the six pathogenic mutants (W13G, L26P, G77R, R92H, R92C, and C96Y) of TEN1
protein onto the structure of WT protein using PyMol (Figure 7A–F). Mutation G77R in the β4-strand of TEN1
protein showed a remarkable conformational change with the highest RMSD values in comparison with other mu-
tations (Figure 7C). R92H and R92C mutations are involving the substitution of arginine by a small histidine and
cysteine, thus expecting to affect the conformation of TEN1 protein which is evident from changes in RMSD values
of backbone atoms (Figure 7D,E). Other three pathogenic mutations (W13G, L26P, and C96Y) are also showing a
considerable structural change in the local structure as compared to WT.

Aggregation propensities analysis
Protein solubility is one of the critical attribute primarily related to its function [64,65]. Insoluble parts in proteins
often tend to form an aggregate which leads to development of many diseases including, amyloidoses [66], Alzheimer’s
[67], and Parkinson diseases [68]. Aggregation propensity analysis was performed in the context of identification of a
disease or pathogenic SNPs. SODA classifies SNPs based on changes inα-helix andβ-strand propensities; aggregation
and disorder score, etc. Out of eight pathogenic mutations obtained from MutPred and PhD-SNP tools, six (75%) were
found to have an increased tendency to form an aggregate (Table 2). These aggregate forming potential of amino acid
residues are primarily located at the C-terminal of TEN1 protein. Replacement of Arg92 by cysteine or histidine is
considerably more prone to form an aggregate in comparison with other pathogenic mutations.

8 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Structural superimposition of Wild-type (Tan color) and mutant (Blue color) TEN1 proteins using PyMol

(A) W13G, (B) L26P, (C) G77R, (D) R92C, (E) R92H, and (F) C96Y.

Table 2 Predicted aggregation scores of wild-type and mutant TEN1 proteins using SODA server

Variants Helix Strand Aggregation Disorder SODA Remark

4JOI* 0.293 0.316 −4.44 0.089

W13G −0.211 −0.75 4.7 0.748 4.072 More soluble

L26P −1.086 −0.695 8.87 0.339 8.18 More soluble

C58Y −0.139 0.259 −10.084 −0.059 −8.416 Less soluble

G70A 5.76 −4.364 −12.264 0.021 −10.323 Less soluble

G77R 7.374 −5.892 −6.704 0.166 −1.741 Less soluble

R92H 0.768 −0.72 −15.677 −0.041 −16.19 Less soluble

R92C 1.575 −1.358 −42.972 0.114 −45.157 Less soluble

C96Y 1.861 −1.429 −8.643 0.067 −6.102 Less soluble

4JOI* = PDB ID of wild-type

Structural and functional consequence of mutations
The OB-fold of TEN1 comprises of five antiparallelβ-strands folded into a complexβ-barrel flanked by twoα-helices.
N-terminal residues forming a long coil and plays a crucial role in STN1-TEN1 complex formation. Following
N-terminal coil, there is a short α-helix (α1) located at an interface of two β-sheets known to provide stability to
the structure. However, the C-terminal α-helix (α2) is situated at the opposite end of the β-barrel and spans the
whole length of the structure. The N-terminal of STN1 forms a stable heterodimer complex with TEN1. Complex
formation between these two proteins is mediated by extensive interactions between the α2- and α3-helices of TEN1
and STN1, respectively (Supplementary Figure S2A). In addition toα-helices,β-barrels of TEN1 and STN1 also form
extensive contacts (Supplementary Figure S2B) [31].

Some important amino acid residues, including Val159, Trp160, Ile164, Met167, and Leu168, of α3-helix and some
region of flanking coils of STN1 form extensive hydrophobic contacts with the amino acid residues, Met100, Leu104,
Leu105, and Ile109, of α2 of TEN1 (Supplementary Figure S2C). Additional interactions between the STN1 and
TEN1 are mainly mediated by the conserved Tyr115 of TEN1 α2. Tyr115 is found at the interface of the STN1 and
TEN1 and known to form extensive hydrophobic contacts with the side chains of Tyr49, Pro171, and Tyr174 of STN1.
Similarly, interactions between the STN1 and TEN1 involve the surface of the β-barrels and the N-terminal tail of
TEN1, that runs along the interface of the two domains and form extensive contacts with both of these two proteins
(Supplementary Figure S2D). In particular, Arg27 of β1-strand and Arg119 of α2 of TEN1 make an important salt
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Table 3 Predictions of non-covalent interactions in wild-type and mutant TEN1 proteins using Arpeggio web server

Variants
van der Waals
interactions Hydrogen bonds Ionic interactions Aromatic contacts Hydrophobic contacts

4JOI* 64 101 18 27 235

P4L 64 102 18 27 235

W13G 67 102 18 7 218

E14D 64 101 13 27 236

V15F 63 102 18 27 263

G23E 63 102 18 27 235

L26P 63 101 18 27 231

C58Y 64 101 18 27 242

L61W 64 103 18 27 240

P64T 64 102 18 27 235

G70A 64 102 18 27 235

G70S 64 102 18 27 235

Y73C 65 101 18 27 222

G77R 65 102 18 27 239

A91V 65 102 18 27 246

R92H 65 100 14 27 235

R92C 64 100 12 27 235

V93M 64 102 18 27 234

C96Y 65 101 18 35 237

C96F 65 101 18 28 243

V97M 64 102 18 27 240

4JOI* = PDB ID of wild-type TEN1 protein.

bridge with Asp78 of β2-strand and Asp33 of α2 of STN1, respectively. Further, Met167 of STN1 spans toward α2
andβ-barrel interface of TEN1 and form extensive interactions with Leu105, Ala108, and Ile109 ofα2 and Tyr9 of the
N-terminal coil. It is fascinating that the STN1-TEN1 complex positions the ligand-binding pockets of each subunit
on the same side of the heterodimer, forming an extensive ligand-binding pocket [31].

Mutations in protein are often coupled with destabilization or some time associated with disease pathogenesis.
Previous studies on mutational analysis demonstrated that the effects of mutations on the stability of protein are
primarily owing to changes in hydrophobic contacts [69–71]. However, subsequent studies in a number of cases
revealed that substitutions of a large amino acid with smaller ones are usually accompanied by the formation of cavity
and effect residue depth and solvent accessibility [72–75]. To find out the impact of a particular mutation on the local
and global environment of TEN1 protein structure, we have calculated van der Waals, hydrogen bonding, electrostatic
and hydrophobic interactions in WT, and mutant TEN1 using Arpeggio web server (Table 3) [76]. We have estimated
the change in the RSA, OSP, and residue depth of wild-type and mutant TEN1 proteins (Figure S3).

Trp13 is a highly conserved and a buried residue of the N-terminal flanking coil and plays important role in
STN1-TEN1 complex formation. Substitutions of larger bulky and highly hydrophobic Trp13 by small, less hydropho-
bic glycine does not change van der Waals and hydrogen bond interactions significantly, while a large decrease in
stacking and hydrophobic interactions are observed (Table 3). Differences in the size and polarity of Trp and glycine
affecting the RSA, OSP, and residue depth of protein. Increased RSA value in the Trp13Gly substitution suggested
that the substituted residue at Trp13 becomes more accessible to solvent, which is further supported by a decrease
in packing density (Supplementary Figure S3). The Surface potential analysis shows a decrease in hydrophobicity
in Trp13Gly substitution (Figure 8A). The results suggested that the substitution of Trp13 with the glycine seems
indispensable for the stability of TEN1 structure.

Similarly, Leu26 is a highly conserved and buried residue found at the β1-strand of TEN1. Substitutions of hy-
drophobic Leu26 by a less hydrophobic proline effects only van der Waals and hydrophobic interaction at a little
extent (Table 1). However, no significant change was observed for RSA, OSP, surface potential, and residue depth by
Leu26Pro mutation (Figure 8B). We may conclude that the incorporation of imino group as a side chain of proline
may interfere with the folding pathway of TEN1 without effecting non-covalent interactions.

Gly77 is located in the β4-strand of TEN1 and plays an important role in maintaining the structure and stability
(Figure 7D). Substitution of small, hydrophobic, highly conserved, exposed, and functional Gly77 by a large and least

10 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 8. Surface potential representations of WT (left panel) and mutant (right panel) TEN1 proteins

(A) W13G, (B) L26P, (C) G77R, (D) R92C, (E) R92H and (F) C96Y. The color ramp for the electrostatic surface potential ranges from

blue (most positive) to red (most negative). Surface potential of WT and mutant residues are highlighted by dashed square.

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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hydrophobic, positively charged arginine shows an increase in the van der Waals, hydrogen bonding, and hydrophobic
interactions. In consistence, Gly77Arg mutation shows an increase in RSA, a subtle decrease in OSP and residue
depth. Gly77Arg mutation increases positively charge environment in the vicinity of Gly77 (Figure 8C). Lethality of
Gly77Arg mutation is associated with the changes in RSA of surrounding residues which are critical to maintaining
the TEN1 stability.

Arg92 is belonging to the β4-strand of TEN1 and is important for the stability. Substitution of large, highly hy-
drophilic, conserved, exposed, and functional Arg92 by a small less hydrophilic, positively charged (histidine), and
uncharged (cysteine) shows a disruption of one hydrogen bond and a large decrease in the ionic interactions. While,
no significant change was observed in the van der Waals, stacking and hydrophobic interactions. Similarly, Arg92His
and Arg92Cys mutations show an increase in RSA, and a slight decrease in the OSP and residue depth. The increase in
RSA suggesting that the substitution of Arg92 may increase the solvent accessibility of newly incorporated residues.
A marked change in surface potential has been observed in Arg92His and Arg92Cys mutations (Figure 8D,E). These
results indicate that the lethal effect of Arg92His and Arg92Cys mutations is primarily associated with the changes in
hydrogen bonding, ionic interactions, and RSA and thus protein stability.

Cys96 is situated in the β5-strand of TEN1. Substitution of small, less hydrophobic, highly conserved and buried
Cys96 by a large and more hydrophobic tyrosine show an increase in the stacking and hydrophobic interactions,
while no change was observed in other interactions. Cys96Tyr mutation shows an increase in the RSA and decrease
in OSP. No significant change in surface potential has been found except an increase in the hydrophobicity (Figure
8F). Our findings suggest that Cys96Tyr mutation may increase the important hydrophobic and stacking interactions
which are being considered as a driving force for protein stability. These increase in stability possibly overcome due
to disruptions some important interaction Cys96.

Conclusion
SNPs are considered as one of the most recurring genetic variants associated with a number of diseases. In the present
study, we have examined the consequences of nsSNPs in TEN1 gene using advanced integrated bioinformatics ap-
proach. We have identified a large number of deleterious and destabilizing nsSNPs, which are scattered in different
secondary structural components of TEN1 with a high chance of occurring in α1-helix and β5-strands. Aggregation
propensity analysis of pathogenic mutation shows that 75% of pathogenic mutations in TEN1 have a tendency to
form aggregate and located at C-terminal of TEN1. In-depth structural analysis of these mutations reveals that the
pathogenicity of these mutations may be driven through a large structural changes caused by loss/gain of non-covalent
intramolecular interactions. The present study provides a mechanistic insight into the understanding of pathogenic
mutations in TEN1 gene and their possible consequences.
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