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Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a
wide range of signals such as motor input, exercise, and disease. Small animal models
have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle
adaptation and plasticity. However, these small animal models fail to accurately model
human muscle disease resulting in poor clinical success of therapies. Here, we review
the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to
study muscle function, plasticity, and disease. First, we discuss the generation and
function of in vitro skeletal muscle models. We then discuss the genetic, neural, and
hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current
in vitro models to study muscle fiber-type regulation. We also evaluate the potential
of these systems to be utilized in a patient-specific manner to accurately model and
gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and
volumetric muscle loss. We conclude with a discussion on future developments required
for tissue-engineered skeletal muscle models to become more mature, biomimetic, and
widely utilized for studying muscle physiology, disease, and clinical use.

Keywords: skeletal muscle, tissue engineering, fiber-type, satellite cell, disease modeling, Duchenne Muscle
dystrophy, innervation, myosin heavy chain

INTRODUCTION

Skeletal muscle is the largest organ in the body by mass and is essential for respiration, locomotion,
posture, and whole-body energy homeostasis. To attain maximal performance and efficiency for
these diverse roles, skeletal muscle displays a remarkable level of plasticity. Specifically, multiple
isoforms of contractile, calcium-handling, metabolic, and structural proteins have evolved to
meet the broad demands placed upon skeletal muscle (Schiaffino and Reggiani, 2011). Skeletal
muscle dysfunction due to genetic mutations, aging, volumetric muscle loss, or acquired diseases
significantly impair quality of life and can even be lethal. The foundation of our mechanistic
understanding of skeletal muscle function, plasticity, and disease is derived predominantly
from in vivo animal experiments and two-dimensional (2D) in vitro cell culture studies. Small
animal studies, particularly comparative biology and genetic manipulations, have been pivotal
in elucidating the molecular mechanisms regulating skeletal muscle function and plasticity
(Schiaffino and Reggiani, 2011; Hoppeler, 2016). However, small animal models require additional
translational and validation models to increase the successful translation of identified therapies
to the clinic (Hay et al., 2014). The in vitro culture of human cells has the potential to generate
experimental models with increased translational relevance. However, traditional skeletal muscle
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cell culture systems have limited longevity due to cellular
detachment resulting in developmentally immature tissues with
limited translational relevance. Over the past 30 years, three-
dimensional (3D) tissue engineered skeletal muscle culture
systems have been developed that better mimic the native
muscle microenvironment, permit functional testing, and enable
prolonged culture durations (Khodabukus et al., 2018; Wang J.
et al., 2019). In this review, we discuss methods to generate three-
dimensional tissues and factors that regulate their functionality.
We then discuss multiple factors regulating skeletal muscle fiber-
type in vivo and the ability to study these factors in vitro. Lastly,
we discuss further developments regulated for engineered muscle
tissues to become more widely utilized and to better model adult
skeletal muscle.

SKELETAL MUSCLE STRUCTURE AND
FUNCTION

Skeletal Muscle Structure
Skeletal muscle is comprised of a hierarchical architectural
structure that permits efficient force generation. Ultra-
structurally, the most basic units of a myofibers are sarcomeres
that contain myosin and actin which form overlaps to permits
muscle contraction in a calcium-dependent manner. Efficient
muscle contraction is coordinated by the transverse tubule
system, a branched membrane network that runs along the
entire length of the myofiber to the junction of the A and I
bands of the sarcomere. The calcium required for contraction
is stored in the sarcoplasmic reticulum (SR) which connects to
the t-tubule at the specialized terminal cisternae. The SR stores
calcium at a significantly higher concentration than seen in the
sarcoplasm due to the calcium-binding protein calsequestrin
(CSQ) (Murphy et al., 2009; Lamboley et al., 2013). Calcium is
released from SR by the ryanodine receptor 1 (RyR1) into the
myofibrils and binds to troponin C inducing a conformational
change which results in removal of tropomyosin from myosin
which enables actin to bind to myosin. Actin binding to myosin
results in adenosine triphosphate (ATP) hydrolysis that causes
actin to pull along myosin, shortening the sarcomere and
generating muscle contraction (Sellers, 2004). Skeletal muscle
relaxation is an active process that requires removal of calcium
from the myofibrils to reestablish tropomyosin blocking of
myosin actin-binding sites. Calcium removal is regulated by
the sarcoplasmic-endoplasmic reticulum Ca2+ ATPase pumps
(SERCA) that pump calcium back to the SR and the high affinity
calcium binding protein parvalbumin found in fast skeletal
muscle that quickens relaxation rate (Muntener et al., 1985;
Schwaller et al., 1999).

SKELETAL MUSCLE CULTURE MODELS

Skeletal Muscle Explants and Single
Fiber Cultures
Due to the high metabolic demands of skeletal muscle, long-
term in vitro culture of whole skeletal muscles is impossible

due to hypoxia and resultant loss of viability. To minimize
hypoxic stress, muscles such as the extensor digitorum longus
(EDL) and soleus (SOL) can be dissected to generate muscle
strips that can be cultured for up to 12 h in highly oxygenated
media (Park et al., 2012). These tissues can be utilized to
measure contractile function (Brooks and Faulkner, 1988) and
assess insulin-stimulated glucose uptake (Hansen et al., 1994).
To overcome the short-term culture duration of intact muscle
explants, single myofibers can be carefully dissected and isolated
from the muscle belly and cultured for up to 7 days (Renzini et al.,
2018), though most studies utilize 48–96 h time points. The single
myofiber model is the gold-standard model to study satellite cell
activation in vitro, due to SCs being retained within their niche
and the ability to study SC dynamics with multiple modalities
(Pasut et al., 2013; Wang Y. X. et al., 2019). Single fiber studies
utilizing transgenic mice have been used to help unravel the
transcription factors and molecular mechanisms regulating SC
activation (Beauchamp et al., 2000; Kuang et al., 2007), polarity
(Le Grand et al., 2009; Dumont et al., 2015), and symmetric
divisions (Wang Y. X. et al., 2019). Intact single fiber studies
have also enabled role of MyHC isoform on contractile properties
(Bottinelli et al., 1996; Harridge et al., 1996) and the factors
regulating muscle fatigue to be assessed (Westerblad and Allen,
1991; Westerblad et al., 1993). Single myofibers can also be used
to assess multiple aspects of muscle physiology includingfactors
regulating excitation-coupling (Allen et al., 1997; Prosser et al.,
2010), genetic regulators of calcium-handling and t-tubule
stability (Al-Qusairi et al., 2009; Kerr et al., 2013), membrane
resealing in response to injury (Bansal et al., 2003; Sreetama
et al., 2018), glucose uptake in response to electrical stimulation
(Castorena et al., 2015) and insulin (Lanner et al., 2006), and
to study mitochondrial function (Schuh et al., 2012). Single
fiber studies have been pivotal to increasing our understanding
of muscle physiology and permit in vitro testing of muscle
fibers with adult ultrastructure and function. Importantly, the
described 2D and 3D studies below are yet to replicate the
developmental maturation and contractile function of the single
fiber system. However, both explant and single fiber preparations
are technically challenging, have limited experimental duration,
are difficult to scale up for high throughput screening, and
require continual new samples – making large-scale experiments
in human tissues infeasible.

Traditional Two-Dimensional Models
The alternative method to single fiber culture models is to
liberate satellite cells from their niche by enzymatic dissociation
or permitting them to “outgrow” from partially minced muscle
tissue. This method results in heterogenous cell populations
found within skeletal muscles that can be further purified by
cell surface marker expression (Maesner et al., 2016; Uezumi
et al., 2016) by taking advantage of the faster adhesion kinetics
of fibroblasts to enrich for muscle progenitor cells by pre-
plating (Gharaibeh et al., 2008). Satellite cells isolated by this
method rapidly activate and become myoblasts or muscle
precursor cells (MPCs) characterized by increased expression
of MyoD, and decreased expression of Pax7 (Ryall et al.,
2015). The functional impact of this SC activation is the

Frontiers in Physiology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 619710

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-619710 February 22, 2021 Time: 19:15 # 3

Khodabukus Tissue-Engineered Skeletal Muscle Models

dramatically impaired ability of these cultured cells to engraft in
skeletal muscle upon transplantation, with just 72 h in culture
decreasing engraftment efficiency threefold (Montarras et al.,
2005). To minimize activation of these cells, small molecules
(Charville et al., 2015), culture substratum stiffness (Gilbert
et al., 2010), and regulating metabolic fuel source (Ryall et al.,
2015) have been described to maintain MPCs in a more stem-
like state. Alternatively, a quiescence media and culture system
has been developed that can maintain SCs in a quiescent-like
state but cannot reverse activated cells into a quiescent state
(Quarta et al., 2016).

After expansion, MPCs can be induced to differentiate
by reduction of serum content that induces cell cycle
withdrawal, upregulation of differentiation genes, and
ultimately fusion into multi-nucleated myotubes. Due to
the rapid rate (48–96 h) of fusion and ease of the system,
this model is the most frequently used system to assess the
impact of genetic manipulations, growth factors, or small
molecules on muscle differentiation and fusion. However,
the assessment of longer-term (<7 days) experimental
interventions are often prevented due to the detachment of
myotubes due to spontaneous contractions of developing
myotubes (Cooper et al., 2004). Furthermore, this detachment
limits the developmental maturation of the tissue cultures,
limiting the translation relevance of experimental findings
(Rao et al., 2018). Lastly, the assessment of contractile
function, the primary measure for therapeutic efficacy, is
not permitted by traditional two-dimensional culture preventing
functional assessments.

Engineered Skeletal Muscle Models
To overcome the limitations of 2D cell culture, several 3D skeletal
muscle culture models have been developed over the past 30 years
(Khodabukus et al., 2018; Wang J. et al., 2019). Two culture
methods have been predominantly utilized: (1) hydrogel and (2)
self-organized/assembled tissues (Figure 1). Both methods aim
to create a biomimetic muscle microenvironment that provides
cells with the appropriate extracellular matrix (ECM) and the
biological and mechanical signals to promote rapid muscle
development, maturation, and function.

Hydrogels
The majority of engineered tissues are generated from three-
dimensional hydrogels derived from natural ECM proteins such
as collagen and fibrin. Hydrogels should: (1) provide a high
surface area for cell adhesion, (2) provide mechanical support
and/or topical guidance to maximize, (3) minimize diffusion
distances, and (4) fully degrade once sufficient cell-derived ECM
is deposited to generate densely packed muscle tissue supported
by its own ECM. Hydrogel based tissues are typically formed from
expanded MPCs that are embedded at high density within or on
top of these hydrogels. The hydrogels are cast between two fixed
anchor points that enable cellular forces to remodel the hydrogel
and maintain the tissues under tension that promotes tissue
alignment, rapid fusion, and muscle hypertrophy (Vandenburgh
et al., 1988; Khodabukus et al., 2018; Wang J. et al., 2019).

Collagen
The first 3D engineered tissues utilized Type I collagen hydrogels
(Vandenburgh et al., 1988; Okano and Matsuda, 1997, 1998;
Shansky et al., 1997; Powell et al., 2002), due to Type I collagen
being the most abundant ECM protein in skeletal muscle (Kjaer,
2004). Whilst these studies initially utilized the C2C12 cell line,
this method has successfully generated tissues from primary
rodent (Vandenburgh et al., 2008; Lee and Vandenburgh, 2013)
and human (Powell et al., 2002; Brady et al., 2008; Gholobova
et al., 2015) cells. While collagen I is the most abundant ECM
in skeletal muscle, excessive collagen levels are associated with
poor regeneration and function of native muscle (Stearns-Reider
et al., 2017). In native muscle, myofibers directly interact with the
basal lamina which is rich in collagen IV and laminin but not
type I collagen (Thorsteinsdottir et al., 2011). To better model
native muscle structure, collagen hydrogels can be combined
with MatrigelTM, a commercially available basal lamina extract
isolated from murine Engelbreth-Holm-Swarm tumors, at the
time of tissue formation. Collagen-matrigel hydrogels improve
muscle structure but still generate lower contractile forces
than fibrin based tissues and consequently are being used less
frequently for studies measuring contractile function (Hinds
et al., 2011; Sato et al., 2011).

Fibrin
Fibrin is the major structural component of blood clots that
functions to first prevent bleeding and then be completely
remodeled, resorbed, and replaced over time making it an ideal
substrate for tissue engineering (Ahmed et al., 2008). The main
disadvantage of fibrin is the significant lot-to-lot variability in
tissue function and gel degradation rate which can be overcome
by lot testing and regulation of fibrinolysis with cross-linkers
and anti-fibrinolytics, respectively (Khodabukus and Baar, 2009).
Tissues engineered from fibrin alone have specific contractile
force generation significantly higher than collagen-matrigel
tissues (Huang et al., 2005, 2006) and can be further enhanced
by the addition of matrigel to generate engineered muscle tissues
with the highest reported contractile function (Hinds et al., 2011;
Juhas et al., 2014; Madden et al., 2015; Khodabukus et al., 2019).
The increase in force generation is due in part to fibrin being
several orders of magnitude less stiff than collagen (Collet et al.,
2005; Yang et al., 2007) and fibrin gels having muscle-like stiffness
(Chiron et al., 2012). Substrate stiffness is a key regulator of tissue
dependent gene transcription programs (Engler et al., 2006), with
muscle-like stiffness increasing myogenic gene expression and
promoting muscle maturation (Engler et al., 2004).

Scaffold-Free/Self-Assembled Muscle
Tissues
An alternative approach to the use of hydrogels/scaffolds is to
allow cells to secrete their own ECM and self-organize into a
3D tissue. The first self-organized engineered muscle used saran
wrap substratum upon which MPCs were seeded with fibroblasts
to ensure sufficient ECM deposition to enable tissue self-assembly
(Strohman et al., 1990; Li et al., 2011). This model was then
improved by seeding cells onto a PDMS substratum coated with

Frontiers in Physiology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 619710

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-619710 February 22, 2021 Time: 19:15 # 4

Khodabukus Tissue-Engineered Skeletal Muscle Models

FIGURE 1 | Methods to engineered functional skeletal muscle. Schematic depicting various skeletal muscle models. (Top) Single fibers with satellite cells retained
within their niche are isolated by enzymatic and mechanical dissociation. Single fibers can be cultured for up to 120 h and satellite cell activation assessed by
evaluating Pax7 and MyoD expression or resistance to injury susceptibility assessed with laser-induced membrane damage. (Middle) Scaffold engineered muscles
are created by embedding muscle progenitor cells at high density in a hydrogel. Cells remodel the hydrogel to generate 3D tissues packed with aligned functional
myotubes. (Bottom) Scaffold-free engineered muscles created by seeding a monolayer of cells on laminin coated plates. The cells secrete sufficient ECM and
progressive lift off the plate or “delaminate” and roll up to generate small 3D tissues. Both scaffold and scaffold-free tissues can be utilized for multiple assays with
multiple functional output for up to 4 weeks.

laminin to support cell adhesion and reduce the number of
fibroblasts required to generate sufficient ECM to support tissue
formation (Dennis and Kosnik, 2000; Dennis et al., 2001; Kosnik
et al., 2001; Larkin et al., 2006a,b). Further improvements to
this model by utilizing aligned micropatterned surfaces to both
quicken myoblast fusion and myotube alignment resulted in
greater muscle differentiation (Lam et al., 2009). More recently,
self-organized muscle cell sheets have been generated using
the thermoresponsive polymer poly(N-isopropylacrylamide)
(Takahashi and Okano, 2015; Takahashi et al., 2018). The
cell sheets can be detached from culture plates by lowering
temperature and used to engineer multi-layered tissue sheets
comprised of muscle, vascular, or neuronal cells (Nagamori et al.,
2013; Ngo et al., 2013; Takahashi et al., 2013). The benefits of
these self-organized models are the tissues being encased entirely

in cell secreted ECM and circumventing the lot variability of
commercially available ECM proteins. However, the longer time
to tissue formation and the inability of this model to easily
be automated have resulted in hydrogel methods being more
frequently used. A further limitation of self-assembled tissues is
the small tissue size which hinders translational studies, though
the ability to stack cell sheets or engraft multiple tissues together
may overcome this issue.

Tissue-Engineered Muscle Function
Tissue engineered muscles replicate basic muscle contractile
physiology such as force-length relationships and positive force-
frequency relationships (Dennis and Kosnik, 2000; Huang et al.,
2005; Hinds et al., 2011). However, their twitch:tetanus ratio,
contractile kinetics (i.e., time to peak tension and half-relaxation
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time), and specific force generation are more consistent with
embryonic and neonatal skeletal muscle values (Close, 1972).
The developmentally immature contractile properties reflect the
developmentally immature transcriptome and protein isoform
expression seen in engineered tissues. While myotubes with
engineered tissues have more mature gene expression and
greater hypertrophy than myotubes cultured in 2D and undergo
progressive hypertrophy in culture (Rao et al., 2018), even after
4 weeks of culture myotubes resemble developmentally immature
or long-term denervated fibers (Kern et al., 2004). As discussed
below, the incorporation of additional cell types and electro-
mechanical stimulation can further increase muscle hypertrophy
and contractile function. However, significant advances are
required to generate adult-like engineered muscles within the
shortened timeframe that would be most attractive to researchers.

SKELETAL MUSCLE MODELS FOR
STUDYING MUSCLE GROWTH AND
PLASTICITY

Skeletal muscle has a remarkable level of plasticity that enables
muscle to adapt to several physiological stressors such as changes
in contractile activity, mechanical load, nutritional state, and
hypoxia. Studying these processes in isolation in vivo is extremely
difficult and confounding factors can hinder interpretation
of the results. As discussed below, tissue-engineered skeletal
muscle models have the potential to study many of these
factors in isolation to not only better understand these
mechanistic processes but to further enhance the maturation of
engineered muscle tissues.

Skeletal Muscle Fiber-Types
Skeletal muscle can be classified as type 1 slow-twitch (ST) or
type 2 fast-twitch (FT) fiber types based on myosin heavy chain
(MYH) isoform expression. While ST fibers express type I myosin
(MYH7), FT fibers can be further classified into three subtypes,
IIa (MYH1), IIx (MYH2), and IIb (MYH4), resulting in four
fiber-type classifications. However, Type IIb fibers which possess
the fastest contractile phenotype, are absent in human skeletal
muscle resulting in humans only possessing three fiber-types
(Schiaffino, 2010). During development and muscle regeneration,
the embryonic (MYH3) and neonatal (MYH8) MYH isoforms are
sequentially expressed before being down regulated and replaced
by the adult MYH isoforms (Chargé and Rudnicki, 2004).
Importantly, approximately 25% of muscle fibers are “hybrid”
and express two or more MYH isoforms that arise to provide
a functional continuum for optimal contractile performance or
reflect transitionary states during development and regeneration
(Medler, 2019). In addition to MYH isoform, slow and fast
isoforms of multiple sarcomeric and calcium-handling proteins
are found in a graded fashion in fiber-types to regulate speed of
contraction. Functionally, slow contractile and calcium-handling
isoforms result in slower contractile kinetics and importantly
permit more energy efficient contraction by utilizing less ATP
to generate equivalent contractile forces than fast muscle fibers
(Bottinelli et al., 1994; Stienen et al., 1996). Additionally, ST fibers

possess sarcomeric isoforms of titin, nebulin, and myomesin
that contribute to the increased width of the z-disk and help to
stabilize muscles during muscle contraction (Yamaguchi et al.,
1985; Agarkova et al., 2004; Prado et al., 2005) (Figure 2).
Functionally, these adaptations result in ST fibers being less prone
to contraction-induced muscle damage (Choi and Widrick, 2010)
and contribute to the increased disease severity of FT fibers seen
in Duchenne muscle dystrophy (Webster et al., 1988). Lastly,
type I and IIa fibers are characterized by high mitochondrial
content, increased myoglobin levels, and high capillary density to
maximize oxygen delivery to support more oxidative metabolism.
Importantly, mitochondrial specialization occurs between fiber-
types with mitochondria in ST fibers adapted to maximize
fatty acid oxidization and reduced mitochondrial transition pore
opening to prevent cell death due to the chronically elevated
calcium levels in ST fibers (Picard et al., 2012). In contrast,
mitochondria in FT fibers have a 10-fold greater ability to oxidize
of glycerol-3-phosphate to help maintain a balanced redox state
(Picard et al., 2012). ST fibers also have increased reactive
oxygen species scavenging capacity due in part to increased
antioxidant enzyme levels (Loureiro et al., 2016) and increased
NADPH generation due to increased isocitrate dehydrogenase
two expression and consequent regulation of the tricarboxylic
acid cycle (Murgia et al., 2015).

Over the past 30 years, significant advances in elucidating
the complex molecular and transcriptomic regulation of fiber-
type have been achieved. A combination of epigenetic imprinting,
neuronal activity, oxygen tension, environmental factors, and
metabolic and hormonal influences regulate signaling pathway
cascades and transcription factor activity (Hoppeler, 2016).
A key regulator of fiber-type specification is intracellular calcium
concentrations, with slow tonic motor neuron activity promoting
sustained elevated calcium levels that activate calcineurin and
calmodulin kinase (Meissner et al., 2001; Kubis et al., 2003).
This activation then results in increased activity of NFAT
(Swoap et al., 2000; Kubis et al., 2002, 2003; Mccullagh
et al., 2004; Calabria et al., 2009; Ehlers et al., 2014) and
MEF2 (Wu et al., 2000), and decreased class II HDAC
activity (Potthoff et al., 2007) to promote slow sarcomeric and
oxidative metabolism gene expression. The four isoforms of
NFAT contribute to muscle fiber-type with NFATc1-4 expressed
in ST fibers, NFATc2-4 expressed in type IIa fibers, and
IIb fibers only expressing NFATc4 (Calabria et al., 2009).
In addition to regulation by calcineurin, the transcription
factor Prox1 increases expression of NFATc1-3 (Kivela et al.,
2016), represses multiple members of the fast transcription
program (Petchey et al., 2014), and is required for typical
slow fiber distribution. Elevated calcium levels also promote
mitochondrial biogenesis and oxidative phosphorylation via
activation of the transcription factors PGC1α, PGC1β, PPARβ,
and PPARδ (Jornayvaz and Shulman, 2010; Phua et al., 2018).
Overexpression of PGC1α (Handschin et al., 2007; Rasbach
et al., 2010; Summermatter et al., 2012), PPARβ (Schuler
et al., 2006), and PPARδ (Wang et al., 2004) result in fast-
slow fiber type and alter sarcomeric and calcium-handling
gene expression demonstrating the interrelationship between
metabolism, calcium-handling, and sarcomeric transcriptome.
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FIGURE 2 | Structural differences between slow and fast-fiber type muscles. (A) Schematic depicting gross morphological differences between slow and fast
skeletal muscles. Note the higher levels of mitochondria and capillary density associated with slow skeletal muscles. (B) Sarcomeric gene specialization and
enrichment in slow and fast myofibers.

Additionally, overexpression of TEAD1, a member of the Hippo
pathway, induces fast-to-slow fiber type conversions (Tsika
et al., 2008). Conversely, a slow-to-fast transition occurs in
the presence of thyroid hormone (Zhang et al., 2014) or
deletion of VGLL2 (Honda et al., 2017) by disruption of
TEAD1. Whilst the molecular transduction pathways leading
to fast muscle fiber-types are less well characterized, genetic
regulation of fast muscle fiber-type is well established. Fast
muscle fiber neural input is linked to increased HIF1α

content (Lunde et al., 2011), which is known to increase
glycolytic gene expression, and decreased MyoD phosphorylation
(Ekmark et al., 2007). MyoD is enriched in fast muscle
fibers (Hughes et al., 1997) and repressed by the key slow-
fiber type regulator NFATc1 (Ehlers et al., 2014) but its
deletion only results in mild fiber-type switching suggesting
that, whilst important, MyoD is not a master regulator of fast-
fiber transcription. The master regulators of the fast muscle
program are the Six1, Six4, Eya1 transcription factor complex
which promote fast muscle gene expression (Grifone et al.,
2004; Niro et al., 2010) and the transcriptional repressor
Sox6 which inhibit slow muscle gene expression and increases
fast muscle gene expression (Hagiwara et al., 2005, 2007; An
et al., 2011; Quiat et al., 2011; Wang et al., 2011; Sakakibara

et al., 2014). In humans, increases in fast muscle fiber-
types are seen in donors with polymorphisms in HIF1α that
increase HIF1α transcriptional activity (Ahmetov et al., 2008).
Similarly, polymorphisms that decrease levels of the fast-fiber
specific z-disk protein α-actinin3 are associated with increased
calcineurin activity and endurance performance indicating
that regulators of muscle fiber type can regulate human
muscle performance (Yang et al., 2003; Eynon et al., 2012;
Seto et al., 2013).

Role of Neural Input on Muscle Fiber
Type in vivo
Complete muscle development and maintenance of adult muscle
mass and fiber-type requires functional innervation. A key
difference between slow and fast fiber-types is the motor input
received with the frequency neural impulses differing between
slow (10–30 Hz) and fast (50–100 Hz) muscle fibers (Hennig
and Lomo, 1985; Eken et al., 2008). Additionally, slow fibers
are active for greater periods of time and receive a far higher
number of neural impulses per day than fast muscle fibers.
The predominant role of neural input in regulating muscle
fiber-type was first described in 1960 (Buller et al., 1960) and

Frontiers in Physiology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 619710

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-619710 February 22, 2021 Time: 19:15 # 7

Khodabukus Tissue-Engineered Skeletal Muscle Models

detailed in multiple elegant studies in the 1960s and 1970s
(Close, 1969; Barany and Close, 1971; Hoh, 1975). Specifically,
the contractile properties of slow muscles become faster when
reinnervated by a fast nerve and fast muscles become slower
when reinnervated by a slow nerve. The second series of studies
used implanted electrodes to determine the role of stimulation
frequency, work:rest ratio, and contractile impulse numbers in
directing contractile kinetics and fiber-type shifts (Salmons and
Sreter, 1976; Eberstein and Pachter, 1986; Eken and Gundersen,
1988; Gorza et al., 1988; Westgaard and Lomo, 1988; Windisch
et al., 1998). The seminal finding of these studies is that neural
input firing pattern is the predominant neural factor regulating
muscle fiber-type and not secreted neurotrophic factors (Salmons
and Sreter, 1976). Overall, these studies showed that increasing
stimulation frequency, decreasing the work:rest ratio, and
decreasing the total number of delivered impulses resulted in
shifts to a faster-fiber type. Critically, both experimental models
revealed that each individual muscle has an “adaptive range”, the
degree of plasticity is species dependent, and long time periods
(>3 months) are required for more definitive fiber-type changes.
This adaptative range can be expanded by thyroid levels, with
hypothyroidism and hyperthyroidism promoting greater slow
and fast fiber-type shifts respectively (Kirschbaum et al., 1990;
Caiozzo et al., 1998, 2000; Di Maso et al., 2000; Zhou et al.,
2019). Overall, the typical adaptive ranges of mouse ST fibers
permit expression of type I, IIa, and IIx but not IIB fibers, while
mouse FT fibers can express Type IIa, IIx, and IIB fibers but
not type I fibers.

Role of Neural Input on Muscle Fiber
Type in vitro
The role of distinct neural inputs can be studied in culture
by field electrical stimulation without potential confounding
effects such as regenerative ability, compensatory hypertrophy,
and animal locomotion. In 2D cultures, these studies have
demonstrated that slow or fast-like stimulation patterns can
increase isoform specific sarcomeric and calcium-handling
proteins, and induce muscle hypertrophy (Wehrle et al., 1994;
Hamalainen and Pette, 1997). The number of impulses and
period of contractile activity must be regulated to prevent
detachment of contracting myotubes in 2D culture. In contrast,
in engineered muscle tissues the 3D environment supports
tissue contraction and permits long-term electrical stimulation.
However, long-term field electrical stimulation can induce
electrochemical damage resulting in tissue damage and ultimately
cell death. Electrochemical damage can be minimized by utilizing
bipolar impulses and optimizing impulse parameters (i.e., electric
field and pulse width) based on tissue excitability to enable
adult-like long-term, chronic electrical stimulation without
electrochemical damage for at least 2 weeks (Donnelly et al.,
2010; Khodabukus and Baar, 2012, 2015c). Clinically, rheobase
and chronaxie have been utilized to prevent tissue damaged
in chronically denervated patients undergoing neuromuscular
electrical stimulation (NMES) therapy (Pieber et al., 2015). The
excitability of engineered tissues are similar to that of long-
term denervated muscle and thus have potential to be used

as an in vitro model to study factors regulating excitability
and to screen factors that promote muscle excitability (Dennis
and Dow, 2007; Khodabukus and Baar, 2012). In patients,
NMES results in increased muscle cross-sectional area and tissue
functionality in long-term denervated tissue (Boncompagni et al.,
2007; Kern et al., 2010; Kern and Carraro, 2014; Carraro
et al., 2015). In engineered muscle tissues, electrical stimulation
increases force generation, muscle hypertrophy, and MHC and
dystrophin protein levels in engineered tissues (Huang et al.,
2006; Khodabukus and Baar, 2012, 2015c; Ito et al., 2014;
Khodabukus et al., 2015, 2019). Like native muscle (Baar and
Esser, 1999; Terzis et al., 2008; Drummond et al., 2009), these
increases in muscle hypertrophy are associated with increased
mTORC1 activity and can be inhibited by the mTOR inhibitor
rapamycin. These studies also show that electrical stimulation
of engineered muscle tissues for 1 or 2 weeks does not induce
transformative changes in muscle size and that additional factors
and/or time are required to attain adult muscle size.

To date, relatively few studies have determined the fiber-
type impacts of different electrical stimulation protocols on
engineered tissue function. The first study showed differential
functional responses between muscles engineered from cells
isolated from fast and slow muscles when electrically stimulated
with biomimetic fiber-type neural input protocols (Huang
et al., 2006). Specifically, engineered slow tissues increased force
generation but did not alter their contractile kinetics in response
to slow-fiber mimetic electrical stimulation. In contrast, slow-
fiber mimetic stimulation in TA tissues did not increase force
generation but did slow contractile kinetics. The fast fiber-
type protocol did not change any parameters in either slow
or fast engineered tissues, potentially due to the number of
contractions being insufficient to induce functional changes or
the lack of factors such as T3 which are critical for the fast-
fiber type program. Human engineered tissues increase force
generation and hypertrophy when subjected to a fast-like periodic
intermittent electrical stimulation protocol with slow-like 1 or
10 Hz frequencies (Khodabukus et al., 2019). The 10 Hz but
not the non-physiological 1 Hz protocol induced a quickening
of half-relaxation time which was associated with increased fast
CSQ and SERCA gene expression indicating that initial fiber-type
shifts can be studied in human tissues. To date, the greatest fiber-
type shift has been shown in C2C12 tissues where the role of
contraction duration in inducing a slow fiber-type transition was
defined (Khodabukus et al., 2015). When keeping the stimulation
frequency, work:rest ratio, and total number of impulses received
per day consistent, contraction lengths of greater than 6 s were
required to induce more complete fast-to-slow MYH shifts.
Fast-to-slow isoform switching of each troponin isoform, CSQ,
and SERCA were independent of contraction length changes,
suggesting differential regulation of MYH and other contractile
proteins. These changes in protein abundance correlated to
functional changes, with the slow electrical stimulation paradigm
inducing slowing of contractile kinetics and increased fatigue
resistance. Overall, these studies demonstrate the ability of
engineered muscle tissues to study the fiber-type changes induced
by electrical stimulation. However, while generation of slow fiber-
types has been demonstrated, further optimization of the culture

Frontiers in Physiology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 619710

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-619710 February 22, 2021 Time: 19:15 # 8

Khodabukus Tissue-Engineered Skeletal Muscle Models

conditions and electrical stimulation protocols are required to
generate fast fiber-type tissues.

Motor Innervation of Engineered Muscle
Tissues
While field electrical stimulation can mimic neural input,
it does not faithfully recapitulate EC-coupling or model the
complex physical and chemical interactions between muscle
and nerves. Motor innervation is essential for complete muscle
development and maintenance of muscle mass and defects in the
neuromuscular junction (NMJ) result in multiple neuromuscular
diseases such as myasthenia gravis (MG) and amyotrophic lateral
sclerosis (ALS) (Rudolf et al., 2016; Cappello and Francolini,
2017). The first reports of NMJ formation were reported over
40 years in co-cultures of Xenopus myoblasts and embryonic
neurons (Anderson and Cohen, 1977; Anderson et al., 1977).
Similar studies utilizing rodent cells show markers of muscle
maturation such as fetal to neonatal MHC isoform transitions,
increased sarcomere structural maturation, and acetylcholine
receptor (AchR) clustering (Das et al., 2007, 2010; Guo et al.,
2010). However, in these studies AchR clustering does not co-
localize with nerve terminals, as seen in embryonic development
(Witzemann, 2006), the NMJs fail to replicate mature pretzel-
like morphology, and no definitive evidence of electrical
transmission provided suggesting incomplete NMJ development
and maturation. In the past decade, substantial progress has
been made in generating motor neuron-like progenitors from
hiPSCs to permit studies utilizing human cells (Patani et al., 2011;
Amoroso et al., 2013; Faravelli et al., 2014; Sances et al., 2016).
These cells when co-cultured with primary or hiPSC-derived
myotubes demonstrate AchR clustering but more importantly
show functional NMJ formation (Demestre et al., 2015; Puttonen
et al., 2015; Toli et al., 2015). Specifically, motor neuron-induced
muscle contraction can be induced by specific motor neuron
glutamatergic excitation by glutamate or N-Methyl-D-aspartate
or inhibited by tubocurarine, an anti-cholinergic drug that
prevents neural transmission (Figure 3E). Alternatively, muscle
contraction can be induced optically by transduction of motor
neurons with the light-sensitive ion channel channelrhodopsin2
(ChR2) (Steinbeck et al., 2016). Expression of ChR2 permits
specific optical activation of motor neurons with blue light and
subsequent myotube contraction if functional NMJs are present.
Importantly, the use of hiPSCs allows the modeling of multiple
human neuromuscular disease such as MG, spinal muscular
atrophy (SMA), and ALS which would not be possible due to
the post-mitotic state of adult motor neurons (Dimos et al., 2008;
Ebert et al., 2009; Sances et al., 2016).

The first 3D tissue engineered muscle motor-neuron co-
cultures utilized neonatal rat MPCs and embryonic spinal cord
explants (Larkin et al., 2006b). Neural projections from the
explants extended into the engineered muscle and preserved their
structure to enable neural specific stimulation of the resulting
tissue. Spinal explants increased force generation, ∼25% of
which could be achieved by direct neural stimulation, indicating
incomplete innervation of all myotubes and/or the presence
of non-functional NMJs. Mixing of rat motor neurons with

rat MPCs at time of tissue formation also results in improved
contractile force and muscle structure, though the level of
functional NMJ generation was not tested (Martin et al., 2015).
Incorporation of hiPSC-derived neurospheres, that contain
motor neurons and other supporting cell types, into primary
human engineered muscle tissues results in successful generation
of innervated myotubes as assessed by glutamate stimulation
(Afshar Bakooshli et al., 2019) (Figures 3A,B). Neurosphere co-
culture also resulted in shifts to more developmentally mature
AchR subunit expression and more adult-like AchR structure
then that seen in 2D cultures. While motor neuron-muscle
co-cultures clearly increase functionality and muscle structure,
it is still unclear what effects are due to increased contractile
activity and secreted neurotrophic factors. The synaptogenic
factor agrin can induce AchR formation, AchR clustering, and
increase force generation almost 2-fold (Bian and Bursac, 2012).
Similarly, the neurotrophic factor neuregulin-1 induced AchR
subunit isoform maturation though its role in regulating muscle
function unknown (Afshar Bakooshli et al., 2019). The most
recent models to study NMJ formation in 3D tissues utilize neural
cells and engineered muscle tissues in two distinct modular
compartments (Figures 3C,D). These compartments are then
attached by a collagen gel bridge that supports and guides
neural cell migration and neurite extension into the engineered
muscle tissue. Importantly, specific activation of the neural
compartment can induced optogenetically by overexpression of
ChR2 and engineered muscle contractile function assessed by
pillar deformation (Uzel et al., 2016; Osaki et al., 2018b; Vila et al.,
2019). Thus in the presence of functional NMJ formation, optical
stimulation of the neural compartment induces contraction of the
engineered muscle compartment. These models have been used
to successfully model impaired NMJ function in ALS and MG
(Osaki et al., 2018b; Afshar Bakooshli et al., 2019; Vila et al., 2019)
and to identify and validate prospective clinical drug candidates
such as rapamycin and bosutinib for ALS (Osaki et al., 2018b).
Overall, significant progress has been made with innervation of
engineered muscle tissues over the past 5 years and they possess
great potential as more biomimetic models for muscle disease
and development. However, significant improvements in NMJ
maturation are still required as well as more detailed assessment
of NMJ electrophysiology, structure, and function.

Effect of Cell Source on Fiber-Type
A fundamental question underlying muscle plasticity is if the
satellite cells that make typically slow (e.g., SOL) or fast (e.g.,
tibialis anterior) muscle fibers are distinct and predisposed to
generate a specific fiber-type. As discussed above, the adaptive
ranges of muscle fibers suggest that fiber-type is predetermined.
Slow fiber-type muscles contain a higher level of satellite cells
than fast fiber type tissues (Gibson and Schultz, 1982; Putman
et al., 2001; Mackey et al., 2009). This difference is further
exacerbated with aging due to a greater loss of SCs in fast muscle
fibers (Verdijk et al., 2007, 2014), which correlates to the greater
loss of function seen in fast muscles in sarcopenia (Deschenes
et al., 2013; Purves-Smith et al., 2014). Satellite cells isolated
from slow-fiber type muscles have increased transplantation
efficiency and thus are likely more translationally relevant for
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FIGURE 3 | Tissue-engineered neuromuscular junction (NMJ) models. (A) Traditional co-culture NMJ models where single MNs or neurospheres are embedded with
muscle cells at the time of tissue formation. (B) Representative image of the co-culture NMJ model (Afshar Bakooshli et al., 2019) with immunofluorescent staining of
neurite extensions (SMI32), acetylcholine receptors [α-bungarotoxin (BTX)] and muscle sarcomeres [sarcomeric α-actinin (SAA)]. Scale bar, 200µm. (C) Modular NMJ
muscle model where motor neurons (MNs) and engineered muscle tissues are cultured in separate compartments and connected by a collagen gel which supports
neurite extension. (D) Representative image of the modular NMJ model (Osaki et al., 2018b) with immunofluorescent staining of neurite extensions (TUJ1) and
myotubes [filamentous(f)-actin]. Scale bars, 100 µm. (E) Schematic depicting pharmacological and genetic methods to assess neuromuscular junction (NMJ)
functionality in vitro.

future SC transplantation therapies (Collins et al., 2005). The
existence of intrinsic differences between satellite cells from
fast and slow muscles is further suggested by the finding that
electrical stimulation of regenerating slow SOL and fast EDL
muscles with the same slow stimulus pattern in the absence
of innervation leads to widespread slow MYH expression in

regenerated SOL but only limited expression of slow MYH
in regenerated EDL (Kalhovde et al., 2005). Additionally, the
altered MYH isoform profile of single fibers isolated from
long-term denervated slow and fast-fiber type muscles remain
distinct and do not converge to similar MYH isoform expression
(Patterson et al., 2006). Traditional 2D cell cultures of cells
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isolated from slow and fast muscles show preferential expression
of fiber-type MYH expression and displayed expected adaptive
ranges to fiber-like electrical stimulation (Wehrle et al., 1994;
Rosenblatt et al., 1996; DiMario and Stockdale, 1997). In 3D
culture, muscles engineered from MPCs isolated from rats
(Huang et al., 2006) or mice (Khodabukus and Baar, 2015a)
retain the contractile and metabolic properties of the muscles
from which they were derived. Specifically, expected isoform
shifts in multiple sarcomeric, calcium-handling, and metabolic
proteins are seen. However, due to the lack of neural input
these shifts are less distinct than seen in innervated adult
muscle fibers and more closely resemble long-term denervated
myofibers. Interestingly, these changes are linked to changes in
transcriptional master regulators such as Sox6 which is more
abundant in myotubes derived from fast muscles (Khodabukus
and Baar, 2015a). Overall, these studies demonstrate that the
satellite cells generating fast and slow muscles are distinct and
result in long-term differences in metabolism and function both
in vitro and in vivo.

Role of Mechanical Load on Engineered
Muscle Size and Function
Skeletal muscle function and size is dependent upon the load
placed upon it as evidenced by loss of muscle mass and
strength following immobilization, bed rest, spaceflight (Haddad
et al., 2006; Baldwin et al., 2013), and gain of muscle mass
and function with resistance exercise (Hughes et al., 2018;
Jorgenson et al., 2020). Mechanical load is modeled in vitro by
the application of stretch to tissue cultures using deformable
membranes (Sim et al., 2007; Pavesi et al., 2015) or custom-
made bioreactors (Dennis et al., 2009; Rangarajan et al., 2014)
to induce programmable levels of stretch in custom-made
regimes. Most studies utilize custom-made systems and unique
stimulation protocols that hinder comparisons between studies.
To date, in vitro mechanical stimulations of engineered muscle
have aimed to replicate: (1) the continual increase in muscle
length seen during development (ramp stretch/stimulation); and;
(2) muscle strain that occurs during locomotion and exercise
(cyclic stretch/stimulation). Ramp stretch results in concomitant
proliferation and differentiation of MPCs (Vandenburgh and
Karlisch, 1989) which may be due in part to the secretion
of the IGF-1 splice variant mechanogrowth factor (Cheema
et al., 2005). Application of ramp stretch for only 45 h induces
significant muscle hypertrophy and increases in contractile force
generation in C2C12 engineered tissues (Aguilar-Agon et al.,
2019). Applying both ramp and cyclic stretch induced significant
myotube hypertrophy in engineered human tissues (Powell et al.,
2002) and increased glucose uptake in avian tissues (Hatfaludy
et al., 1989). The seminal in vitro work of Vandenburgh
showed that cyclical stretch induces muscle hypertrophy and
increases protein and DNA content (Vandenburgh and Kaufman,
1979, 1981; Vandenburgh, 1982, 1988; Vandenburgh et al.,
1989, 1991). Like native muscle following resistance exercise
or altered mechanical load (Baar and Esser, 1999; Terzis
et al., 2008; Marabita et al., 2016), mechanical stimulation
induced hypertrophy of in vitro cultures is associated with

mTORC1 activation (Baar et al., 2000; Khodabukus et al., 2007;
Aguilar-Agon et al., 2019). Conversely, muscle atrophy can
be modeled by decreasing engineered tissue length to induce
decreases in myotube size and loss of contractile force (Lee
and Vandenburgh, 2013). Together, these studies demonstrate
that mechanical loading/unloading can model aspects of muscle
hypertrophy/atrophy and be used a model system to study
these processes. Similar to electrical stimulation studies, no
transformative breakthroughs in generating engineered tissues
with native-like muscle size or strength have been reported with
use of mechanical stimulation alone or in combination with
electrical stimulation (Liao et al., 2008).

Metabolic and Hormonal Control of
Muscle Fiber-Type in vitro
A key difference between fiber-types is the greater reliance
of fast-fiber type muscles on glycolysis and slow-fiber-type
muscle on oxidative phosphorylation to meet energy needs.
Muscles engineered from fast twitch muscle fibers have increased
levels of glycolytic enzymes and fatigue at a greater rate than
tissues generated from slow twitch muscle fibers (Khodabukus
and Baar, 2015a). Engineered C2C12 tissues cultured with
supraphysiological glucose levels promotes a fast fiber-type
contractile and metabolic phenotype, permits detectable levels
of the fast-fiber specific protein parvalbumin, and increased
levels of glycolytic proteins (Khodabukus and Baar, 2015b).
Whilst promising, accurate modeling and studying of oxidative
metabolism in vitro is hindered by the Crabtree effect where
in vitro cultured cells typically utilize glycolysis to generate
ATP despite the presence of abundant oxygen and functional
mitochondria (Crabtree, 1929; Marroquin et al., 2007). The
Crabtree effect can be circumvented by replacing glucose in
the cell culture media with galactose which forces cells to rely
on oxidative phosphorylation to meet their energy demands
due to galactose requiring 2 molecules of ATP to generate
pyruvate and thus producing 0 net ATP from anaerobic glycolysis
(Marroquin et al., 2007; Ryall et al., 2015). Galactose culture
of primary human myotubes increases mitochondrial enzyme
levels, increases basal and maximal oxygen consumption, and
increased phosphorylation of AMPK (Aguer et al., 2011) – which
when chronically activated results in a fast-to-slow fiber-type
transition (Ljubicic et al., 2011). Importantly, these adaptations
to galactose culture conditions were not seen in myotubes
derived from type II diabetics suggesting that true assessment
of metabolic dysfunction in diabetic myotubes may require
novel culture conditions (Aguer et al., 2011). In contrast, C2C12
cells do not respond to galactose culture conditions indicating
that modeling metabolism in immortalized cell lines should
be treated with caution (Elkalaf et al., 2013). Alternatively,
supplementing culture media with fatty acids has the potential
to promote oxidative metabolism and potentially promote a slow
fiber-type phenotype. However, in vitro cultures are prone to
lipotoxicity due to the low reliance on oxidative phosphorylation
and β-oxidation to meet energy demands. In agreement with this,
the saturated fatty acid palmitate is known to induce atrophy
(Bryner et al., 2012), insulin resistance (Yuzefovych et al., 2010),
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and cell death (Patkova et al., 2014) in myotubes. Addition of
polyunsaturated fatty acids (PUFAs) such as oleic, linoleic,
docosahexaenoic, and eicosapentaenoic acid can reduce or
prevent these negative cellular effects of palmitate (Bryner et al.,
2012; Yuzefovych et al., 2012; Lee et al., 2017; Woodworth-Hobbs
et al., 2017). Recently, oleic acid alone was shown to increase
MYH7 protein levels, mitochondrial mass, and increase maximal
respiration rate in human myotubes supporting the potential role
of fatty acids in promoting fiber-type shifts (Watanabe et al.,
2020). In contrast, promoting a fast fiber-type in vitro has proven
to be more difficult due in part to the fact that fast MYH
expression occurs in more mature muscles cultures (Cooper
et al., 2004). Lactate can increase fast MYH (MYH 1 and 4)
gene expression (Tsukamoto et al., 2018) and thyroid hormone
upregulates fast SERCA isoform expression (Thelen et al., 1997).
Overall, these studies show that fiber-type shifts can be studied
in vitro by modulation of fuel source and hormone availability but
advances in generating fast fiber-type changes are still required.

VASCULARIZATION OF ENGINEERED
MUSCLE TISSUES

Native skeletal muscle is highly vascularized to provide the
oxygen and nutrient supply required to support the high
metabolic demands induced by muscle contraction. Hypoxia and
impaired cell survival typically occur at a diffusion distance of
150–200µm from blood vessels or in culture media and limits
tissue-engineered muscle size (Gholobova et al., 2020a). Satellite
cell fate and muscle regeneration is also regulated by vasculature
(Abou-Khalil et al., 2009, 2010; Fu et al., 2015), with 50-80% of
satellite cells are in near or direct contact with capillaries (Verma
et al., 2018). Therefore, vascularized tissue-engineered skeletal
muscles are required for accurate modeling of native skeletal
muscle in vitro and effective cellular therapies in vivo.

Vascularization of tissue-engineered skeletal muscles has
typically been performed by the incorporation of vascular cells
at the time of tissue formation. A key technical limitation with
vascularized engineered muscle tissues are the incompatible
media requirements of muscle and vascular cells (Gholobova
et al., 2015). This has led to compromised media conditions that
result in suboptimal differentiation of muscle and/or vascular
cells than if cultured in isolation. A second technical limitation of
co-culturing muscle and vascular cells is the potential for vascular
cells to impede myoblast fusion. This issue can be overcome by
3D bioprinting techniques (Choi et al., 2019), the stacking of
muscle-only and vascular-only cell sheets (Nagamori et al., 2013),
culturing vascular and muscle cells in distinct compartments
(Osaki et al., 2018a), or the coating of vascular cells to
differentiated mature muscle tissues (Gholobova et al., 2020b).
The formation of stable vasculature requires the inclusion of
supporting cell types such as fibroblasts, pericytes, and/or smooth
muscle cells (Levenberg et al., 2005; Koffler et al., 2011; Perry
et al., 2017). Implantation of pre-vascularized engineered muscle
tissues with these supporting cell types accelerates vascular
anastomosis, increases blood vessel density, and tissue survival
compared to co-cultures alone. While the benefit of forming

vascular networks for implantation survival is well established,
to date no studies have shown increased muscle function,
increased muscle maturation, or enhanced SC quiescence in co-
cultured tissues in vitro. Additionally, the ability of these vascular
networks to enhance nutrient delivery and increase engineered
muscle size in vitro have yet to be shown.

MODELING AND TREATING MUSCLE
DISEASE

Over the last century, small animal models have been the
predominant experimental platform to study disease by genetic
manipulations, surgical procedures, or other interventions such
as changes made to diet and aging. These studies have given us the
majority of the insight we have into the underlying mechanisms
of disease and for identifying and pre-clinical validation of novel
therapeutics. When assessing all drugs entering clinical trials
for all diseases, the successful clinical translation is alarmingly
low – with less than 1% of identified drugs making it to the
clinic resulting in an estimated cost of $1 billion dollars per
drug (Hay et al., 2014). The underlying reasons for this low
level of success are multifactorial but include species-specific
differences in drug metabolism and toxicity (Dykens and Will,
2007; Shen et al., 2011), animal models not fully recapitulating
disease severity in humans (Yucel et al., 2018), animals not
accurately modeling human pharmacogenomics (Weinshilboum
and Wang, 2017), and epigenetic regulation of disease severity
(Lamar and Mcnally, 2014). The ability to generate functional
human tissue-engineered organs has potential to address some
of the limitations of animal studies and provide complementary
methods to improve successful drug clinical translation.

Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (DMD) is a fatal X-linked
recessive disorder that affects approximately 1 in 5000 male
births due to mutations in the dystrophin gene. Dystrophin
is part of the dystrophin-glycoprotein complex (DGC) that
functions to efficiently transmit contractile force to the ECM
and stabilize the sarcolemmal membrane during contraction to
prevent muscle damage. The increased susceptibility to muscle
injury due to compromised membrane stability and impaired
regenerative response of satellite cells results in constant cycles
of muscle degeneration and regeneration. Ultimately, this leads
to progressive muscle weakness, loss of ambulation, and fatal
respiratory failure by the age of 20. Currently, there is no curative
treatment with standard-of-care corticosteroid (prednisone and
deflazacort) therapy extending life expectancy up to the fourth
decade by delaying disease progression (Bushby et al., 2010).

The most widespread animal model of DMD, the mdx mouse
model, arose due to spontaneous mutation in exon 23 on
the dystrophin gene in C57/BL10 mice. Like DMD patients,
mdx muscles undergo consistent rounds of degeneration
and regeneration, display increased susceptibility to eccentric
contractions, and display abnormalities in SC function. However,
these mice do not show more severe disease phenotypes such
as severe muscle weakness, early mortality, cardiac dysfunction
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and only display significant fat and fibrotic replacement at
old age (20–24 months) (Yucel et al., 2018; Aartsma-Rus
and Van Putten, 2019). In the past two decades, additional
dystrophin-deficient mice have been generated on the C57/BL6
(e.g., mdxcv2−5) and on the DBA/2J backgrounds (Yucel et al.,
2018; Aartsma-Rus and Van Putten, 2019). The mdxcv2−5 mice
have mutations in a range of exons but still demonstrate
the lack of functional weakness seen in traditional mdx
model. In contrast, the hDMDdel45D2/mdx mouse displays a
stronger dystrophic phenotype and displays contractile weakness
potentially improving the efficacy of pharmacological therapeutic
validation studies (Coley et al., 2016; Young et al., 2017;
Van Putten et al., 2019). Mouse models that more accurately
replicate human disease severity have required knockout of both
dystrophin and utrophin (Deconinck et al., 1997; Grady et al.,
1997). These double knockout mice show severe functional and
regenerative defects in skeletal muscle, cardiac, and bone tissues.
Alternatively, knocking out the telomerase gene in mdx mice
(mdx/mTR) induces a more severe muscle (Sacco et al., 2010)
and cardiac (Mourkioti et al., 2013) disease phenotype. Together,
these double knockout mice provide more severe disease models
with which to study dystrophin deficiency and the efficacy of
novel therapeutics. Advances in genome editing have permitted
the generation of transgenic mice that model disease mutations
in human hotspots and allow the testing of gene therapies
in vivo. However, these mice do not replicate the significant
role that disease modifiers play in disease severity for DMD.
Multiple genetic and epigenetic modifiers have been shown
to significantly influence disease severity and corticosteroid
efficacy (Pegoraro et al., 2011; Flanigan et al., 2013; Lamar and
Mcnally, 2014; Bello et al., 2015). For example, latent TGF-β
binding protein 4 (LTBP4) and osteopontin, which modulate
TGF-β signaling, significantly impact disease progression and
efficacy of corticosteroid treatment (Bello et al., 2015), and
inhibition of TGF-β signaling reversing disease phenotypes
in vitro and in vivo (Choi et al., 2016). Therefore, high throughput
personalized in vitro muscle platforms that accurately model
pharmacogenomic responses will be required to generate high
fidelity and clinically predictive drug screens. The mdx mouse
model was used as the preclinical system to validate the current
standard of care drugs prednisolone (Hudecki et al., 1993)
and deflazacort (Anderson et al., 1996). More recently, these
models have been used to validate the antisense oligonucleotide
treatments eteplirsen (Mendell et al., 2013) which was approved
by the FDA in 2016 (Mendell et al., 2013; Stein, 2016; Khan et al.,
2019). The use of more severe mdx models in combination with
high fidelity human in vitro models may lead to more successful
clinical translation and drug discovery efforts.

To date, two 3D in vitro skeletal muscle models of DMD have
been reported using primary cells. The first utilized immortalized
dystrophic mouse myoblasts and identified 11 compounds that
increased contractile force generation (Vandenburgh et al., 2008).
More recently, engineered muscle sheets derived from human
primary DMD myoblasts demonstrated decreased fusion ability,
decreased myotube size, and produced less force compared
to healthy controls after 6 days in differentiation media
(Nesmith et al., 2016). Whilst promising, these studies did

not describe more mature disease markers such as evidence
of degeneration/regeneration, fibrosis or fat replacement or
increased susceptibility to contraction-induced injury that will
be critical to study DMD pathology and treatment efficacy
in vitro. Widespread in vitro personalized medicine models of
DMD or any other myopathy will require the use of hiPSC-
derived muscle due to the ethical considerations and proliferative
limitations of taking muscle biopsies from myopathic patients.
To date, the majority of hiPSC studies of DMD have been
performed in 2D cell culture. These studies have demonstrated
disease phenotypes such as calcium overload (Shoji et al.,
2015), fusion deficits, increased creatine kinase release (Young
et al., 2016), and elevated BMP/TGF-β signaling (Choi et al.,
2016). Interestingly, fusion deficits are not always seen in hiPSC
cultures and appear to be dependent upon media conditions
or cell surface marker selection that potentially prevent fusion
deficits (Hicks et al., 2018). Recently, a high throughput drug
screen in 2D iPSC-derived myotubes identified ginsenoside and
fenofibrate as factors that improved hiPSC myoblast fusion
in vitro and improved mdx morphology and function in vitro
(Sun et al., 2020). In addition to pharmaceutical screening,
engineered tissues can be used to optimize guide RNA design
for highly efficient and maximal functional return for CRISPR-
Cas9 mediated exon skipping in engineered DMD hiPSC-derived
cardiac tissues (Long et al., 2018). A further advantage of hiPSC
cell models is the ability to generate increasingly complex disease
models by the addition of multiple cell types. In particular, the
NMJ pathophysiology in DMD is poorly studied and has the
potential to be studied in hiPSC-derived tissues. The generation
of multi-cellular 3D muscle tissues holds promise for studying
complex tissue interactions in healthy and diseased states
(Maffioletti et al., 2018; Mazaleyrat et al., 2020). Overall, the iPSC-
derived disease models have significant potential for generating
personalized medicine platforms, disease specific drug screening,
and studying pathogenic cellular or organ-organ crosstalk in a
modular fashion.

Volumetric Muscle Loss
Skeletal muscle regenerative capacity can be overwhelmed by
extensive muscle loss seen with trauma, blast injuries, and
surgical resection. In animal models, this is typically modeled
by the surgical removal of 20-40% of muscle mass (Sicari et al.,
2014; Corona et al., 2017; Quarta et al., 2017). This level of muscle
loss results in irrecoverable loss of muscle function and mass
with fibrotic replacement of the lost muscle tissue (Corona et al.,
2016). In contrast, other injury models such as snake venom,
ischemia-reperfusion, crush, and repeated eccentric contractions
in healthy skeletal muscle typically result in return of function
1–2 months post injury. The incomplete muscle regeneration in
VML injuries is likely due to the ablation of muscle fibers and
their associated SCs, the loss of ECM and associated biochemical
and mechanical guidance cues, and the extensive and prolonged
inflammatory response to VML injury (Greising et al., 2017;
Aguilar et al., 2018; Corona et al., 2018; Larouche et al., 2018).
The only current clinical option for VML, autologous tissue
transfer, is ineffective due to high donor site morbidity and
graft failure. Recent clinical trials utilizing decellularized ECM,
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which promote vascularization and an anti-inflammatory healing
response, have shown limited therapeutic efficacy due to the
lack of significant de novo muscle formation necessitating novel
therapeutic approaches (Sicari et al., 2014).

Injection of satellite cells alone into VML injury models
does not support muscle regeneration, highlighting the need
for a satellite cell niche and myofiber guidance for successful
regenerative outcomes (Quarta et al., 2017). In non-VML
injury models, successful transplantation of SCs is increased by
delivering SCs within a native-like niche such as native myofiber
fragments (Marg et al., 2014) or tissue engineered muscle
constructs (Juhas et al., 2014). In VML injury models, injection
of satellite cells in combination with muscle resident cells
(which include endothelial cells and mesenchymal progenitors)
attached to artificially engineered muscle fiber scaffold results
in retention of SCs and functional regeneration of the injured
muscle (Quarta et al., 2017). Incorporating additional cell types
such as endothelial (Levenberg et al., 2005; Koffler et al., 2011;
Perry et al., 2017; Choi et al., 2019), neuronal (Das et al.,
2020; Kim et al., 2020), and immune (Juhas et al., 2018) cells
improves the survival of transplanted 3D engineered tissues due
a combination of cellular recruitment and paracrine signaling
to promote vascular and neural integration. The key limitation
in the clinical use of the engineered tissue replacements is
neural integration with the host. Implantation of engineered
muscle tissues and incorporation of the host nerve into the
implant increases implant contractile function and maturation
compared to time-matched in vitro controls (Borschel et al.,
2006; Dhawan et al., 2007; Williams et al., 2013; VanDusen et al.,
2014; Adams et al., 2017). In these studies, AchR clustering and
primitive NMJ synaptogenesis can occur in as little as 7 days post-
implantation but functional integration with the host system was
only seen 3 months post-implantation (Urbanchek et al., 2016).
Encouragingly, muscle innervation after VML injury treated
with satellite cell-containing construct was significantly enhanced
with exercise (Quarta et al., 2017), suggesting a possibility that
engineered muscle innervation could be optimized through
physical therapy. Importantly, the incorporation of exercise
following implantation of these tissues promotes improved
muscle recovery and host innervation of the resulting muscle
fibers (Quarta et al., 2017) – the key limitation in translating
engineered muscle to the clinic. Transplantation of engineered
muscle tissues results in their initial degeneration due to the loss
of nutrients and hypoxia. Generation of tissues that regenerate
in vitro not only enables the study of muscle regeneration in
controlled conditions but also correlates to tissue survival upon
implantation (Juhas et al., 2014, 2018). Tissues generated from
adult rat MPCs fail to regenerate in vitro but the addition
of macrophages supports in vitro regeneration and increased
regenerative ability and functionality upon implantation in vivo
(Juhas et al., 2018).

DISCUSSION

The recent advances and progress made in tissue engineering
more biomimetic muscle tissues has provided researchers a novel

model to complement traditional 2D cell culture and animal
models. Here, we have discussed the utility of these engineered
tissues to study muscle physiology, regeneration, exercise, and
disease. However, the highest functioning engineered muscle
tissues have the functionality of neonatal muscle tissue and do
not possess the developmental maturity of adult skeletal muscle
(Juhas et al., 2014; Khodabukus et al., 2019). Given that full mouse
and human muscle maturation requires 3 months and 18 years
respectively, methods to rapidly mature engineered muscle
tissues are required. Supraphysiological electrical stimulation
of engineered hiPSC cardiac tissues accelerates development to
achieve adult-like transcriptomic signatures and mitochondrial
levels in 4 weeks (Ronaldson-Bouchard et al., 2018). However, the
resulting contractile function was inferior to the highest reported
in the field demonstrating incomplete tissue maturation and
that paradoxically high tissue function does not always equate
to greater maturation. For skeletal muscle, the combined use
of electrical and mechanical stimulation, functional innervation,
small molecules, and appropriately timed biochemical signals will
be required to generate more developmentally mature tissues.

For engineered muscle tissues to be more widely utilized,
a shift to serum-free culture conditions is also required to
increase reproducibility and permit clinical translation of cellular
therapies. This is highlighted by the fact that geographical
origin of serum can impact the contractile kinetics and isoform
expression of calcium-handling proteins in engineered tissues
(Khodabukus and Baar, 2014). Furthermore, batch variations
in serum, matrigel, and fibrinogen induce significant functional
variations, further adding to reproducibility issues in and
between laboratories (Khodabukus and Baar, 2009). The use of
serum-free differentiation media utilizing commercially available
serum-free supplements such as Ultroser-G (Gawlitta et al., 2007;
Fujita et al., 2010) or N-2 (Rao et al., 2018; Khodabukus et al.,
2020) have demonstrated the muscle function and structure can
be maintained or even improved with serum-free supplements.
Further advances will also be required in the generation of more
physiologically relevant basal media to provide physiologically
relevant levels of saccharides, TCA derivatives, metabolites, and
hormones (Cantor et al., 2017). Similarly, the use of synthetic
or recombinant extracellular matrices will also be required
to improve reproducibility, improve toxicity studies, and for
successful clinical translation of cellular or engineered tissue
therapies (Nguyen et al., 2017). Lastly, the combinatorial use of
small molecules can also be used to enhance muscle function
(Selvaraj et al., 2019) but the ability to use these tissues for
additional drug screening may be limited due to toxicity issues
related to high concentrations organic solvents often used as
solvent vehicles.

The majority of studies on engineered muscle tissue function
are derived of cultures only containing muscle and contaminating
or added fibroblasts. While this enables the ability to isolate
muscle-specific effects, native muscle tissue is comprised of
multiple cell types that are required for complete muscle
development and function. The incorporation of motor neurons
(Osaki et al., 2018b; Afshar Bakooshli et al., 2019; Vila et al.,
2019), sensory neuron (Colon et al., 2017; Guo et al., 2017),
vascular (Levenberg et al., 2005; Perry et al., 2017), immune
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(Juhas et al., 2018), and other supporting cell types will be
required to generate more biomimetic engineered muscles.
Furthermore, the ability to generate multiple tissue types
and to couple them together will enable researchers to
study organ-organ crosstalk in a highly controlled and
regulated environment. These multi-organ or human-on-a-
chip systems are required for more physiologically relevant
drug screens and the identification of unexpected drug
toxicity (Maschmeyer et al., 2015; Oleaga et al., 2016; Skardal
et al., 2017; Vernetti et al., 2017). For drug screening
purposes, more high throughput systems such as 96 well
plate platforms using pillar deflection methods to record
force generation are required (Vandenburgh et al., 2008;
Mills et al., 2019). Additionally, identifying culture conditions
that prevent the Crabtree effect and promote the use of
oxidative phosphorylation to meet energy demands are
required to improve tissue maturation and better assay
mitochondrial toxicity – the most common factor for drug
toxicity (Dykens and Will, 2007; Marroquin et al., 2007).
Lastly, generation of clinically relevant muscle tissues for
VML injuries will require the combination of all factors
discussed above and novel approaches to promote rapid
neuronal and vascular host integration. Specifically, the
use of small molecules (Ko et al., 2013; Quarta et al.,
2016), innovative engineering and/or surgical techniques
(Borschel et al., 2006; Kim et al., 2015; Al-Himdani et al., 2017),
and physical rehabilitation therapy (Quarta et al., 2017) in
conjunction with novel methods to generate viable human size
tissues are essential for VML therapies.

Overall, tissue engineered muscle systems are a powerful
tool to study skeletal muscle function, development, plasticity,
and disease. These systems can be used for stand-alone
studies, add functional translational components, or be used
to supplement in vivo studies as 2D systems have been for
decades. Future advances in tissue maturation, generation of
more complex heterocellular tissues, and coupling to other organ
systems will generate improved models to study muscle disease
and increase the chance of identifying novel biological and
pharmaceutical therapeutics.
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