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Abstract: In this paper, we aim to use odor fingerprint analysis to identify and detect various
odors. We obtained the olfactory sensory evaluation of eight different brands of Chinese liquor
by a lab-developed intelligent nose. From the respective combination of the time domain and
frequency domain, we extract features to reflect the samples comprehensively. However, the extracted
feature combined time domain and frequency domain will bring redundant information that affects
performance. Therefore, we proposed data by Principal Component Analysis (PCA) and Variable
Importance Projection (VIP) to delete redundant information to construct a more precise odor
fingerprint. Then, Random Forest (RF) and Probabilistic Neural Network (PNN) were built based on
the above. Results showed that the VIP-based models achieved better classification performance than
PCA-based models. In addition, the peak performance (92.5%) of the VIP-RF model had a higher
classification rate than the VIP-PNN model (90%). In conclusion, odor fingerprint analysis using a
feature mining method based on the olfactory sensory evaluation can be applied to monitor product
quality in the actual process of industrialization.

Keywords: odor fingerprint analysis; feature mining method; olfactory sensory evaluation; time
domain; frequency domain; intelligent nose; Chinese liquor

1. Introduction

Due to its particularity and generality, fingerprint can provide the basis to distinguish between
samples due to its uniqueness and reliability [1]. Odor fingerprint analysis is preferred to the use of
intelligent instruments which are sensitive to the stimulation of odor to produce the relevant data
of volatile feature components. Adoption of odor fingerprint analysis is widely used in the field of
foods. For example, the maturity of fruits could be expressed by the odor intensity [2], the degree of
freshness [3], and diseases [4,5] could be determined by odor fingerprint analysis. Thus, the use of
odor as a biometrics recognition method is feasible [6].

Chinese liquors belong to the distilled liquor which is loved by people for its strong aromatic odor.
As a traditional fermented beverage, the saccharifying ferment of Chinese liquor is daqu, xiaoqu, bran
koji and yeast wine, which is produced with cereal grains as the main raw materials and is processed by
distilling, saccharifying and fermenting [7]. The microconstituents of liquors are organic compounds
which directly influence the flavor of liquor quality. These organic contents are 1% to 2% including
acids, esters, alcohols, aldehydes, and so on. Depending on the different brewing techniques and raw
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materials, different liquors have significant differences in aromatic characters and odor fingerprint.
Therefore, the case study of Chinese liquor is representative and typical.

Currently, there are multiple studies on liquors by traditional sensory evaluation and physical or
chemical methods [8,9]. With the advantages of simple operation and immediate results, the sensory
evaluation method is generally acknowledged and widely adopted. However, this method mainly
depends on the reviewers’ subjective sense of smell and taste [10]. In addition, there is a great deal of
time and cost to train qualified professionals. On the other hand, the physical or chemical method
analyzes samples using infrared spectrometer, chromatographic analyzer, mass spectrometer and other
instruments [11,12]. These methods are reliable to analyze constituents of samples. However, there are
some shortcomings, such as time-consuming, costs. These methods cannot comprehensively evaluate
sample and cannot meet the development of process of industrialization.

Along with the rapid development of artificial intelligence, intelligent nose, also known as artificial
nose, intelligent olfaction system, as a new bionic detection instrument, could make up the deficiency of
the traditional olfactory sensory evaluation [13]. Intelligent nose consists of three parts: sensor array, signal
processing unit, and pattern recognition. These three parts can respectively simulate the acquisition of
information by human olfactory receptor sensory neurons, the encoding of the olfactory nerve, and the
processing of information by the human olfactory system [14]. Therefore, odor fingerprint information
gathered by intelligent nose could evaluate samples comprehensively. Based on the human olfaction, each
olfactory neuron can detect different odorant molecules. On the other hand, each odorant molecule is able
to respond to multiple olfactory neurons. The same goes for the principle of intelligent nose: Different
sensors respond differently to different odorants. The intelligent nose can provide overall information of
volatile compounds and it is widely used in analyzing the quality of wine [15], tobacco [16], tea [17], rice [18]
and fruit [19–21]. Furthermore, it also involved in medical diagnosis [22], environment monitoring [23]
and other fields. However, there are only a handful of published studies focusing on the detection of
odor fingerprint information of Chinese liquors using intelligent nose, such as analyzing different flavor
types [24], authenticity [25], place origin [26] and age [27].

As is known to all, drift is an inevitable question in measurement. Sensor drift refers to the output
of sensor changes from time to time when the input remains unchanged. Currently, it is believed that
sensor drift is caused by two causes, on the one hand is the chemical process which occurs between the
sensor material and the environment, on the other hand is the system noise [28]. In practice, the outputs
gradually fail to match the right gases for sensor drift reason. For this problem, researchers have done
a great deal of work to ensure the response of sensors. Ma et al. [28] proposed the ODAELM-S and
ODAELM-T for online sensor drift compensation in E-Nose systems. This method aims to achieve
timely processing without losing the recognition accuracies for sensor drift. Zhang et al. [29] proposed
the DAELM-S and DAELM-T to compensate sensor drift. Another effective method is unsupervised
feature adaptation (UFA)-based transfer, learning ideas for enhancing the drift tolerance of E-noses [30].
The above methods focus on online compensation to resolve the sensor drift effectively.

In this paper, taking Chinese liquors as an example, we followed the offline sensor drift
compensation approach for the intelligent nose system while the majority of past studies have focused
on the simulation of human olfaction to detect and identify odor fingerprint information.

The appropriate multivariate statistical and pattern recognition methods can effectively increase
the differentiation of odor fingerprints based on the intelligent nose and can check the accuracy of
models. Previous research primarily focused on the feature extraction of time domain features such as
peak, mean, maximum variance, root mean square and standard deviation [31,32]. However, the basic
characteristics of signals, both in the time domain and frequency domain, can provide comprehensive
angles for signal analysis. The time domain is the only real domain which is parallel to the real world
and it is the relationship between mathematical functions and physical signals to time. While the
frequency domain is a mathematical category which follows particular rules which can reveal the
inner characteristics signals [33,34]; the feature extraction method, combining time domain and
frequency domain features, can be used to mine information that reflects different odor fingerprint
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features about samples [35,36]. However, this method causes information redundancy, that is, as the
number of dimensions increases, the training time and forecasting time of the model will take longer.
Therefore, it is of greatest importance to find a more reasonable and effective feature mining method
to extract efficient features.

Taking eight different brands of Chinese liquors as an example, this paper aims to use the odor
fingerprint analysis, simulate human olfaction through experiments with the lab-developed intelligent
nose and adopt the feature mining method to detect and identify various odors. According to the raw
experimental data from 16 sensors of the lab-developed intelligent nose, we extracted the time domain
and frequency domain characteristics to construct the odor fingerprint. In addition, odor fingerprints
were analyzed by PCA and VIP scores for selecting characteristic features. Next, we selected Random
Forest (RF) and Probabilistic Neural Network (PNN) to dynamically characterize the interactions
among the feature variables, and then obtained the best variable characteristics and the highest
classification accuracy. This is a significant study for the detection and identification of Chinese liquors
through odor fingerprint analysis based on the olfactory sensory evaluation. Figure 1 shows the flow
chart of odor fingerprint analysis for this article.
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2. Materials and Methods

2.1. Liquor Samples

In this paper, eight different brands of Chinese liquors purchased at a local liquor store were
selected as samples. These samples differed in brand, alcohol content, flavor, raw materials, and origin.
Details were listed in Table 1.

Table 1. Liquor sample characteristics.

No. Brand Alcohol Content
(%vol) Flavor Type Main Raw

Material Place of Origin

1 Aoxi Erguotou 56 Feng-flavor pure water,
Chinese sorghum

Tongzhou district,
Peking City

2 Fangzhuang Beijing Erguotou 56 Feng-flavor pure water,
red sorghum

Daxing district,
Peking City

3 Hengshui old white dry 50 Laobaigan-flavor Chinese sorghum,
wheat, pure water

Hengshui City,
Hebei Province

4 Huadu Beijing Erguotou 56 Feng-flavor pure water,
Chinese sorghum

Changping district,
Peking City

5 Hongxing Erguotou 56 Feng-flavor
Chinese sorghum,
pure water, corn,

barley, pea

Jixian county,
Tianjin

6 Luzhou Laojiao 45 Luzhou-flavor
pure water,

Chinese sorghum,
wheat

Luzhou city,
Sichuan Province

7 Niulanshan Erguotou 56 Feng-flavor
pure water,

Chinese sorghum,
barley, wheat, pea

Shunyi district,
Peking City

8 Zhongde Erguotou 43 Feng-flavor
pure water,

Chinese sorghum,
wheat

Fangshan district,
Peking City

2.2. Intelligent Nose

As shown in Figure 2, the lab-developed intelligent nose system contains three units—the air
flow velocity and direction control unit (consists of air purification, valve, gas flowmeter, and air
pump), the sensors unit (includes sensor arrays and chamber), and the data acquisition and analysis
unit (contains data acquisition card (DAQ) and PC with the self-made test software). The two major
functions (gas injection and system cleaning) were carried out by adjusting valves. The air purification
consists of activated carbon, molecular sieve and allochroic silicagel gel, and more remarkably,
allochroic silicagel gel, which belongs to the high-grade drying agent, can visually signal the relative
humidity of the environment according to the color variation (from blue to red). It is usually used for
instruments, equipments and other closed conditions. The role of air pump 1 and 2 are to clean the
system and to collect gas, respectively. In addition, the combination of these two air pumps are used to
raise the gas volume rate in the gas cleaning process. The dimension of the chamber is 10.5 cm long,
8.2 cm wide and 5 cm high with a volume of about 431 cm3. The chamber is made of cardboard which
is covered by Polytetrafluoroethylene (PTFE). PTFE has weak adsorption and strong leakproofness so
that there is no other interfering research to affect the test results in the air chamber. Sensor arrays
contain a temperature sensor, humidity sensor and 16 independent sensors. LM35CZ type temperature
sensor by National Semiconductor, Santa Clara, CA, USA and HIH-4000-003 type humidity sensor by
Yi Jiajie Electronic Technology CO., LTD, ShenZhen, China, in the air chamber are used to monitor the
internal temperature and humidity. Sixteen independent sensors are sensitive to different substances.
These sensors can detect odor fingerprint data and consist of two systems: TGS-8 system by FIGARO,
Japan and MQ/MP system by ZhengZhou Winsen Electronics Techbology CO., LTD, ZhengZhou,
China. Details of these sensors used in the experiment are listed in Table 2. The NI USB-6211 type data
acquisition card by National Instruments, Austin, TX, USA, was selected to collect data. There are
eight analog input channels and two analog output channels and the sample rate reaches 48 Ks/s.
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Table 2. Characteristics of sensors.

No. Sensor Name Sensitive Gas Detection Range (mg/L)

1 TGS-825 Hydrogen sulfide 5–100
2 TGS-831 R-21 and R-22 100–3000
3 TGS-821 hydrogen 30–1000
4 TGS-822 Ethanol 50–5000
5 TGS-813 Methane, Propane and Butane 500–10,000
6 TGS-832 R-134a 100–3000
7 TGS-826 Ammonia 30–300
8 TGS-830 R-113, hydrogen and Ethanol 100–3000
9 MQ-2 Ethanol, Propane and hydrogen 300–10,000

10 MQ-4 Alkanes 300–10,000
11 MQ-3 Ethanol 40–4000
12 MQ-135 Hydrogen, R-113 and Ethanol 10–1000
13 MP-4 Methane 300–10,000
14 MP-135 hydrogen 30–1000
15 MQ-6 Isobutane, Propane and LPG 300–10,000
16 MQ-5 Methylpropane 300–10,000

The static head-space sampling method was adopted in this experiment. The lab environment is
best to control the temperature at 23 ± 2 ◦C and the relative humidity at 60 ± 5%. The experimental
procedure was performed as following:

(1) Open the air pump 2 and valve 1, put a clean and empty Erlenmeyer flask in the defined
location. Then observe the zero value of each sensor and compare with the standard value.

(2) Twenty milliliters of the sample was put in a 100 mL Erlenmeyer flask, sealed and left to sit for
5 min.

(3) Close air pump 2 and adjust air pump 1 so that the gas flowmeters 1 and 2 (by Qihai
Electromechanical Manufacturing CO., LTD, Chengdu, China) display 2 L/min to clean windpipes
for 10 s. Then open air pump 2 to clean the entire device. This process lasted 5 min to eliminate the
influence by other gases.

(4) Place the test samples in the defined location and adjust air pumps 1 and 2 so that the gas
flowmeters 1 and 2 display 0.5 L/min to let the gas enters the chamber. Ten seconds later, close air
pump 2 and keep the gas coming into the chamber sequentially. At the same time, observe the signals
and record test data.

(5) Without loss of generality, repeat the experiment 10 times for each sample by repeating Steps
(2)–(4). Note that the relative humidity will not change in the course of the experiment. At last, a total
of 80 sets of data is obtained.

In this paper, we extracted time domain and frequency domain features to construct an odor
fingerprint map. The time-domain feature is the average value (AV) of intelligent nose response signals
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of sensors. The frequency domain feature is the mean of variance (MV) of the eight wavelet packet
coefficients obtained by three layers of wavelet packet decomposition with db6 wavelet [37].

The time domain features of the ith sensor of TGS-8 system were defined as:

AVTi =
xTi1 + xTi2 + . . . . . . + xTi5940

5940
(i = 1, 2, . . . . . . , 8) (1)

where xTi1, xTi2, . . . , xTi5940 are response value of the ith sensor of TGS-8 system intelligent nose.
The time domain features of the ith sensor of the MQ/MP system were defined as:

AVMi =
xMi1 + xMi2 + . . . . . . + xMi5940

5940
(i = 1, 2, . . . . . . , 8) (2)

where xMi1, xMi2, . . . , and xMi5940 are response values of the ith sensor of the MQ/MP system
electronic nose.

The time domain features of the ith sensor of the TGS-8 system were defined as:

MVTi =
STi1 + STi2 + . . . . . . + STi8

8
(i = 1, 2, . . . . . . , 8) (3)

where STi1, STi2, . . . , STi8 are the variance yields extracted from the coefficients of the wavelet packet
of the ith sensor of the TGS intelligent nose; the response value measured from the intelligent nose
was decomposed into wavelet packet components based on the db6 wavelet, and then extracting the
coefficients of the wavelet packet.

The frequency domain features of the ith sensor of the MQ/MP system were defined as:

MVMi =
SMi1 + SMi2 + . . . . . . + SMi8

8
(i = 1, 2, . . . . . . , 8) (4)

where SMi1, SMi2, . . . , SMi8 in the formula are the variance yields extracted from coefficients of
wavelet packet of the ith sensor of the MQ/MP intelligent nose; the response value measured from the
intelligent nose was decomposed into wavelet packet components based on the db6 wavelet, and then
extracting the coefficients of the wavelet packet.

2.3. Feature Selection

2.3.1. Data Processing of Odor Fingerprint Analysis

As is known to all, sensor sensitivity has a great influence on the intelligent nose system
performance. The sensitivity of the sensor should be considered to achieve the best performance.

As shown in Figure 3, in the drive circuit of the sensor, Rp is the resistance value of the sensor.
Rl is the resistance value of the load resistance and the output voltage of sensor is the voltage across
the load resistance. The relationship between the output voltage and reference voltage is as follows:

Vo = VRe f ·Rl/(Rp + Rl) (5)

∵ Vo = VRe f ·Rl/(Rp + Rl)

∴ ∆Vo = −Rl ·VRe f ·∆Rp/(Rp + Rl)
2

∴
∣∣∆Vo/∆Rp

∣∣ = VRe f ·Rl/
(√

Rl + Rp/
√

Rl
)2

∵
(√

Rl + Rp/
√

Rl

)2
≥ 2Rp
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All these show that when Rl is equal to Rp, the sensor has the greatest response sensitivity to
improve the performance of the intelligent nose system.

As shown in Figure 4, taking the TGS-821 sensor for example, the best output response was
studied by changing different Rl values. Other sensors have the same characteristics.
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Figure 4. TGS-821 sensor’s zero value changes with Rl variation.

As shown in Figure 5, in order to find the appropriate resistance value of the load resistor in
experiment, we perform an experiment with the purpose of supervising the zero value of sensors
which continued for 127 days. By experiment, when Rl is about one-fifteenth of the value of Rp,
the output response of sensors is obvious.
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Signal processing, as an important step of improving the performance of the intelligent nose,
refers to preprocess signals of sensor array responses. The standardized processing is the most popular
method that translates raw data into a dimensionless index. Therefore, this step can avoid pattern
recognition failure because of the large magnitude of some sensors. We choose the relative difference
method to suppress sensor drift. xs(0) is the zero response value of the sensor.

ys(t) =
xs(t)− xs(0)

xs(0)
(6)

Then, in order to expedite the convergence rate of the model, the odor fingerprint information
obtained by different sensors should be converted to the same dimension and the same order of
magnitudes. We normalized the fusion feature sets and the normalized interval is (0, +1). After the
series of the above-mentioned processing (relative difference method and normalization), additive
drift and response drift of the sensor will be suppressed.

Figure 6a,b shows radar plots for time domain and frequency domain features, respectively. Since each
sensor detects cross-information of olfactory, it is difficult to determine which features are the characteristic
values that affect the olfactory information of liquors. It can be seen that the sensor T3 and T4 are
obviously different in AV value. Does it proves these two values are the main factors affecting the olfactory
information of Chinese liquors? Meanwhile, the sensor M1 and M2 are slightly difference in MV value.
Does it proves these two characteristics have little effect on the olfactory information of Chinese liquors?
Therefore, it is indispensable to find a suitable feature mining method to delete the redundant information
and select characteristic features that can affect the olfactory information of Chinese liquors. In addition,
the best combination of variables and fusion methods to reduce the complexity of the model prediction
and achieve the best classification performance have to be chosen.

2.3.2. Feature Extraction and Filtering

Principal Component Analysis (PCA) is a meaningful multivariate statistical method. It can
convert multiple variables to a few comprehensive variables through linear transforming.
These comprehensive variables that are principal components can reflect most of the information of the
original variables at the greatest extent. These principal components are not only linearly independent
of each other but also mutually orthogonal. In this paper, PCA was used to process the original features
that fused the time domain and frequency domain. From this, principal components can express
characteristic features of Chinese liquors’ olfactory information.

In the Partial Least Square (PLS), the Variable Importance of Projection (VIP) scores were used
to create a new data space in a lower dimensional system [38]. The VIP scores can express the
interpretative ability of the independent variables to dependent variables. With higher scores meaning
a greater rate of contribution to covariance and stronger distinguishing ability, each variable of the
original feature was evaluated and obtained corresponding scores. These variables were sorted based
on the VIP scores and selected to form the new characteristic space. The feature fusion strategy is as
follows: (1) The original features that fused time domain and frequency domain were sorted based
on VIP scores. (2) K = [k1, k2, . . . , km] variable subsets were generated based on the best VIP scores.
Which ki means the subset has top ith variables and m is the number of all variables. In this paper,
we analyzed the original features and generated 32 subsets based on the VIP scores to express the
interaction between different variables.
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2.3.3. Multivariate Analysis

In this paper, altogether 80 sets of data were divided into two parts based on the Kennard-stone
algorithm, 1/2 as the training set and the rest as the testing set. The former was used to construct the
classification model and the latter was used to test the classification performance of models established
by the former.

The KS algorithm is commonly used as an effective method to select a training set. In the KS
algorithm, all samples were considered as candidates for training sets that were selected in order.
The KS algorithm can be summarized as follows: (1) Calculating the distance between every two
samples and selecting the two samples with the largest distance. (2) Calculating the distance between
the remaining sample and the selected two samples, respectively. (3) Repeating this step until the
number of selected samples is equal to the predetermined number [39].

Random Forest (RF) is an ensemble of classification and regression tree (CART). It was first
proposed by Kam in 1995 [40] and Breiman made an intensive study [41]. The essence of RF is a
nonlinear classifier that contains multiple decision trees. There is no correlation between these trees.
When the testing data entered into the random forest, the data was classified by each decision tree.
The final results are the most classified results in all trees.

With its fast training rate and simple realization, it is widely used in biological information [42],
ecology [43], medicine [44], economic finance [45], computer vision [46], speech [47], data mining [48],
remote sensing geography [49] and other fields. The execution procedure of RF is: Assuming that the
number of attributes of the sample is M. Resampling based on the Bootstrap method. Then T training
sets S1, S2, . . . , ST were generated. (2) The corresponding decision trees C1, C2, . . . , CT were generated
by each training set. Before the property was selected on each internal node, m properties that were
randomly selected from M properties should be seen as the split attribute set of the current node.
(3) Each tree has complete growth without pruning. (4) For the testing set sample X, every decision
tree was tested to obtain the corresponding categories C1(X), C2(X), . . . , CT(X). (5) By taking the vote,
the most output category in the T decision trees was taken as the category of the testing set.

Probabilistic Neural Networks (PNN) is the supervised classifier which was first put forward
by D. F. Speeht in 1990 [50]. It is a parallel algorithm based on the Bayes classification rule and the
Parzen window’s probability density function. With its simple learning process, fast training speed,
better compatibility and strong nonlinear ability, PNN was applied to image recognition [51], chemical
detection [52] and stereo vision matching [53] fields. PNN generally consists of four layers: The input
layer, the model layer, the summation layer, and the output layer. The steps of PNN networks are as
follows: (1) Collecting sample data and dividing into a training set and a testing set. (2) Creating PNN
networks and training the network according to training sets. (3) Testing network performance.

3. Results

3.1. Dimension Reduction by PCA

The odor fingerprint information obtained in the experiment was analyzed by the PCA algorithm.
The first three principal components account for 42.59%, 34.16%, and 11.95% respectively. Figure 7a
shows the PCA processing results of different brands of Chinese liquors.
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Figure 7. PCA scatter plot for Chinese liquor.

Observing the scree plot from Figure 7b, when the number of principal components reaches 10,
the polyline area is stable. The cumulative contribution of principal components reaches 99.368%,
which can represent all characteristic data. Therefore, we extracted the first 10 principal components
as a new feature data set to substitute the original variables. Results showed that it provides a reliable
method to construct a little more concise odor fingerprint map.

3.2. Variable Selection by VIP Scores

Figure 8 shows the VIP scores for each feature variable of the original fusion dataset measured
by PLS discrimination analysis. As shown, the VIP score of AVM5, AVM4, AVM7, MVM5, MVM4,
MVM7, AVM8, MVM2, AVT6, AVM2, MVM8, MVT6, MVM1 and AVM1 are greater than 1, indicating
that these variables have significant meaning in the odor fingerprint of Chinese liquors. While the
VIP scores of the rest are less than 1, which means that these variables have less effect on the
classification of Chinese liquors, VIP scores cannot give a verdict for the classification performance
of models. Therefore, we found a series of fusion matrix as an input of the model based on VIP
scores. Each subset includes the top several variables, in other words, subset #1 includes AVM5,
subset #2 contains AVM5 and AVM4, the last subset #32 contains all variables. We can select the prime
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variable combination by dynamically observing the classification performance of RF networks and
PNN network. Results showed that it provides a reliable method to construct a much more concise
odor fingerprint map by selecting the best combination of variables.
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Figure 8. Relative variable importance based on calculated VIP.

Table 3 shows the accuracy rate achieved by RF and PNN models. As the number of variables
increases, the classification accuracy rates show an upward tendency. Specifically, the classification
accuracy of RF and PNN in subset #11 have reached the same accuracy as the original fusion dataset.
This indicates that the original fusion dataset contains a large amount of redundant information.
With the number of variables increasing, RF models appeared to have the highest accuracy rate of
92.5% under the subset #15 and PNN appeared to have the highest accuracy rate of 87.5% under
subset #16. We continued to raise variables, and the accuracy rate of each model did not exceed the
above-mentioned maximum value. These results are consistent with the VIP scores shown in Figure 8.
That is, the performance of the model increased with variables added whose VIP scores were greater
than one, while the performance of the model decreased with the rest of the variables added whose
VIP scores were less than one. From above, we chose subset #15 as the best combination.

Table 3. Comparison of the results based on different classification models.

Subsets Features RF (%) PNN (%)

#1 AVM5 35 27.5

#2 AVM5 + AVM4 60 35

#3 AVM5 + AVM4 + AVM7 72.5 35

#4 AVM5 + AVM4+AVM7 + MVM5 67.5 47.5

#5 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 72.5 72.5

#6 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 77.5 60

#7 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 70 62.5

#8 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 85 82.5

#9 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 85 80

#10 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2

85 80

#11 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8

87.5 75
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Table 3. Cont.

Subsets Features RF (%) PNN (%)

#12 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6

80 67.5

#13 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1

85 60

#14 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1

85 60

#15 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6

92.5 80

#16 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1

82.5 87.5

#17 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6

85 87.5

#18 AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1

87.5 87.5

#19
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3

87.5 87.5

#20
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3

85 82.5

#21
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8

85 82.5

#22
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8

87.5 65

#23
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3

85 67.5

#24
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3

82.5 72.5

#25
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7

82.5 77.5

#26
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5

82.5 77.5

#27
AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5 + MVT4

77.5 67.5

#28

AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5 + MVT4 +
AVT4

77.5 67.5

#29

AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5 + MVT4 +
AVT4 + AVT7

80 67.5
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Table 3. Cont.

Subsets Features RF (%) PNN (%)

#30

AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5 + MVT4 +
AVT4 + AVT7 + MVT2

87.5 70

#31

AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5 + MVT4 +
AVT4 + AVT7 + MVT2 + MVT5

87.5 65

#32

AVM5 + AVM4 + AVM7 + MVM5 + MVM4 + MVM7 + AVM8 + MVM2 + AVT6 +
AVM2 + MVM8 + MVT6 + MVM1 + AVM1 + AVM6 + MVT1 + MVM6 + AVT1 +
AVM3 + MVM3 + AVT8 + MVT8 + MVT3 + AVT3 + MVT7 + AVT5 + MVT4 +
AVT4 + AVT7 + MVT2 + MVT5 + AVT2

87.5 75

3.3. Classification Using Random Forest

In RF networks, the value of mtry and the number of decision trees are the main parameters of
generalization performance. The default mtry value is the square root of the total number of variables,
so the value of mtry in the experiment was four. We selected the number of decision trees from 2 to
100 at two trees intervals. The training accuracy rate and predicting accuracy rate were regarded as the
evaluation criterion. From this, we can focus on the influence of decision trees on the classification
performance in RF networks.
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Figure 9. Classification performance of RF network based on decision trees.

The three feature sets (original, PCA-optimized, and VIP-optimized, from which the 15th variable
subset was extracted based on the VIP scores) combined with the RF model achieved the classification
for olfactory information of Chinese liquors. To reduce the impact of randomness, 100 prediction
models were established, and their accuracy rates were averaged as the classification accuracy rate
of the current model. As shown form Figure 9a–c, the training accuracy rate reaches 100% when the
number of decision trees is greater than 8, 4, and 12, respectively. Besides, in the RF model based on the
VIP-optimized feature set, when the number of decision trees exceeds 72, the testing accuracy reaches
up to 92.5%. Further, along with the continual increase of the decision trees, the system remains stable.
Results showed that the olfactory information of original features contains redundant information.
Besides, the feature mining method based on VIP-optimized can extract effective features.

3.4. Classification Using PNN

The three feature sets (original, PCA-optimized, and VIP-optimized from which the 16th variable
subset was extracted based on the VIP scores) combined with the PNN model work well in classifying
the olfactory information of Chinese liquors. As shown in Figure 10a,c and e, 40 training samples were
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classified correctly, as shown in predicting effect of PNN, the test accuracy rate was 65%, 77.5% and
87.5% with 40 test samples (The vertical axis is category label. And from 1 to 8 are category labels of
eight brands of Chinese liquors, respectively.).

The PNN models based on PCA-optimized and VIP-optimized are superior to the model based on
the original features, which means that there is a lot of redundant information in the original features.
Compared with the PNN model based on PCA-optimized, the model of VIP-optimized performed
well, which means that the feature mining method based on VIP-optimized can improve the accuracy
rate and extract effective features.
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Figure 10. Classification performance of PNN network based on PNN. 

4. Discussion 
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(1) By comparison, the classification accuracy of the RF network was better than the PNN 
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4. Discussion

Table 4 shows the classification accuracies under different data processing and pattern recognition
methods. As shown in Table 4:

(1) By comparison, the classification accuracy of the RF network was better than the PNN network
based on the different feature methods. Thus, it can be seen that the RF network has stronger processing
power in this experiment.

(2) Compared with the original features, classification performance did not significantly improve
based on the PCA-optimized both in the RF network and PNN network. The data processing method
based on PCA cannot obtain the best combination of variables to identify various odors more accurately.

(3) Compared with the original feature and PCA-optimized, selected features based on the
best VIP scores obtained the obvious promotion of the classification performance. The classification
accuracy of the RF network in subset #15 and the PNN network in subset #16 was 92.5% and 87.5%,
respectively. Finally, the RF network showed the best classification performance of 92.5% in subset
#15. Combined with VIP scores, AVM5, AVM4, AVM7, MVM5, MVM4, MVM7, AVM8, MVM2, AVT6, AVM2,
MVM8, MVT6, MVM1, AVM1, and AVM6 were considered as the characteristic features.

Table 4. Classification ability comparison.

Method Classification Accuracy (%)

RF 82.5
PNN 65
PCA-RF 82.5
PCA-PNN 77.5
VIP-RF 92.5
VIP-PNN 90

5. Conclusions

In conclusion, taking eight different brands of Chinese liquors as an example, our work adopted
the odor fingerprint analysis based on olfactory sensory evaluation and the feature mining method
which combined the time domain and frequency domain to simulate human olfaction and to identify
various odors. Variable selection using VIP scores is especially suitable for extracting features from
a mass of data. In addition, the VIP-based models achieved better prediction accuracies than the
PCA’s. The results demonstrated that VIP coupled with the RF or PNN network is effective in
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extracting and analyzing features of odor fingerprint. Compared with the PNN model, the RF model
achieved the slightly higher accuracy. Meanwhile, compared with the traditional statistical methods
and simple extraction, this feature mining method used the least characteristic variables and the best
fusion method and can capture hidden patterns and variables inside the odor fingerprint. The odor
fingerprint analysis using the feature mining method based on olfactory sensory evaluation can be
applied to the food and drinks industry for product discrimination, classification, quality and control.
Besides, the lab-developed intelligent nose can be used in the actual process of industrialization to
monitor product quality.
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