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Abstract

In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a
thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In
some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by
background noise in cortical neurons: the slope of the firing rate versus current (f-I) curve changes with the variance of
background random input. Here, we show a direct correspondence between these two observations by relating variance-
dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by
sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect
to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two
conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters,
we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe
how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.
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Introduction

An f-I curve, defined as the mean firing rate in response to a

stationary mean current input, is one of the simplest ways to

characterize how a neuron transforms a stimulus into a spike train

output as a function of the magnitude of a single stimulus

parameter. Recently, the dependence of f-I curves on other input

statistics such as the variance has been examined: the slope of the

f-I curve, or gain, is modulated in diverse ways in response to

different intensities of added noise [1–4]. This enables multipli-

cative control of the neuronal gain by the level of background

synaptic activity [1]: changing the level of the background synaptic

activity is equivalent to changing the variance of the noisy

balanced excitatory and inhibitory input current to the soma,

which modulates the gain of the f-I curve. It has been

demonstrated that such somatic gain modulation, combined with

saturation in the dendrites, can lead to multiplicative gain control

in a single neuron by background inputs [5]. From a computa-

tional perspective, the sensitivity of the firing rate to mean or

variance can be thought of as distinguishing the neuron’s function

as either an integrator (greater sensitivity to the mean) or a

differentiator/coincidence detector (greater sensitivity to fluctua-

tions, as quantified by the variance) [3,6,7].

An alternative method of characterizing a neuron’s input-to-

output transformation is through a linear/nonlinear (LN) cascade

model [8,9]. These models comprise a set of linear filters or

receptive field that selects particular features from the input; the

filter output is transformed by a nonlinear threshold stage into a

time-varying firing rate. Spike-triggered covariance analysis

[10,11] reconstructs a model with multiple features from a

neuron’s input/output data. It has been widely employed to

characterize both neural systems [12–15] and single neurons or

neuron models subject to current or conductance inputs [16–19].

Generally, results of reverse correlation analysis may depend on

the statistics of the stimulus used to sample the model [15,19–25].

While some of the dependence on stimulus statistics in the response

of a neuron or neural system may reflect underlying plasticity, in

some cases, the rapid timescale of the changes suggests the action of

intrinsic nonlinearities in systems with fixed parameters [16,19,25–

29], which changes the effective computation of a neuron.

Our goal here is to unify the f-I curve description of variance-

dependent adaptive computation with that given by the LN model:

we present analytical results showing that the variance-dependent

modulation of the firing rate is closely related to adaptive changes in

the recovered LN model if a fixed underlying model is assumed. When

the model relies only on a single feature, we find that such a system

can show only a single type of gain modulation, which accompanies

an interesting asymptotic scaling behavior. With multiple features,

the model can show more diverse adaptive behaviors, exemplified

by two conductance-based models that we will study.

Results

Diverse Variance-Dependent Gain Modulations without
Spike Rate Adaptation

Recently, Higgs et al. [3] and Arsiero et al. [4] identified

different forms of variance-dependent change in the f-I curves of
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various neuron types in avian brainstem and in cortex. Depending

on the type, neurons can have either increasing or decreasing gain

in the f-I curve with increasing variance. These papers linked the

phenomenon to mechanisms underlying spike rate adaptation,

such as slow afterhyperpolarization (sAHP) currents and slow

sodium channel inactivation. We recently showed [7] that a

standard Hodgkin–Huxley (HH) neuron model, lacking spike rate

adaptation, can show two different types of variance-dependent

gain modulation simply by tuning the maximal conductance

parameters of the model. These differences in gain modulation

correspond to two different regimes in the space of conductance

parameters. In one regime, which includes the standard

parameters, a neuron periodically fires to a sufficiently large

constant input current. In the other regime, a neuron never fires to

a constant input regardless of its magnitude, but responds only to

rapid fluctuations. This rarely discussed property has been termed

class 3 excitability [30,31]. Higgs et al. [3] proposed that the type of

gain modulation classifies the neuron as an integrator or

differentiator.

Here, we examine two models that show these different forms of

variance-dependent gain modulation without spike rate adapta-

tion, and study the resulting LN models sampled with different

stimulus statistics. We show that these fixed models generate

variance-dependent gain modulation, and that this gain modula-

tion is well predicted by aspects of the LN models derived from

white noise stimulation. The two models are both based on the

HH [32] active currents; one model is the standard HH model,

and the other (HHLS) has lower Na+ and higher K+ conductances.

The HHLS model is a class 3 neuron and responds only to a

rapidly changing input. For this reason, the HHLS model can be

thought of as behaving more like a differentiator than an

integrator [3,7].

Figure 1 shows the different gain modulation behaviors of the

HH and HHLS conductance-based models. For the HH model,

Figure 1A, the f-I curves in the presence of noise are similar to the

noiseless case except that they are increasingly smoothed at the

threshold. In contrast, Figure 1C shows that the f-I curves of the

HHLS model never converge toward each other as the noise level

increases. This case resembles that of layer 5 pyramidal neurons in

rat medial prefrontal cortex [4], as well as nucleus laminaris (NL)

neurons in the chick auditory brainstem and some pyramidal

neurons in layer 2/3 of rat neocortex [3]. While for these layer 2/3

neurons, there is evidence that this change in f-I curve slope may

be related to the sAHP current [3], at steady state this effect can be

obtained in general by tuning the maximal conductances without

introducing any mechanism for spike rate adaptation [7].

Gain Modulation and Adaptation of Fixed Models
For a system described by an LN model with a single feature, we

derive an equation relating the slopes of the firing rate with respect

to stimulus mean and variance. We then consider gain modulation

in a system with multiple relevant features and derive a series of

equations relating gain change to properties of the spike-triggered

average and spike-triggered covariance. Throughout, we assume

that the underlying system is fixed, and that its parameter settings

do not depend on stimulus statistics. For example, if the model has

a single exponential filter with a time constant t, we assume that t
does not change with the stimulus mean (I0) or variance (s2).

However, this does not mean that the model shows a single

response pattern regardless of the statistical structure of stimuli.

The sampled LN description of a nonlinear system with fixed

parameters—even when the underlying model is an LN model

[25]—can show interaction with the input statistics, leading to

different LN model descriptions for different input parameters

[19,25,27–29]. We refer to this as intrinsic adaptation.

One-Dimensional Model
An LN model is composed of its relevant features {em(t)} (m =

1,2,…,n)), which act as linear filters on an incoming stimulus, and

a probability to spike given the filtered stimulus, P(spike|filtered

stimulus). For a Gaussian white noise stimulus with mean I0 and

variance s2, the firing rate is

f I0,s2
� �

~

ð
dx P spike I0�eezxjð Þp xð Þ ð1Þ

where e~
Ð?

0
e tð Þdt is the time-integrated filter and x is the mean-

subtracted noise stimulus filtered by the n relevant features. p(x) is

an n-dimensional Gaussian distribution with variance s2. We refer

to the Materials and Methods section for a more detailed account

of the model.

For a one-dimensional model n = 1, Equation 1 can be

rewritten with change of variables

f I0,s2
� �

~

ð?
{?

dx P spike xjð Þp x{I0�eeð Þ ð2Þ

Since p(x) is Gaussian, it is also the kernel or Green’s function of a

diffusion equation in terms of (x,s2) and therefore so is p(x2I0ē) in

terms of (I0,s2). In other words, we have

L
Ls2

{
1

2

L2

Lx2

 !
p x{I0�eeð Þ

~
L

Ls2
{

1

2�ee2

L2

LI2
0

 !
p x{I0�eeð Þ~0

Now operating with L
Ls2 { 1

2e2
L2

LI2
0

� �
on both sides of the equation,

p(x2I0ē) is the only term on the left hand side of Equation 2 that

Author Summary

Many neurons are known to achieve a wide dynamic range
by adaptively changing their computational input/output
function according to the input statistics. These adaptive
changes can be very rapid, and it has been suggested that
a component of this adaptation could be purely input-
driven: even a fixed neural system can show apparent
adaptive behavior since inputs with different statistics
interact with the nonlinearity of the system in different
ways. In this paper, we show how a single neuron’s
intrinsic computational function can dictate such input-
driven changes in its response to varying input statistics,
which begets a relationship between two different
characterizations of neural function—in terms of mean
firing rate and in terms of generating precise spike timing.
We then apply our results to two biophysically defined
model neurons, which have significantly different response
patterns to inputs with various statistics. Our model of
intrinsic adaptation explains their behaviors well. Contrary
to the picture that neurons carry out a stereotyped
computation on their inputs, our results show that even in
the simplest cases they have simple yet effective
mechanisms by which they can adapt to their input.
Adaptation to stimulus statistics, therefore, is built into the
most basic single neuron computations.

Intrinsic Gain Modulation and Neural Adaptation
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depends on (I0,s2) and therefore the right hand side of Equation 2

vanishes. Thus one finds

2e2 Lf

Ls2
~

L2f

LI2
0

ð3Þ

The boundary condition is given by evaluating Equation 2 as

s2R0; here the Gaussian distribution becomes a delta function

lim
s2?0

p x{I0eð Þ~d x{I0eð Þ

and the boundary condition is given by the zero-noise f-I curve.

Thus, when a model depends only on a single feature, e(t), the f-I

curve with a noisy input is given by a simple diffusion-like

equation, Equation 3, with a single parameter, the time integrated

filter, e~
Ð?

0
e tð Þdt, determining the diffusion constant 1/2ē2.

Equation 3 states that the variance-dependent change in the

firing rate is simply determined by the curvature of the f-I curve.

Thus, a one-dimensional system displays only a single type of

noise-induced gain modulation: as in diffusion, an f-I curve is

gradually smoothed and flattened as the variance increases. Given

a boundary condition, such as an f-I curve for a particular

variance, the family of f-I relations can be reconstructed up to a

scale factor by solving Equation 3. For example, one can predict

how the neuron would respond to a noise stimulus based on its

output in the absence of noise. Note that the solution of Equation 3

generalizes a classical result [33] based on a binary nonlinearity to

a simple closed form which applies to any type of nonlinearity.

Figure 2A and 2B show a solution of Equation 3. While this

one-dimensional model is based on the simplest and most general

assumptions, it provides insights into the structure of variance-

dependent gain modulation. The boundary condition is an f-I

curve with no noise, f = (I+0.1)1/2 for I.0 and f = 0 for I#0,

which imitates the general behavior of many dynamical neuron

models around rheobase [34–36]. Compared with the HH

conductance-based model, Equation 3 captures qualitative

characteristics of the HH f-I curve despite differences due to the

increased complexity of the HH model over a 1D LN model: in

Figure 2A and 2B, there is a positive curvature (second derivative

of firing rate with respect to current) of the f-I curve below

rheobase related to the increase of the firing rate with increasing

variance. In contrast, the behavior of the HHLS model cannot be

described by Equation 3. Even though the f-I curves in Figure 1C

mostly have negative curvature, the firing rate keeps increasing

with variance, implying that the HHLS model cannot be described

by a one-dimensional LN model.

We also compared Equation 3 with the f-I curves from two

commonly used simple neuron models, the leaky integrate-and-fire

(LIF) model (Figure 2C), and a similar model with minimal

nonlinearity, the quadratic integrate-and-fire (QIF) model [37,38]

(Figure 2D). The f-I curves of the two models are similar but have

subtle differences: in the LIF model, firing rate never decreases

with noise, even though parameters were chosen to induce a large

negative curvature, as shown analytically in Text S1. The QIF

Figure 1. Variance-Dependent Gain Modulation of the HH and HHLS Model. Each model is simulated as described in the Materials and
Methods section. (A) f-I curves of a standard HH model for differing 10 variances (s2) from 0 to 45 nA2. The topmost trace is the response to the
highest variance. Each curve is obtained with 31 mean values (I0) ranging from 25 to 20 nA. (B) The same data as (A) plotted in the (mean, variance)
plane. Lighter shades represent higher firing rates. We used cubic spline interpolation for points not included in the simulated data. (C,D) f-I curves of
the HHLS model as in (A) and (B). 10 means from 210 to 50 nA and 21 variances from 0 to 100 nA2 are used.
doi:10.1371/journal.pcbi.1000119.g001

Intrinsic Gain Modulation and Neural Adaptation
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model behavior is much more similar to the 1D LN model,

marked by a slight decrease in firing rate at large I0. From this

perspective, the QIF is a simpler model in terms of the LN

description despite the dynamical nonlinearity.

It is interesting to note that for one-dimensional models, the

gain modulation given by Equation 3 depends only on the

boundary condition, which implicitly describes how an input with

a given mean samples the nonlinearity, but not explicitly on the

details of filters or nonlinearity. An ideal differentiator, where

firing rate is independent of the stimulus mean, is realized only

when the filter has zero integral, ē = 0. This is also the criterion

that would be satisfied if the filter itself were ideally differentiating.

We will return to the relationship between the LN model

functional description and that of the f-I curves in the Discussion.

Multidimensional Models
Here we examine gain modulation in the case of a system with

multiple relevant features. In this case, one cannot derive a single

simple equation such as Equation 3. Instead, we derive

relationships between the characteristics of f(I0,s) curves and

quantities calculated using white noise analysis.

Fixed multidimensional models can display far more complex

response patterns to different stimulus statistics than one-dimensional

models, because linear components in the model can now interact

nonlinearly [29]. For example, in white noise analysis, as the stimulus

variance increases, the distribution of the filtered stimuli also expands

and probes different regions of the nonlinear threshold structure of

the model. This induces a variance-dependent rotation among the

filters recovered through sampling by white noise analysis, and the

corresponding changes in the spike-triggered average, spike-triggered

covariance, and the sampled nonlinearity [19].

Here, we relate parameters of the changing spike-triggered

average and spike-triggered covariance description to the form of

the f-I curves. The relationships are derived by taking derivatives

of each side of Equation 1 with respect to I0 and s2 (see Materials

and Methods section). The first order in I0 establishes the

relationship between the STA and the gain of the f-I curve with

respect to the mean

L log f

LI0
~

1

s2
STA, STA~

ð?
0

dtSTA tð Þ ð4Þ

The second order leads to a relationship between the second

derivative of the f-I curve and the covariance matrix

L2 log f

LI2
0

~
1

s4
DC, DC~

ð
dtdt0DC t,t0ð Þ ð5Þ

The gain with respect to the variance is

L log f

Ls2
~

1

2s4
TrDCz STAk k2
� �

ð6Þ

where

TrDC~

ð
dtDC t,tð Þ, STAk k2

~

ð
dtSTA tð Þ2

Figure 2. Variance-Dependent Gain Modulation of One-Dimensional Models. (A) Variance-dependent f-I curves of a one-dimensional
model from the solution of Equation 3 with the boundary condition, f = (I+0.1)1/2 for I.0 and f = 0 for I#0 at zero noise. (B) The firing rates of A in the
(mean, variance) plane. (C) f-I curves of an LIF model. (D) f-I curves of a QIF model. The model parameters for the LIF and QIF are in the Materials and
Methods section. We used 50 mean (I0) values from 0 to 4 (LIF) and from 22 to 2 (QIF), and 8 variances (s2) from 0 to 8 for both models.
doi:10.1371/journal.pcbi.1000119.g002

Intrinsic Gain Modulation and Neural Adaptation
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Equations 4–6 show how the nonlinear gain of an f-I curve with

respect to input mean and variance is related to intrinsic

adaptation as observed through changes in the STA and STC.

Note that Equations 4–6 apply to one-dimensional LN models as

well. In that case, the STA has the same shape as the feature in the

model, and only its magnitude varies according to the overlap

integral, Equation 1, between the nonlinearity of the model and

the prior stimulus. This is the same for the STC, and thus

Equations 4–6 are not independent. This leads to a single form of

variance gain modulation, given by Equation 3. However, in a

multidimensional model, changing the stimulus mean shifts the

nonlinearity in a single direction, STA, while increasing the

variance expands the prior in every direction in the stimulus space.

Therefore, the overlap integral can show more diverse behaviors.

Conductance-Based Models
We now examine whether the gain modulation behaviors we

have described can be captured by a multi-dimensional LN model.

We tested this by computing f-I curves, spike-triggered averages

and the spike-triggered covariance matrices for the noise-driven

HH and HHLS models for a range of input statistics. Figure 3A,

B, and C show the result of fitting simulation data from the HH

(left) and HHLS (right) model to Equations 4, 5, and 6,

respectively. The linear relationships are quite clear in Figure 3A

Figure 3. Derivatives of the Firing Rate Curves with Respect to Mean and Variance Related to Quantities Obtained by White Noise
Analysis for the Standard HH (Left) and HHLS (Right) Models. Each point is calculated from the simulated data with a selected (mean,
variance) input parameter pair, as described in the Materials and Methods section, and the gray lines represent our theoretical predictions,
Equations 4–6, which hold when the variance dependent change in f-I curves is only due to intrinsic adaptation. (A) Gain versus the norm of the STA,
as in Equation 4. (B) Gain change versus the spike-triggered covariance term of Equation 5. (C) Change of firing rate with respect to variance versus
the function of the STA and spike-triggered covariance given in Equation 6.
doi:10.1371/journal.pcbi.1000119.g003

Intrinsic Gain Modulation and Neural Adaptation
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and 3C which show the gains with respect to mean and variance.

Figure 3B involves the curvature of f-I curves, which is more

difficult to calculate accurately, and shows larger errors. In every

case, goodness of fit is p,1.361026 and p,5.861026 for the HH

and HHLS where the upper bounds of p-values are given by the

case of Equation 5, corresponding to Figure 3B. These results

show that intrinsic adaptation of the LN model predicts the form

of noise-induced gain modulation for these models.

Gain Rescaling of One-Dimensional Models
Here we discuss a consequence of intrinsic adaptation for

neuronal encoding of mean and variance information for a one-

dimensional model. In this case, Equation 3 completely specifies

intrinsic adaptation, and therefore we will focus on this case.

Our first observation is that Equation 3 is invariant under the

simultaneous rescaling of the mean and standard deviation,

I0RaI0, sRas, where a is an arbitrary positive number. This

invariance is preserved if the solution is also a function of only a

dimensionless variable I0/s, which would represent a signal-to-

noise ratio if we describe the neuron’s input/output function in

terms of an f-I curve at a fixed noise level s. Note that this

situation is analogous to the Weber–Fechner [39,40] and Fitts’ law

[41], which states that perception tends to depend on only

dimensionless variables that are invariant under scaling of the

absolute magnitude of stimulus [42]. However, the invariance of

Equation 3 under the scaling of a stimulus does not necessarily

lead to the invariance of a firing rate solution. By rewriting

Equation 2 in terms of the ‘‘rescaled’’ variables, y = x/s and

m= I0/s, we get

f m,s2
� �

~
1ffiffiffiffiffiffi
2p
p

ð
dy e{ y{m�eeð Þ2=2f0

ys

�ee

� �
ð7Þ

where f0(I) = P(spike|Iē) is an f-I curve with no noise. Thus, the

scaling of f(I0,s2) with standard deviation depends on the

boundary condition, f0(I), which in principle can be any arbitrary

function.

Nevertheless, in practice, the f-I curves of many dynamical

neurons are not completely arbitrary but can share a simple

scaling property, at least asymptotically. For example, in the QIF

and many other neuron models, the f-I curve with no noise

asymptotically follows a power law f0,(I02Ic)
1/2 around the

rheobase Ic [34–36]. In general, if f0(I)/Ia asymptotically in such a

regime, from Equation 7, the firing rate is asymptotically

factorized into a s dependent and m= I0/s dependent part as

f m,s2
� �

!saF mð Þ, F mð Þ~ 1ffiffiffiffiffiffi
2p
p

ð
dy e{ y{m�eeð Þ2=2ya ð8Þ

In other words, I0/s becomes an intermediate asymptotic of the f-I

curves [43].

To test to what extent this scaling relationship holds in the

models we have considered, we calculated the rescaled relative gain of

the f-I curves, which we define as (s/f) hf/hI0 =s h log f/hI0; the

rescaled relative gain of Equation 8 depends only on m= I0/s, not

on s. Thus, if the rescaling strictly holds, this becomes a single-

valued function of the signal-to-noise ratio, I0/s, regardless of the

noise level s.

We find evidence for this form of variance rescaling in the QIF,

LIF, and HH models. Figure 4 shows the rescaled gains evaluated

from the simulated data. The QIF and HH case, Figure 4B and

4D, match well with the solution of Equation 3, Figure 4A. In the

LIF case, Figure 4C, the relative gain shows deviations at low

variance, but it approaches a variance-independent limit at large

s. We also present an analytic account in Text S1. On the other

hand, in Figure 4E, the HHLS model does not exhibit this form of

asymptotic scaling at all. The role of the signal-to-noise ratio, I0/s,

in the HHLS model appears to be quite distinct from the other

models. In summary, Equation 3 predicts that one-dimensional

LN models will have the tendency to decrease gain with increasing

noise level. However, if the f-I curve of a neuron is power-law-like,

the resulting gain modulation will be such that the neuron’s

sensitivity to mean stimulus change at various noise levels is

governed only by the signal-to-noise ratio.

Discussion

In this paper, we have obtained analytical relationships between

noise-dependent gain modulation of f-I curves and properties of

the sampled linear/nonlinear model. We have shown that gain

control arises as a simple consequence of the nonlinearity of the

LN model, even with no changes in any underlying parameters.

For a system described by an LN model with only one relevant

feature, a simple single-parameter diffusion relationship relates the

f-I curves at different variances, where the role of the diffusion

coefficient is taken by the integral of the STA. This form strictly

limits the possible forms of gain modulation that may be

manifested by such a system. The result qualitatively describes

the variance dependent gain modulation of different neuron

models such as the LIF, QIF, and standard HH neuron models.

Models based on dynamical spike generation, such as QIF, showed

better agreement with this result than the LIF model. The QIF

model case is a good example of how a nonlinear dynamical

system can be mapped onto an LN model description [19,44]. The

QIF model has a single dynamical equation whose subthreshold

dynamics are captured approximately by a linear kernel, which

takes the role of the feature; one can then determine a threshold

which acts as a binary decision boundary for spiking. Thus, it is

reasonable that the QIF model and the one-dimensional LN

model show a similar response pattern to a noisy input. When the

system has multiple relevant features, we obtain equations relating

the gain with respect to the input mean and the input variance to

parameters of the STA and STC. We verified these results using

HH neurons displaying two different forms of noise-induced gain

control.

Previous work has related different gain control behaviors to a

neuron’s function as an integrator or a differentiator [3,7]. From

an LN model perspective, the neuron’s function is defined by

specific properties of the filter or filters e(t). An integrating filter

would consist of entirely positive weights; for leaky integrators

these weights will decay at large negative times. A differentiating

filter implements a local subtraction of the stimulus, and so should

consist of a bimodal form where the positive weights approxi-

mately cancel the negative weights.

In general, characterizations of neural function by LN model

and by f-I curves are quite distinct. The f-I approach we have

discussed here describes the encoding of stationary statistical

properties of the stimulus by time-averaged firing rate, while the

LN model describes the encoding of specific input fluctuations by

single spikes, generally under a particular choice of stimulus

statistics. Indeed, the LN characterization can change with the

driving stimulus distribution, even, in principle, from an integrator

to a differentiator. Thus, a model may, for example, act as a

differentiator on short timescales but as an integrator on longer

timescales. For systems whose LN approximation varies with mean

and variance, the neuron’s effective computation changes with

stimulus statistics, and so does the information that is represented.

Intrinsic Gain Modulation and Neural Adaptation
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One might then ask how the system can decode the represented

information. It has been proposed that statistics of the spike train

might provide the information required to decode slower-varying

stimulus parameters [22,45]. The possibility of distinguishing

between responses to different stimulus statistics using the firing

rate alone depends on the properties of the f-I curves.

The primary focus of this work is the restricted problem of single

neurons responding to driving currents, where the integrated

synaptic current in an in vivo-like condition is approximated to be

a (filtered) Gaussian white noise [46–50]. However, our deriva-

tions can apply to arbitrary neural systems driven by white noise

inputs, if f-I curves are interpreted as tuning functions with respect

to the mean stimulus parameter. Given the generality of our results

for neural systems, it would be interesting to test our results in

cases where firing is driven by an external stimulus. A good

candidate would be retinal ganglion cells, which are well-described

by LN-type models [9,14,51–53], show adaptation to stimulus

statistics on multiple timescales [23,54] and display a variety of

dimensionalities in their feature space [14].

A limitation of the tests we have performed here is a restriction

to the low firing rate regime where spike-triggered reverse

correlation captures most of the dependence of firing probability

on the stimulus. The effects of interspike interaction can be

significant [16,17,55] and models with spike history feedback have

Figure 4. Rescaled Relative Gains of Variance-Dependent f-I Curves. (A) The one-dimensional LN, (B) QIF, and (C) LIF models. The same data
as Figure 2 are used. (D) The standard HH model from Figure 1A and 1B. (E) The HHLS model from Figure 1C and 1D. Since the HHLS does not have a
rheobase, we instead used Icenter = 20 nA at which the variance-dependent firing rate increase is maximal.
doi:10.1371/journal.pcbi.1000119.g004
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been developed to account for this [44,51,56,57]. We have not

investigated how spike history effects would impact our results.

Although evidence suggests that gain modulation by noise may

be enhanced by slow afterhyperpolarization currents underlying

spike frequency adaptation [3], these slow currents are not

required to generate gain enhancement in simple neuron models

[7,19,25–29]. While one may generate diverse types of noise-

induced gain modulation only by modifying the mechanism of

generating a spike independent of spike history [7], in realistic

situations, slow adaptation currents are present and will affect

neural responses over many timescales [58–60]. In principle, it is

possible to extend our result to include these effects: f-I curves

under conditions of spike frequency adaptation have been already

discussed [61–63] and can be compared to LN models with spike

history feedback. However, our goal here was to demonstrate the

effects that can occur independent of slow adaptation currents and

before such currents have acted to shift neuronal coding

properties.

The suggestive form of our result for one-dimensional LN

models led us to look for a representation of neuronal output that

is invariant under change in the input noise level. Our motivation

is based on a simple principle of dimensional analysis: the gains of

the f-I curves with noise may be asymptotically described by a

signal-to-noise ratio, a dimensionless variable depending only on

the stimulus itself. We showed that this may occur if the f-I curve

with no noise obeys asymptotic power-law properties. Such a

property has been determined to arise both from the bifurcation

patterns of spike generation [31,34,35] and due to spike rate

adaptation [61]. This relationship implies that the gain of the

firing rate as a function of the mean should scale inversely with the

standard deviation. Scaling of the gain of the nonlinear decision

function with the stimulus standard deviation has been observed

to some degree in a number of neural systems [10,15,22–

25,29,64–67]. Such scaling guarantees maximal transmission of

information [10,22]. As we and others have proposed, a static

model might suffice to explain this phenomenon [25,27], although

in some cases slow adaptation currents are known to contribute

[65,66].

In summary, we have presented theoretically derived relation-

ships between the variance-dependent gain modulation of f-I

curves and intrinsic adaptation in neural coding. In real neural

systems, any type of gain modulation likely results from many

different mechanisms, possibly involving long-time scale dynamics.

Our results show that observed forms of gain modulation may be a

result of a pre-existing static nonlinearity that reacts to changes in

the stimulus statistics robustly and almost instantaneously.

Materials and Methods

Biophysical Models
We used two single compartmental models with Hodgkin–

Huxley (HH) active currents. The first one is an HH model with

standard parameters while the second model (HHLS) has a lower

Na+ and higher K+ maximal conductance. The voltage changes

are described by [32]

C
dV

dt
~{�ggL V{ELð Þ{�ggNam3h V{ENað Þ{�ggK n4 V{EKð ÞzI tð Þ

and the activation variables m, n, and h behave according to

tz Vð Þdz

dt
~�zz Vð Þ{z, tz~

1

azzbz

, �zz~
az

azzbz

, z~m,n,h

where

am~
0:1 Vz40ð Þ

1{exp {0:1 Vz40ð Þ½ � , bm~4 exp {0:0556 Vz65ð Þ½ �,

ah~0:07 exp 0:05 Vz65ð Þ½ �, bh~
1

1zexp {0:1 Vz35ð Þ½ � ,

an~
0:01 Vz55ð Þ

1{exp {0:1 Vz55ð Þ½ � , bn~0:125 exp {0:0125 Vz65ð Þ½ �

The voltage V is in millivolts (mV).

For the HH model, the conductance parameters are

ḡK = 36 mS/cm2 and ḡNa = 120 mS/cm2. The HHLS model has

ḡK = 41 mS/cm2 and ḡNa = 79 mS/cm2. All other parameters are

common to both models. The leak conductance is ḡL = 0.3 mS/

cm2 and the membrane capacitance per area C is 1 mF/cm2. The

reversal potentials are EL = 254.3 mV, ENa = 50 mV, and

EK = 277 mV. The membrane area is 1023 cm2, so that a current

density of 1 mA/cm2 corresponds to a current of 1 nA.

All simulations of these models were done with the NEURON

simulation environment [68]. Gaussian white noise currents with

various means and variances are generated with an update rate of

5 kHz (dt = 0.2 ms) and delivered into the model via current

clamp. For the f-I curves, we simulated 4 min of input for each

mean and variance pair. The whole procedure was repeated five

times to estimate the variance of the f-I relationship, srepeat.

We ran another set of simulations for reverse correlation

analysis and collected about 100,000 spikes for each stimulus

condition. The means and variances of the Gaussian noisy stimuli

were chosen such that the mean firing rate did not exceed 10 Hz,

and we selected eight means and seven variances for the HH

model, and nine means and four variances for the HHLS model.

Integrate-and-Fire-Type Models
In addition to the conductance-based model, we investigated

the behavior of two heuristic model neurons driven by a noisy

current input. Each model consists of a single dynamical equation

describing voltage fluctuations of the form

C
dV

dt
~L Vð ÞzI tð Þ

The first model is a leaky integrate-and-fire (LIF) model [69,70],

for which L(V) = 2gL(V2EL). We used the parameters gL = 2,

EL = 0, and C = 1. Since this choice of L(V) cannot generate a spike,

we additionally imposed a spiking threshold Vth = 1 and reset

voltage Vreset = 23.

The second is a quadratic integrate-and-fire (QIF) model

[31,37,38], for which L(V) = gL(V2EL)(V2Vth)/DV where

DV = Vth2EL.0. We used gL = 0.5, EL = 0, Vth = 0.1, and C = 1.

In this model, the voltage V can increase without bound; such a

trajectory is defined to be a spike if it crosses Vspike = 5. After

spiking, the system is reset to Vreset = 0.

These two models are simulated using a fourth-order Runge–

Kutta integration method with an integration time step of

dt = 0.01. The input current I(t) was Gaussian white noise, updated

at each time step, with a range of means and variances. The f-I

curves were obtained from 1,000 s of stimulation for each

(mean,variance) condition. We then compared the f-I curves from

these models with the relationship derived in the Results section,

Equation 5. A numerical solution of the partial differential

equation was obtained using a PDE solver in Mathematica

(Wolfram Research, Inc.).
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Linear/Nonlinear Model
We use the linear/nonlinear (LN) cascade model framework to

describe a neuron’s input/output relation. We will focus on the

dependence of the firing rate of a fixed LN model on the mean and

variance of a Gaussian white noise input.

We will take the driving input to be I(t) = I0+j(t) where I0 is the

mean and j(t) is a Gaussian white noise with variance s2 and zero

mean. The linear part of the model selects, by linear filtering, a

subset of the possible stimuli probed by I(t). That subset is

expressed as n relevant features {em(t)}, (m= 1,2,…,n). Interpreted

as vectors, the components of any stimulus that are relevant to

changing the firing rate can be expressed in terms of projections

onto these features. The firing rate of the model for a given

temporal sequence I(t) depends only on s, the input filtered by the

n relevant features. Thus the firing rate from the given stimulus

depends on the convolution of the input with all n features and can

be written as P(spike|s = I0ē+x) where

�eem~

ð?
0

dt em tð Þ, xm~

ð?
0

dt em tð Þj t{tð Þ

Since I(t) is white noise with stationary statistics, the projections xm
can be taken to be stationary random variables chosen from a

Gaussian distribution at each t.

Given the filtered stimulus, a nonlinear decision function

P(spike|I0ē+x) generates the instantaneous time-varying firing

rate. For a specified model and stimulus statistics, the mean firing

rate f(I0,s2) = P(spike) is simply

f I0,s2
� �

~

ð
ds P spike sjð ÞP sð Þ~

ð
dx P spike I0�eezxjð Þp xð Þ ð9Þ

where

p xð Þ~ 1

2ps2ð Þp=2
:exp {

1

2s2
xk k2

� �

Equation 9 describes an f-I curve of the model in the presence of

added noise with variance s2. The slope or gain of the firing rate

with respect to mean or variance can be computed if

P(spike|I0ē+x) is known. However, the gains can be also obtained

in terms of the first and second moments of P(spike|I0ē+x), which

can be measured directly by reverse correlation analysis.

Reverse Correlation Analysis
We used spike-triggered reverse correlation to probe the

computation of the model neurons through an LN model. We

collected about 100,000 spikes and corresponding ensembles of

spike triggered stimulus histories in a 30 ms long time window

preceding each spike.

From the spike-triggered input ensembles, we calculated spike-

triggered averages (STAs) and spike-triggered covariances (STCs).

The STA is simply the average of the set of stimuli that led to

spikes subtracted from the mean of the ‘‘prior’’ stimulus

distribution, the distribution of all stimuli independent of spiking

output

STA tð Þ~SI tspike{t
� �

Tspike{SITprior~Sj tspike{t
� �

Tspike ð10Þ

Therefore, one may consider only the noise part of the zero mean

stimulus.

When computing the STC, the prior’s covariance is subtracted

DC t,t0ð Þ~Cspike{Cprior

~S j tspike{t
� �

{STA tð Þ
� 	
j tspike{t0
� �

{STA t0ð Þ
� 	

Tspike{Cprior

ð11Þ

Statistical Analysis
In calculating the slope and curvature of the f-I curves, we used

6–10 degree polynomial fitting of the f-I curves, where in any

single case, the lowest degree was used which provided both a

good fit and smoothness. From the fitting procedure, we obtained

the standard deviation of the residuals, sfit. This was repeated five

times for f-I curves computed using different noise samples, and

from this we computed srepeat, the standard deviation of each

computed slope and curvature. We estimated the total error of our

calculation as stotal = (srepeat
2+sfit

2)1/2. In practice, srepeat was

always greater than sfit by an order of magnitude. This stotal was

used for the error bars in Figure 3.

To evaluate the goodness of fit in Figure 3, we used the Pearson

x2 test by using the reduced x2 statistic

x2~
X O{Eð Þ2

s2
total

where O and E represent the right and left hand sides of

Equations 4–6, respectively. From this, the p-values are estimated

from the cumulative density function of the x2 distribution, Q(x2/

k,k). The degree of freedom is k = 54 and k = 34 for the HH and

HHLS, respectively.

Derivation of Equations 4–6
We first present two key identities: the first one, which depends

on the form of s having additive mean and noise components, is a

change of variables for the gradient of P(spike|x+I0ē)

LP spike xzI0�eejð Þ
LI0

~
X

m

�eem
LP spike xzI0�eejð Þ

Lxm
ð12Þ

Secondly, when x is a Gaussian random variable with zero mean

and variance s2, by using integration by parts in can be seen that

any function F(x) satisfies

SF 0 xð ÞT~
1

s2
SxF xð ÞT ð13Þ

SF 00 xð ÞT~
1

s2
S xF xð Þ½ �’T{

1

s2
SF xð ÞT

~
1

s4
Sx2F xð ÞT{

1

s2
SF xð ÞT

Then, we first take derivatives of both sides of Equation 9 (or

equivalently Equation 1), by I0 and s2, and apply Equations 12

and 13. The first order in I0 is

Intrinsic Gain Modulation and Neural Adaptation

PLoS Computational Biology | www.ploscompbiol.org 9 July 2008 | Volume 4 | Issue 7 | e1000119



L log f

LI0

~
1

f

Lf

LI0

~
1

f

X
m

�eemS
L

Lxm
P spike xzI0�eejð ÞTx

~
1

s2
: 1

f

X
m

�eemSxmP spike xzI0�eejð ÞTx

ð14Þ

The second order is given by

L2log f

LI2
0

~
1

f

L2f

LI2
0

{
1

f 2

Lf

LI0

� �2

,

L2f

LI2
0

~
X
m,n

�eem�eenS
L

Lxm

L
Lxn

P spike xzI0�eejð ÞTx

~
1

s4

X
m,n

�eem�eenS xmxn{s2dmn

� �
P spike xzI0�eejð ÞTx,

ð15Þ

where dmn is a Kronecker delta symbol. The gain with respect to

variance is

Lf

Ls2
~{

n

2s2
f z

1

2s4

X
m

Sx2
mP spike xzI0�eejð ÞT

x

~
1

2s4

X
m

S x2
m{s2

� �
P spike xzI0�eejð ÞTx

ð16Þ

Now, we show how the right hand sides of Equations 14–16

correspond to the STA and the STC. Given a Gaussian white

noise signal j(t), we can split it as j= jI+jH, where jI belongs to

the space spanned by our basis features {em}, and therefore

relevant to spiking. jH is the orthogonal or irrelevant part. jI can

be written as

jjj tð Þ~e:x~
X

m

xmem, xm~

ð?
0

dt em tð Þj t{tð Þ

Again, x is a Gaussian variable from a distribution Equation 9.

The STA is

STA~SjTspike~SjjjTspike~

ð
dnx e:xð ÞP xzI0�ee spikejð Þ

since jH is irrelevant and does not make any contribution. Here

we use Bayes theorem

P spike xzI0�eejð Þ
P spikeð Þ ~

P xzI0�ee spikejð Þ
P xzI0�eeð Þ

As in Equation 9, P(s = x+I0ē) = p(x), and therefore the STA

becomes

STA~

ð
dnx e:xð ÞP spike xzI0�eejð Þ

P spikeð Þ p xð Þ

~
1

f

X
m

emSxmP spike xzI0�eejð ÞTx

Comparing this result with Equation 14, we obtain Equation 4.

A similar calculation for the second order [19] shows

DC t,t0ð Þ~ 1

f

X
m,n

em tð Þen t0ð ÞS xmxn{s2dmn

� �
P spike xj zI0�eeð ÞTx

{STA tð Þ:STA t0ð Þ

This result, combined with Equations 15 and 16, leads to

Equations 5 and 6, respectively.
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Text S1. Firing Rate of the LIF Model with Noisy Stimuli.

Found at: doi:10.1371/journal.pcbi.1000119.s001 (0.09 MB

DOC)

Author Contributions

Conceived and designed the experiments: SH. Analyzed the data: SH.

Contributed reagents/materials/analysis tools: BL. Wrote the paper: SH

BL AF. Derived the equations: SH.

References

1. Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background

synaptic input. Neuron 35: 773–782.

2. Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background

noise controls the input/output characteristics of single cells in an in vitro model

of in vivo activity. Neuroscience 122: 811–829.

3. Higgs MH, Slee SJ, Spain WJ (2006) Diversity of gain modulation by noise in

neocortical neurons: regulation by the slow afterhyperpolarization conductance.

J Neurosci 26: 8787–8799.
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16. Agüera y Arcas B, Fairhall AL (2003) What causes a neuron to spike? Neural

Comput 15: 1715–1749.
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49. Destexhe A, Paré D (1999) Impact of network activity on the integrative

properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:
1531–1547.

50. Rudolph M, Destexhe A (2003) Characterization of subthreshold voltage
fluctuations in neuronal membranes. Neural Comput 15: 2577–2618.

51. Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a model
for the responses of visual neurons. Neuron 30: 803–817.

52. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses.

Network (Bristol, England) 12: 199–213.
53. Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ (2005)

Prediction and decoding of retinal ganglion cell responses with a probabilistic
spiking model. J Neurosci 25: 11003–11013.

54. Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M (1997) Adaptation

of retinal processing to image contrast and spatial scale. Nature 386: 69–73.
55. Pillow JW, Simoncelli EP (2003) Biases in white noise analysis due to non-

Poisson spike generation. Neurocomputing 52–54: 109–115.
56. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point

process framework for relating neural spiking activity to spiking history, neural
ensemble, and extrinsic covariate effects. J Neurophysiol 93: 1074–1089.

57. Paninski L, Pillow J, Lewi J (2006) Statistical models for neural encoding,

decoding, and optimal stimulus design. Prog Brain Res 165: 493–507.
58. Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, et al. (1988)

Multiple potassium conductances and their functions in neurons from cat
sensorimotor cortex in vitro. J Neurophysiol 59: 424–449.

59. Spain WJ, Schwindt PC, Crill WE (1991) Two transient potassium currents in

layer V pyramidal neurones from cat sensorimotor cortex. J Physiol 434:
591–607.

60. La Camera G, Rauch A, Thurbon D, Lüscher HR, Senn W, et al. (2006)
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