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Abstract: In this paper, two novel consistency vectors are proposed, which when combined with
appropriate machine learning algorithms, can be used to adapt the Spectral Kurtosis technology for
optimum gearbox damage diagnosis in varying operating conditions. Much of the existing research in
the field is limited to test apparatus run in constant and carefully controlled operating conditions, and
the authors have previously publicised that the Spectral Kurtosis technology requires adaptation to
achieve the highest possible probabilities of correct diagnosis when a gearbox is run in non-stationary
conditions of speed and load. However, the authors’ previous adaptation has been computationally
heavy using a brute-force approach unsuited to online use, and therefore, created the requirement to
develop these two newly proposed vectors and allow computationally lighter techniques more suited
to online condition monitoring. The new vectors are demonstrated and experimentally validated on
vibration data collected from a gearbox run in multiple combinations of operating conditions; for the
first time, the two consistency vectors are used to predict diagnosis effectiveness, with the comparison
and proof of relative gains between the traditional and novel techniques discussed. Consistency
calculations are computationally light and thus, many combinations of Spectral Kurtosis technology
parameters can be evaluated on a dataset in a very short time. This study shows that machine
learning can predict the total probability of correct diagnosis from the consistency values and this
can quickly provide pre-adaptation/prediction of optimum Spectral Kurtosis technology parameters
for a dataset. The full adaptation and damage evaluation process, which is computationally heavier,
can then be undertaken on a much lower number of combinations of Spectral Kurtosis resolution
and threshold.

Keywords: spectral kurtosis; adaptation; vibration analysis; diagnostics; online condition monitoring;
machine learning

1. Introduction

Vibration signal analysis is a well-known and commonly used technique for condition
monitoring of rotating machinery, particularly, gearboxes and bearing assemblies. In
laboratory environments, these data are typically captured from test apparatus operated in
constant speed and load conditions for its entire lifetime, which, whilst allowing for finely
tuned algorithms and complex processing, is not necessarily applicable to industry.

McFadden is credited as having begun what are now considered the standard pro-
cessing techniques of vibration data, particularly with his initial suggestion of the Time
Synchronous Average (TSA) [1,2]. Badaoui et al. [3] continued this work by building
complex finite element analysis models to theoretically prove the application of TSA tech-
niques to meshing teeth and gearbox components, and compare the diagnostic technologies
suggested by McFadden. Bonnardot et al. [4] proved Badaoui’s theoretical proposals on
real gearboxes. They continued on to develop angular resampling in order to remove the
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effects of speed fluctuations on the TSA process, which was further evolved by Combet
and Gelman [5] to no longer require a tachometer signal.

The Spectral Kurtosis (SK) has been observed to be sensitive to non-stationary com-
ponents of a vibration signal, and can also indicate the frequencies at which these signal
elements occur [6–8]. Coincidentally, the Wiener filter—a particularly effective de-noising
filter—has a mathematical composition closely linked to the Spectral Kurtosis; so can
be utilised to isolate and accentuate small non-stationary damage related transients in a
vibration signal [8]. A probability of correct diagnosis can be evaluated using automated
decision making algorithms which combine k nearest neighbours, cluster analysis and
weighted majority scores to identify [9,10].

Damage diagnosis of rotating machinery operated in varying speed and load con-
ditions is known to be complex with unique issues; most notably, because the vibration
diagnostic features are dependent on operating conditions [11], torque changes modulate
signal components [1,12,13], and, in certain situations, signal components can completely
disappear while significantly changing sideband content [14]. Additional complexity can
be encountered if torque changes are able to affect the gearbox speed, for which methods
have been devised to compensate [15,16]. These complexities and concerns are identical re-
gardless of the mechanism for operating condition changes as the vibration signal elements
change in all cases. Changes in vibration signal components can, therefore, come from
many different sources other than the presence of damage, which impedes the reliability
of many conventional condition monitoring techniques [17], and, therefore, much of the
ongoing research focuses on generating new and novel diagnostic indicators [11,18,19]
or new signal pre-processing techniques [17], whereas, the authors’ previous work has
focussed on adapting classical SK techniques to the changing operating parameters [20,21].

It has been shown, that with correct adaptation of the SK technology parameters, the
total probability of correct diagnosis of a gearbox can be optimised for different combina-
tions of speed and load, allowing continuous condition monitoring and damage detection
in all operational states. Adaptation of SK methodologies was initially chosen as an inves-
tigative area because there has been a precedent of adaptive techniques in vibration signal
processing, notably in gearbox state detection [22], filtering [23] and the adaptation of both
wavelet and classical residual technologies [24]. Machine learning based approaches are
becoming increasingly popular in the field of condition monitoring and vibration analysis
as they have the potential to improve the extraction of diagnostic features and enhance the
accuracy and efficiency of diagnosis [25,26].

However, adaptation of SK technologies can be computationally heavy due to the
amount of processing involved. The outcomes of [20] are to conclude, that by adapting the
SK resolution and SK threshold to gearbox operating conditions, the total correct diagnosis
probability could be significantly increased in all operating conditions, outperforming the
existing methods for selecting the main parameters of the SK technology. However, it was
also stated that, while enhancing effectiveness of SK diagnosis, the proposed adaptation
is computationally heavy and up to this point a ‘brute force’ approach had been used.
This highlighted drawbacks to using the proposed adaptation in real world scenarios,
predominantly, for on-line condition monitoring of gearboxes. So, novel, computationally
light and effective methods of SK adaptation to a variable gearbox load are proposed
here. It is, therefore, proposed that developing two novel vectors, that could predict and
adapt the SK technology, would improve computational times, improve effectiveness of
the technology and increase the relevance to online condition monitoring applications.
The consistency parameter has long been used as an indicator of SK filtering effective-
ness [27,28]; therefore, it was considered to further evolve this parameter in an attempt to
extend its usefulness. Adapting SK technology to operating conditions allows for enhanced
diagnosis effectiveness across the operating envelope of the rotating machinery and by
creating a more computationally light method this will be an enabler for online condition
monitoring while a gearbox (or other mechanical system) remains in action.

Novel aspects of this study:
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• Propose a novel consistency vector that enables multiple consistency bands to be
automatically detected, evaluated and critical values retained, with no user input

• Propose a novel consistency vector that incorporates both the SK values and the
number of realizations across which the peak is consistent, thereby increasing the
sensitivity and granularity of the measure

• Perform novel experimental investigation of these two consistency vectors alongside
machine learning algorithms to enable prediction of optimal SK technology parameters
to data collected in different operating conditions.

• Novel comparison of the proposed consistency vectors with the traditional consistency
technique

• The main objectives of this study are:
• To propose and develop two novel consistency vectors allowing multiple frequency

bands to be automatically identified and stored—one of the new vectors shall contain
consistency percentages, the other will contain actual SK peak values

• To propose prediction of the total probability of correct diagnosis by employing the
proposed two novel consistency vectors

• To experimentally validate that these two new vectors can be used to predict the total
probability of correct diagnosis when applying many combinations of SK technology
parameters to data

• To compare the machine learning results using each of the novel parameters as input
data, and also contrast to the traditional consistency technique, in regard to prediction
of diagnosis probability, demonstrating the gains of the newer methods

• To demonstrate that the novel machine learning techniques are able to optimally adapt
the Spectral Kurtosis for gear fault diagnosis.

As the consistency parameters (traditional and novel) are quick and simple to compute,
it is proposed that many combinations of SK technology parameters can be evaluated in a
short time as an adaptation method to optomise final diagnosis. This increase in speed and
reduction in processing power allows for more combinations of SK resolution and threshold
to be tested, while also enabling more online use of adaptation techniques and optimisation
of diagnosis effectiveness. This paper aims to improve real-world applicability of SK
techniques by proposing and experimentally validating a methodology for optimising SK
based diagnosis of gearboxes, run in multiple combinations of operating conditions. This
is carried out using a computationally light machine learning technique, well suited to
on-line implementation to adapt the Spectral Kurtosis technology to the speed and load
conditions.

The paper first discusses the methodologies utilised in this research; namely the
Spectral Kurtosis (Sections 2.1 and 2.2), novel consistency vectors (Section 2.3) and their
estimation, along with the employed machine learning processes (Section 2.4) and the
error scores used to compare machine learning processes. An experimental setup is then
described (Section 3.1) along with the signal processing techniques employing for analysing
the data and undertaking the presented research. Finally, results show the effectiveness of
machine learning on the data (Sections 3.2–3.4), the estimation time savings (Section 3.5),
achievable when utilising novel consistency vectors and machine learning versus the
computationally heavy traditional method, plus an example of prediction of optimally
performing SK technology parameters for a dataset (Section 3.6).

2. Methods
2.1. The Spectral Kurtosis Technology

The Spectral Kurtosis is a powerful tool in the condition monitoring of gears, bearings
and other rotating machinery. The Spectral Kurtosis is the application of the statistical
measure of Kurtosis to the frequency domain content of a signal and is the 4th order
spectral moment [29]. The calculation is a measure of “distance from Gaussianity”, or more
generally, how close to a normal distribution the frequency content is—the sign of the
output defines if it is more or less peaked than normal. Being a measure of peakedness, the
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Spectral Kurtosis is effective at identifying signal impulsiveness [30], with the technology
showing a particular sensitivity to non-stationary variations in signals and can detect the
frequencies containing these changes [6–8].

The Wiener filter is still considered one of the most superior filtering techniques in
the signal processing domain, and, as discussed above, is very similar in composition to
the Spectral Kurtosis, with W( f ) ∝

√
Kx( f ), where W(f) is the Wiener filter, Kx(f) is the

Spectral Kurtosis of time domain signal x, and f is the frequency.
To generate a Wiener filter, frequencies with SK values above a pre-set threshold (the

SK threshold) are included in the filter, but all other frequencies are set as W( f ) = 0,
effectively isolating and enhancing small non-stationary transients. This resultant filter is
commonly referred to as a Spectral Kurtosis derived Wiener filter, and is now a standard
tool to isolate damage related changes in a signal’s frequency content [8]. As demonstrated
in Figure 1, the Wiener filter behaves as a bandpass filter in the frequency domain, which
when applied back to the classical residual signal isolates and passes the signal components
related to damage.

Figure 1. Pictorial representation of the SK derived Wiener filter with threshold ‘S’ [31].

The time domain vibration signal is divided into many shorter realizations, using
convergence analysis to determine the number of shaft rotation averages required to create
a consistent TSA signal trace [5] without over averaging. This TSA is then converted into a
classical residual signal by removing the mesh frequencies and shaft harmonics [1].

To evaluate the Spectral Kurtosis on measured vibration data, the classical residual
signal undergoes several further processing steps. First, the Hanning window function is
defined, with a length, specified by the SK frequency resolution. This window function is
used because it has gradual increases in amplitude, touching zero at each end and, therefore
provides an effective suppression of spectral leakage which can enhance FFT performance
while having minimal disturbance of frequency resolution [32,33]. On non-periodic signals,
as used in the Fourier transform, the Hanning window is able to improve amplitudes of
interest when compared to the use of a rectangular window function [34]. The value of
SK resolution can either help or hinder the separation between damaged and undamaged
data by performing too much or too little smoothing during FFT calculations.

As the Matlab programming environment was used for this investigation, the spec-
trogram command was utilised so that in a single processing step the window function is
progressively moved across a single realization of the time domain signal with a specified
overlap between windows, with the Short-Time Fourier Transform (STFT) calculated for
each window iteration. From the STFT, the squared envelope can be evaluated by squaring
the absolute amplitudes of frequency content, which are then stored in matrix form. All of
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the individual squared envelope calculations are averaged in order to compute the power
spectrum and from this the resultant SK:

Kx( f ) =
S4,x( f )
S2,x( f )

− 2 (1)

where Sn,x( f ) = 〈|X(t, f )| n
〉

and is the squared envelope of signal x(t), while 〈·〉 repre-
sents the time averaging operator, ie, averaging across the various time domain windows
of the spectrogram output matrix.

The Wiener filter is derived by evaluating where the SK is above a pre-set threshold,
creating a bandpass filter which is multiplied element-wise with the SK data, before having
the square root taken. This is a frequency domain filter, which when applied to the classical
residual of the original data, generates the SK residual which is then used for damage
diagnosis and contains mostly damage related energy.

The SK technology parameters, SK resolution (SKres) and SK threshold (SKthres) [8]
must be optimised to the dataset being analysed as they have a substantial impact on the
derived Wiener filter and its overall effectiveness for isolating damage. The SK resolution is
directly linked to the amount of smoothing that is performed during the Fourier transform
process, so can over or under average the data. Similarly, if the SK threshold is excessively
high or low it will allow either too little or too much of the signal to pass through. Either of
these scenarios can be detrimental to damage diagnosis as diagnostic information could be
missed or the SNR could be lowered due to non-damage related noise passing through the
Wiener filter.

The SK resolution is often normalised as a function of mesh period to provide more
context to the selection and because an SK resolution around mesh frequency is often a good
initial guess for processing [28]. In reality, the SK resolution when applied to the signal is
non-dimensional, i.e., a frequency is specified, but this is then evaluated into a number of
points based on the sampling frequency before being converted into an equivalent length
of the Hanning window, which has a length of N points. In the absence of any prior
information on the dataset, a typical SK threshold used is the 1% significance threshold,
which is calculated based on the number of Hanning windows used per realization and
therefore the number of frequency traces used in the averages when calculating the power
spectrum and Spectral Kurtosis. The 1% statistically calculated threshold is defined as
the level above which a point above this value has only 1% chance of being caused by
a transient and 99% chance of being related to damage. This method produces an SK
threshold that usually performs well but is not always the optimum choice.

2.2. Adaptation of the Spectral Kurtosis Technology to Varying Operating Conditions

The authors have previously highlighted the importance of adapting SK technol-
ogy parameters when gearboxes are run in varying conditions of speed and load [20,21].
Correctly adapting the processing variables can significantly improve the diagnosis of gear-
boxes in varying operating conditions. Real world rotating machinery often have several
sets of standard operating conditions (idling, accelerating, cruising, etc.), which is contrary
to the typical laboratory research with a test rig operated at constant speed and load with
the only changing variable between datasets being the presence of damage. This latter
scenario makes it possible to create highly tuned diagnosis algorithms, but they may not be
easily applicable to situations outside of the research environment where diagnosis needs
to take place during all operational states. As such, this research focuses on diagnosing
gearboxes with step-changes in operating conditions, though, the techniques and results
could also be applied to other rotating machinery with other changes in operating states.

Changing operating conditions leads to different frequency bands being related to
damage and, therefore, passing through the Wiener filtering process, so it is reasonable
to see that the SKres and SKthres which define the Wiener filter are both heavily linked
to these frequency bands and the final diagnosis probability. Many combinations of SK
resolution and threshold will be applied to both damaged and undamaged data, in multiple
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combinations of speed and load, recording the overall probability of correct diagnosis in
each case, which will be used later in the machine learning process.

2.3. The Traditional and Novel Consistency Vectors

Gelman [27] defined the traditional consistency parameter as a technique for mea-
suring frequency bands with high SK peaks across many realizations The consistency
parameter allowed a numerical quantification of the percentage of realizations, containing
SK peaks in defined frequency ranges. Any SK peak above the threshold garnered a 1 value
for that realization, or no peak resulted in a 0, and, therefore, a percentage consistency
could be calculated over all the realizations. This method assumed single peaks would be
at the same frequency in each realization. Peaks above the SK threshold form the derived
Wiener filter, and it was therefore proposed that the higher the consistency, i.e., the more
realizations having similar frequency peaks, the increased likelihood that the detected
peaks are truly damage related rather than noise. The consistency parameter in [27,28] is
not employed for prediction of the total probability of correct diagnosis in previous work.

Further development of the SK consistency process has facilitated the authors to
develop automatic identification of multiple consistent bands across the realizations of
a data set, while also recording more data for each peak. This has led to the creation of
two novel consistency vectors. Equal frequency width binning is applied across the entire
frequency range, with individual bins being evaluated on each realization to identify SK
peaks above the threshold. If one exists, this is recorded as a 1 in the first consistency matrix,
along with the actual SK value of the peak in a second consistency matrix. A second pass
binning process is then performed to identify SK peaks, that are spread across multiple
bins—effectively variable width binning—in which case, all included bins are set to 1 in
the matrix and the peak SK value is taken.

The result is two matrix of size m, n where m is the number of frequency bins, and n is
the number of realizations; one matrix contains the consistency value (0 or 1) and one the
value of the SK peak (or 0 if no peak above the threshold). Once all bins in all realizations
have been analysed, the consistency percentage per bin are calculated by averaging the
matrix across all realizations (i.e., along the n dimension) as follows:

pb =
∑ CMb
Nreal

× 100 (2)

where p is the traditional consistency parameter per bin (in percent), CM is the first
consistency matrix for each bin, Nreal represents the total number of realisations and
subscript b denotes the bin number [20]. This is then recorded as the first novel consistency
vector, the components of which are the traditional consistency parameters for multiple
variable width bins.

This process is repeated for the second consistency matrix, containing SK peak values.
The final two novel consistency vectors will each have a size 1, m, where m is equal to
the total number of variable width frequency bins, containing consistently high SK data.
The result for each automatically identified and analysed frequency bin is considered a
consistent frequency band in the vibration data.

This novel process has several outcomes. Firstly, frequency bands with high SK values,
that are above a pre-set threshold and are consistent across many realizations, are identified.
These are the frequency bands, that are unlikely to be due to signal discrepancies or noise
and, thus, in “damaged” data files are likely to be damage related. As with the traditional
consistency parameter, the higher the consistency of these regions, the more realizations
are displaying SK peaks in the same frequency bands, and therefore there is more similarity
between the vibration signal across all the realizations. This then increases the likelihood
that these frequency bands are not due to noise and must contain contained damage related
impacts. It is assumed that there would not be consistent frequency bands in “undamaged”
data, however, if they were to appear, then it is an indication, that the SK threshold is low.
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Secondly, the new process also identifies the SK data in each consistent band for
further evaluation. Rather than just summarising the consistent bands as 0 or 1 values and
a final percentage, the actual SK peak value is retained for each realization in the second
novel vector. By incorporating the SK values into the consistency vector, it is expected that
there will be more sensitivity when looking for a correlation between the second novel
vector and the total probability of correct damage diagnosis. Incidentally, due to recording
a 0 for SK in realizations with no peak, when averaging the SK data across all realizations,
this, effectively, also considers the percentage of realizations with a peak. This process is
demonstrated in Figure 2, considering a 5-realization example, whereby, after automated
variable width binning, 3 consistent frequency bands would be identified and evaluated.

Figure 2. Representation of the differences between the first novel consistency vector and the second novel consistency
vector with SK values, considering a 5 realization example; (a) Classical SK per realization; (b) Identification of SK above
the SK threshold and resulting consistent frequency bands; (c) Calculating the SK peak values for each consistent band;
(d) Comparison of the resultant novel consistency and novel consistency with SK values.

Lastly, and equally as importantly, the novel consistency vectors retain information
from multiple frequency bands, which allows frequency bands with lower consistency to
also be recorded in the matrix alongside the highly consistent frequency bands. The addi-
tional information is retained without jeopardising the traditional methods for maximising
diagnosis effectiveness—the traditional technique is to only look at frequency bands with
high consistency values as they are the ones related to damage. To obtain the best chance
of a correct damage diagnosis, the damaged data would have highly consistent band(s),
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while the undamaged data ideally have no consistent bands at all. As already discussed,
there can be explanations for bands in undamaged data such as low thresholds or other
vibration sources.

However, on some data sets, certain combinations of SK resolution and SK threshold
will result in SK peaks above the threshold beginning to appear in the “undamaged data”
as well as the “damaged data”. These SK peaks in “undamaged data” are not damage
related, and are typically a function of the SK threshold being too low and/or the SK
resolution being sufficiently short as to result in a “spiky” classical SK. However, the SK
peaks in “undamaged data” still have the ability to reduce diagnosis effectiveness as they
can lead to false alarms in the diagnostic process.

For data collected for each combination of speed and load, many different sets of SK
resolution and SK threshold are applied, with the novel consistency vectors recorded per
combination of SK technology variable pair. As the aim of this research is to propose the
two novel consistency vectors to predict total probability of correct diagnosis, the machine
learning algorithms require as much data as possible to fully distinguish between the
various inputs and results. By including lower consistency areas in the novel consistency
vectors via lower SK thresholds, i.e., frequency bands with K peaks in “undamaged data”,
the machine learning algorithm is able to better predict false alarms in the undamaged data.

2.4. Machine Learning for Prediction of Diagnosis Effectiveness

The main proposal of this research is to predict the final overall diagnosis effectiveness
when adapting SK technology parameters. The consistency vectors contain multiple
dimensions, so, in order to assess the correlation between consistency vectors and the total
probabilities of correct diagnosis and predictive abilities of consistency vectors, machine
learning techniques is implemented here.

Of the commonly utilised regression modelling techniques, a Gaussian exponential
regression model [35] was applied to the data and performed well. Regression models are
used to predict an output from various input dimensions when using supervised learning.
Gaussian processes are stochastic and utilise Bayes rules of probability to describe the
distributions over functions instead of scalars or variables, making predictions based on
probability density functions with a mean and variance, and thereby producing confidence
intervals on the predictions [36]. Gaussian processes are relatively simple yet are often
able to reproduce the properties of more complex machine learning methods, e.g., neural
networks [37].

The machine learning process is performed separately for each combination of speed
and load. The input vector is a combination of the consistency vector being investigated
(either traditional, or one of the two novel) plus a damage flag (0 for undamaged gearbox,
and 1 for damaged gearbox), and the target output being the total probability of correct
diagnosis. Each combination of SK technology parameters is applied to both a damaged
and undamaged data file. Depending on if the file is damaged or undamaged a flag will be
recorded in the input variables (1 = damaged, 0 = undamaged), and once all realizations
have been processed the calculated consistency vector is also added to the input variables.
This represents an input sample for that speed and load case. It is therefore clear that
for each combination of SK resolution and SK threshold there will be two samples in the
machine learning data, corresponding to a damaged and undamaged data, respectively. An
example of the variables, used for machine learning, is shown in Figure 3, demonstrating
the input vector and target variable in the columns, with each row being an individual
sample.
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Figure 3. Example of machine learning variables, when using the novel consistency vector, related to SK peaks. The damage
flag (DF) is a 0 or 1 value to denote if the sample was from an SKres and SKthres applied to a damaged or undamaged data
file.

For this research, to utilise the traditional consistency parameter as the input variable
a single consistent frequency band was used, hence the entire input vector per sample (as
displayed in Figure 3) is the damage flag and the one consistency value. For the novel
consistency vectors, up to 10 consistent frequency bands were identified, analysed and
recorded, which allowed all of the data to be captured, and the consistency matrix to be a
constant size. Few data files had this many consistent areas so the empty cells were filled
with zeros. Even though this ensured all data were recorded, not all consistent bands were
used (or required) in the machine learning process. A sensitivity study was conducted
to assess the impact of using too many or too few consistent bands, as with all machine
learning using an incorrect number of dimensions can be detrimental to results.

The Gaussian exponential regression model was trained using 5-fold cross validation.
This means that the complete dataset is randomly split into 5 partitions, with 4 used to
train the model and the final portion (the holdout set) to test the model. This process is
repeated 4 more times to use all of the train/test data combinations. As such, each data
point will be used in the hold out set to test the model once, and in training sets 4 times.
In this instance, the dataset had over 1300 samples due to the number of combinations
of SK resolution and threshold being evaluated, i.e., more than 30 SK resolution options,
over 30 different SK thresholds and all of these for both “damaged” data and “undamaged”
data. As described in Figure 3, for the novel parameters there were a maximum of 11
input dimensions (a damage flag plus up to 10 consistent frequency bands) plus one target,
therefore, the maximum machine learning dataset size is over 1300 × 12.

The final step is to calculate an error measure to evaluate the performance of the
trained model. In this research, the mean absolute percentage error (MAPE) was selected
as this metric is most relatable to the initial dataset and, as expressed by Moreno et al. [38],
has many useful features including unit-free measure, ease of interpretation and clarity of
presentation. The MAPE calculation does have limitations, particularly, when actual target
values are small or close to zero [38]. A small absolute error can lead to a large percentage
error, so these situations must be handled carefully. The most commonly proposed method
is to set upper and lower bounds of data, so, as not to divide by excessively large or small
values [39]. This limitation is particularly relevant in this research as the range of SK
resolution and SK threshold, used for machine learning, are specifically wide and varied,
so, some combinations are expected to have low diagnosis effectiveness. For this reason,
the models were trained, but the MAPE was evaluated only for ‘useful’ data, with a lower
threshold as 75% of the total probability of correct diagnosis and upper set at 100% of the
total probability of correct diagnosis. In practical application, SK technology parameter
pairings giving a total probability of correct diagnosis below the lower limit would not be
used for gearbox condition monitoring and be discarded anyway. A flowchart representing
the machine learning process is shown in Figure 4.
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Figure 4. Flowchart of the machine learning process.

The MAPE is a measure of the percentage error between actual total probability of
correct diagnosis and that predicted by the model. The percentage error is calculated for
every sample point then averaged to produce the MAPE value, which shall be used to
evaluate how well the model can use the input variables to predict the target.

3. Results
3.1. Test Rig and Data Processing

Data were acquired from a test rig, comprising a pair of identical back-to-back gear-
boxes having 16 teeth on the pinions and 24 teeth on the gears, i.e., a ratio of 1:1.5. These
were linked by two torsionally compliant shafts, connected to a motor and servo-hydraulic
torque actuator, respectively (Figure 5a). The test rig allows precise control of both speed
and load over a wide range of operating conditions, whilst also allowing different varia-
tions of helical gear to be tested. During this test, the gears had a helix angle of 30◦, a face
width of 25 mm and were manufactured from S156 steel (Figure 5b). Due to the design of
the meshing gears, vibration signals will never be a result of a single pair of meshing gears,
therefore, when evaluating damage per tooth there will be some merging between the
diagnosis of successive teeth. However, in this case the damage was distributed through-
out the gears meaning this was not an issue. The test apparatus was located in the Gear
Research Centre at Newcastle University, with data collected by L. Gelman, K. Gryllias,
and M. Vaidhianathasamy.
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Figure 5. (a) Representation of the back-to-back test setup; (b) 16 tooth pinion when new (teeth labelled 1–16).

Two sets of operating parameters are investigated for this research: speed of 1500 rpm
and torques of 250 Nm and 500 Nm The experiment design included three main stages:
(i) capturing of experimental data of undamaged gearbox for variable load conditions;
(ii) creation of fully controlled experiment conditions, under which development of natural
pitting occurred in multiple gearbox teeth; (iii) capturing of experimental data of damaged
gearbox for variable load conditions. Firstly, experimental data were collected for both
combinations of operational conditions with the gearbox in an undamaged state. Next, the
gearbox was run in a closely controlled set of operating conditions (high speed and high
torque), under which natural occurring putting damage occurred in multiple teeth. Each
10M cycles of the pinion, the gearbox was disassembled and all tooth surfaces were subject
to evaluation of pitting severity. Once stereo optical pitting evaluation was completed, the
pinion and gear were installed back into the gearbox in the same angular orientation as
before and the test was continued. The final experimental step was to gather data, related
to the damaged gear state, in each combination of operating conditions.

Early stage gear tooth faults are known to present challenges for reliable detection [40],
with pitting being a typical stage of a fatigue related damage likely to occur on industrial
gearboxes. Pitting is a mechanism of material loss and takes place on the contact surfaces;
in this case, on the flanks of the interfacing teeth. With even small amounts of material
loss, the surface profile and mesh contact stress of individual teeth varies, leading to a self-
propagating damage and continued destruction. This process inevitably increases sound
and vibration from meshing contacts and also due to any resultant gear imbalance, leading
to sub-surface micro-cracks and spalling, which can eventually lead to tooth fracture and
loss [41,42]. As such, early pitting detection can prevent additional continued gear damage
via gear maintenance action and is vital across many applications, e.g., renewable energy,
wastewater treatment, aerospace, etc.

LabView was used to record data at 40 kHz sampling rate, with vibration and two
speed sensors—proximity and laser (Figure 6). The positions of the various sensors are
demonstrated in Figure 6b. The accelerometer was surface mounted on the gearbox
casing as close as possible to the meshing gears to reduce any effects on the vibration
signal, caused by the transmission path. The accelerometer was rigidly attached, using the
threaded holding the base to prevent any relative motion between the sensor and gearbox
housing.
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Figure 6. (a) Overview of experimental gearbox setup; (b) Detailed sensor locations.

The accelerometers used to record vibration data during gearbox operation were
KCF AG107M linear sensors, detecting vibration through shear mode, positive polarity,
piezoelectric transducers. The full sensor specifications can be described as: Featuring
sensitivity of 50 pC/g, transverse sensitivity below 5%, flat frequency response in the
frequency range (0.5–6000) Hz (±1 dB), 80 g maximum measured acceleration and mass
of 28 g. Piezo material of the accelerometer was PZT-5, isolation resistance was more
than 10 × 109 Ohms, capacitance was 1200 pF, temperature range was −40 to +150 deg C,
shock limit was 800 g, temperature sensitivity is 4 mg/deg C, structural strain sensitivity
was 0.2 mg/micro strain and magnetic field sensitivity was 2 g/T. The output connector
featured water proof sealing [43].

The signal processing techniques have been explored in depth throughout Section 2,
and follow a typical processing flow for vibration data collected from gearboxes (Figure 7).

Figure 7. Flowchart of diagnosis methodology.

A tacho pulse, derived from the speed sensors was used to enable time synchronous
averaging which has the effect of removing non-stationary signal components. Using a
realization length of 8 s ensured convergence of the TSA in all speed and load conditions.
Mesh frequencies were then removed using a comb filter to leave the classical residual
(Figure 8).

Figure 8. Flowchart of obtaining the classical residual signal.

The effect each processing step has on the vibration signal is demonstrated in Figure 9.
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Figure 9. Signal processing flow demonstrated with real data; (a) Raw time-based vibration data; (b) TSA signal represented
as a one complete rotation of the gear; (c) Order spectrum of the TSA signal, with gear mesh frequencies clearly visible in
pink; (d) Classical residual signal; (e) Order spectrum of classical residual shows dominant mesh frequencies removed.

For each set of SK technology parameters, the SK was calculated (Figure 10), and
the Wiener filter derived (Figure 11), during which the consistent frequency bands could
be identified and both traditional and novel consistency vectors evaluated (full detail in
Section 2.3).

Figure 10. Flowchart of evaluating the Spectral Kurtosis from the classical residual (see Section 2 for further detail).

Figure 11. Flowchart: from the Spectral Kurtosis to the SK residual.

Applying the Wiener filter to the classical residual signal gives the SK residual signal
(Figure 11), after which the Hilbert transform was used to obtain the analytical signal and
to calculate the SK residual squared energy envelope, which is used for a final damage
diagnosis.

Using the Hilbert transform to compute an analytic signal is comparable to amplitude
demodulation in envelope analysis. There are several advantages to using the envelope
during SK techniques, most notably, that analysis can be performed on distinct frequency
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bands, which limits interference from other similar frequency components [44]. Ho and
Randall concluded, that using the envelope spectrum (or squared envelope spectrum if the
SNR is greater than 1) means that defect frequencies are more visible [45].

Automated decision making is implemented using cluster analysis and k nearest
neighbours methods [9]. The initial centroids are randomly seeded, and clusters are formed
by assigning each diagnostic feature point to a centroid, based on smallest Euclidean
distance. Once all feature points have been assigned, the centroids are re-calculated as the
mean of all the points currently assigned to that cluster. The cluster assignment process
is repeated until no feature points change cluster between iterations and the centroids
are therefore fixed. Within each cluster, the distances between each point and all others
are calculated, with the minimum k nearest neighbour distances averaged and recorded.
During training, the maximum nearest neighbour value is the measure of cluster size; so,
when the process is repeated with test data, if the minimum neighbour distance is larger
than the training value. Then a feature point is considered to be outside of a cluster and a
single anomaly detection is flagged.

A maximum of 6 clusters is used, along with 5 neighbours and these values are kept
constant throughout the study. Results are compared to a training data set (also kept
constant throughout the study), from which single anomalies are detected. These single
detections then have weighted majority rules applied to form a damage detection map,
before grouping and application of further weighted majority rules to give a damage
diagnosis map. An example is demonstrated in Figure 12, whereby the diagnosis feature is
shown on the top left, followed by the single anomaly detections and then the weighted
rules are applied to give damage diagnosis maps.

Figure 12. Example of automated damage diagnosis process.

As the damage was evenly distributed across all teeth, total probability of correct
diagnosis is evaluated by the percentage of area of the damage diagnosis map that shows
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the correct diagnosis, i.e., in undamaged case there should be no damage highlighted (all
blue), and in an ideal damaged case there should be 100% highlighted (all yellow). This
calculation is used because the pitting damage was naturally seeded and evenly distributed
across all teeth.

Applying the machine learning algorithms (described in Section 2.4) allows a model to
be trained and tested that predicts the probability of correct diagnosis from the consistency
vectors. An example of the output from the machine learning process can be seen in
Figure 13, whereby each dot represents a sample point in the dataset. The best performing
combinations of SK technology parameters are highlighted in green, and a perfect predictive
model would have results along the black line. For each combination of SK technology
parameters, the damaged and undamaged results then need to be combined to obtain an
overall effectiveness of diagnosis.

Figure 13. Machine learning output visualisation.

An equivalent output is generated for all combinations of the machine learning process
undertaken in this research, e.g., for different operating conditions, different consistency
input variable and varying number of dimensions (number of consistent frequency bands
to use in training the model).

3.2. Sensitivity Analysis on Number of Consistent Frequency Bands to Use for Machine
Learning Input

As discussed in Section 2.4, during evaluation of the novel consistency vectors, it was
allowed for up to 10 consistent bands to be included in the result vectors. However, these
may not all be helpful for diagnosis; so, when generating the input vectors for machine
learning, the number of bands can be limited to use only a certain number, i.e., restricting n
in Figure 3. A sensitivity analysis was performed for each speed and load to evaluate the
effects of different length input vectors, with results represented using the RMSE values of
the machine learning process, which are shown in Table 1. The bands were always selected
in descending order, with band 1 being the most consistent and band 10 the least consistent.
This approach was chosen as more consistent bands passing above the SK threshold and
used for diagnosis are most likely to be damage related rather than random noise or other
signal discrepancies.
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Table 1. Sensitivity analysis on length of input vector, i.e., how many consistent frequency bands to use; (1) Using novel
consistency vector (2) Using novel consistency vector incorporating SK peak values. The colours represent the relative
performance of each result, on a sliding scale from dark green (best outcome), through light green, yellow and orange, all
the way to dark red (worst outcome) for each combination of operating conditions.

(1)

(2)

Regardless of operating conditions, best results are typically found when using the
3–6 most prominent consistent frequency bands for the analysis. This number varies due to
the spikiness of the classical SK varying and, therefore, different speeds and loads exciting
unique damage related vibration frequencies. Whilst each speed and load combination has
a different optimum number of bands, the difference in MAPE between the results within
the 3–6 band range is small and the models will all perform well.

Simply using one frequency band does not perform well because these data have more
than one frequency band attributed to damage, meaning that restricting the machine learn-
ing input to just one frequency band excludes too much of the damage related frequency
components for the trained model to accurately predict the total probability of correct
diagnosis. Using one band is the comparable to using the traditional consistency parameter
for a machine learning input. Conversely, when using too many consistent bands, the
machine learning process has excess information in the input vectors that is not related to
damage. There are two possibilities for this outcome, the first is that many of the samples
(SK resolution/SK threshold combinations) do not have this many consistent bands which
means the higher dimensions are populated by zeros in the consistency vectors. Having
many zeros in the inputs mean that the machine learning cannot use that dimension to
distinguish between samples. This is typical of an undamaged data file that will have very
few entries in the consistency vectors, and even these will have low values.

Alternatively, in damaged data sets, the diagnostic information is concentrated in
certain number of frequency bands, and the higher dimensions above this typically contain
noise or SK peaks, not related to damage, that have passed through the SK filtering process.

3.3. Proof of Gains and Comparison of Techniques

For each set of operating conditions, the machine learning process was completed
using each of the input variable options—traditional consistency, novel consistency and
novel consistency with SK values—along with varying the number of dimensions in the
input variable, i.e., how many consistent frequency bands to use. The results for each of
the set of gearbox operating conditions are displayed in Figure 14.
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Figure 14. Results comparing operating conditions, techniques, and number of dimensions to use during machine learning.
All charts have been scaled identically to aid in comparisons; (a) low torque results; (b) high torque results.

Multiple conclusions can be drawn from the charts. Both novel parameters outperform
the traditional consistency when training the machine learning models. This is due to the
excitation caused by damage being distributed across several frequency bands, meaning
multiple bands are required for accurate diagnosis, a feat which is not achieved using the
traditional consistency.

In the low load (250 Nm) data, the MAPE values show that the second novel vector
outperforms the first novel vector regardless of number of bands used; however, in the
higher load data (500 Nm) there is little to no separation between the novel parameters, with
both performing comparatively well. While the separation is small, in 500 Nm data, the
MAPE novel narrowly outperforms the MAPE novel with SK peak data. The difference in
performance is minor enough that it is not statistically significant (statistical significance of
the findings shall be discussed in more depth in Section 3.4); so, the results are comparable.

The addition of SK peak data enhances sensitivity to the machine learning model by
increasing the likelihood of being able to better distinguish between consistent frequency
bands, i.e., if two bands have the same consistency percentages (i.e., components of novel
consistency vector), they are unlikely to also have the same SK peak heights (i.e., compo-
nents of novel consistency vector with SK peaks). Moreover, the addition of SK peak data
can be considered as a scaling factor to the percentage-based novel consistency vector; so,
if SK values are greater than 1, then the separation between individual frequency bands for
damaged and undamaged gearbox conditions via novel consistency vector with SK peaks
increases as well as becoming more unique.

In 250 Nm data, the SK peak values are all greater than 1, for damaged gear data,
which increases the separation between frequency bands for damaged and undamaged
gearbox conditions for the novel consistency vector with SK peaks; whereas, in 500 Nm
data, the SK peak values are all just below 1 for damaged gear data, which is not increasing
the separation between frequency bands for damaged and undamaged gearbox conditions
for novel consistency vector with SK peaks. The above facts explain why “MAPE novel”
and “MAPE novel with SK peaks” methods demonstrate different behaviours for 250 Nm
and 500 Nm data. It is clear, that with increasing gear damage severity, the SK peak values
will increase in all cases and, therefore, the MAPE novel with SK peaks is likely to improve
in performance compared to the MAPE novel.

In most circumstances, as the number of consistent bands becomes excessively large,
the novel techniques performance diminishes and the separation between MAPE values
form machine learning using novel and traditional input vectors becomes less apparent.
As described in Section 3.2, too many bands can be detrimental to the newer techniques as
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it simply adds irrelevant information and additional dimensions to the machine learning
process.

In order to generalise the techniques and allow them to be more suited to diagnosis,
it is preferable to consider the number of bands used across all speed and load cases, i.e.,
to assess if there is a number of bands that works well in all cases. By averaging the
results in Figure 14 across the operating conditions, the outcomes displayed in Figure 15
are observed.

Figure 15. Performance of the various techniques; (a) absolute values when combining speed and load; (b) relative
performance improvement with speed and load combined.

Once the results are averaged across all the combinations of operating conditions, it is
clear to see that when using consistency values to predict the total probability of correct
diagnosis, the new techniques utilising the novel consistency perform better than just using
the traditional consistency. The novel consistency vector incorporating SK values also
shows less sensitivity to the number of consistent bands used in diagnosis.

3.4. Statistical Significance of Results

Tests for statistical significance were performed on the results presented and can be
further explained by referencing back to the charts in Figure 14. As MAPE is used as the
model accuracy metric and is a mean value, the most applicable statistical test is the one
sided two sample t-test to evaluate if two means are statistically different [46]. This test
considers the mean and standard deviation of the absolute percentage error distributions
before the averaging takes place to calculate if the overall sample means (i.e., the MAPE) are
actually different or could be within the realms of random chance, i.e., if the distributions
overlap considerably. In this case, the tests will be to evaluate if the MAPE values using
novel consistency inputs are statistically proven to be lower than when using the traditional
consistency input. It is also possible to then evaluate if the MAPE value using SK peak
data are statistically lower than using the novel consistency. All tests are conducted using
5% significance.

For the low load data (250 Nm), all results are statistically significant. Both novel
consistency options perform better than the traditional method, and the MAPE with
SK peaks is also statistically better than when just using the novel consistency. Next,
considering the high load data (500 Nm) the tests show that the two novel parameter
options are statistically proven to be better than when using the traditional input. However,
there is no statistical difference between each of the novel consistency inputs.

When performing machine learning, model effectiveness is improved by having
greater range in the training data dimensions. In a given dimension of training data (e.g.,
one frequency band in this case) if there is little separation between samples then this
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dimension is ineffective to train the model. Conversely, if there is a large range within
that dimension then it is more accurate for the model to use that dimension to evaluate
the varying target variables. This explains why there is statistical significance at 250 Nm
but not 500 Nm when rotating at 1500 rpm. Figure 16 shows the relative ranges between
the two load cases for the novel consistency vectors. For each consistent band the chart
displays the relative range of values between the data sets. This is calculated as the range
of values in 250 Nm data divided by range in 500 Nm data.

Figure 16. Relative range of input dimensions.

It is clearly visible that in the first 3 bands, which are the ones with highest consistency
and most likely to be damage related, the relative range of the SK peaks input data are much
higher. This means there is a greater distribution of values in 250 Nm data than 500 Nm
data, and explains why the SK peak data performs substantially better than when using
the novel consistency data as an input. This proves the initial proposal that by utilising SK
peak data there is additional sensitivity compared to just consistency percentages, and this
is especially relevant when the SK data are close to the threshold value.

It may be possible to improve the statistical significance by having more input samples
to the machine learning, i.e., using more combinations of SK resolution and threshold in
the model data. More samples in the input data often improve model accuracy, and can be
beneficial to statistical significance as the resultant predictions will be more precise with a
smaller standard deviation.

3.5. Savings in Computation Time

The classical signal processing and diagnostic technique can be compared with the
novel approach proposed in this paper to evaluate the actual computational time savings
achieved by using the consistency vectors for prediction of diagnosis effectiveness and
therefore adaptation of the SK technology. To make this comparison we must evaluate the
differences and similarities in the computation process, as detailed in Figure 17 below. The
steps highlighted in red are those exclusive to the novel calculation whereas those in green
are used for the novel method using machine learning. Any blue steps are shared between
both processes so the time saving estimations will be calculated twice, once including
these steps and a second time omitting them. This gives an accurate representation of time
saving on the specific steps this novel technique targets, but also the effect it has on the
entire SK part of the signal processing flow.
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Figure 17. Flowchart to visualise the different estimation steps between the traditional and the novel
methodologies.

When undertaking the time comparison, it is assumed that background computer
processes are the same in each analysis, code is written to the same optimised standard.
The analysis was performed for 9 combinations of SK technology parameters, applied to
both damaged and undamaged data, which are then averaged in order to remove any
bias of specific SK technology parameter values. As a result of these assumptions, the
calculation times detailed below shall be used as relative measure. Running the same
code on a different machine or with different background processes, etc., will change the
absolute speed of calculations, but it is expected that the relative speeds remain consistent.
The comparative computation times for the two methods is evaluated as follows:

As shown in Table 2, the novel method, based on consistency vectors and machine
learning for prediction of total probability of correct diagnosis, has a relative time saving of
up to 94% over the traditional method. Even if considering the whole SK process in the
calculation the savings still amount to 81%.

Table 2. Comparative computation time (seconds) between methods.

Time taken per calculation step (second)
(color coding to match Figure 17) Totals

Technique

SK
evaluation
and Wiener

filtering

SK residual
squared
energy

envelope

Automated
damage

diagnosis

Consistency
parameter
evaluation

Run all
combinations
through ML

model

Including
common

steps

Excluding
common

steps

Classical 0.350 0.160 1.993 2.504 2.154

Novel 0.350 0.090 0.033 0.473 0.123

Relative reduction using novel method 81% 94%

Whilst the individual computation time per SK technology pair is not high—in the
order of seconds—it must be remembered that in all reality many combinations will be
tested to find an optimum set of SK technology parameters. The authors were consistently
performing over 650 different combinations of SK technology parameters for both damaged
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and undamaged datasets as this covered the complete useful ranges with good granularity.
Therefore, to perform all these iterations on both a damaged and undamaged data file
results in over 1300 individual processing stages. If we include all common SK steps in the
methods, this amounts to approximately 54 min of processing using the traditional method
compared to 10 min for the novel method.

This immediately illustrates the increased applicability of the new technology to
online condition monitoring as speed and computational complexity are of paramount
importance. Additionally, if this technology is used offline or in a less time sensitive
environment then the larger the number of combinations of technology parameters that can
be tested the more likely of finding an optimum value. Quicker processing is an enabler to
evaluating more SK variable combinations.

3.6. Adaptation of the SK Technology via the Novel Techniques

The final stage in this research process is to use the machine learning outputs and
novel consistency-based methods to determine sets of SK technology parameters that will
work well on both damaged and undamaged data sets. These combinations of variables
can then be used to calculate final probabilities of correct diagnosis and, thereby, quickly
adapting the SK technique to the operating conditions.

The results already presented in this chapter treat the damaged and undamaged
data as individual samples and apply the SK threshold and SK resolution pairs to each
data separately. This is why during the machine learning process there is a damage flag
included as an input variable so that the algorithms know if they are expecting a damaged
or undamaged result. In reality, there will be combinations, that work well on only one
set of data, e.g., a high threshold will prevent false alarms in undamaged data, but may
also remove diagnostic information in the damaged datafile. Therefore, the predicted
probability of correct diagnosis for both damaged and undamaged data when utilising a
particular SK threshold and resolution must be combined to obtain an overall measure of
effectiveness of diagnosis. The combinations, that are predicted the best total probabilities
of correct diagnosis, can then be compared to the combinations, that are providing the best
total probabilities of correct diagnosis by direct estimation of these probabilities.

The outcomes of this comparison shall be visualised by studying the top 10 results
(Table 3) when ranked by either predicted or estimated probability of correct diagnosis.
This method has been chosen as the difference in diagnosis is very small amongst the
best performing combinations, so evaluating the top 10 options gives a more complete
representation rather than assessing just considering the top result.

The data in Table 3 was created using 3 consistent frequency bands and utilising the SK
peak data as the sensitivity analysis showed this to perform well for both novel vectors. For
each combination of SK technology parameters, Table 3 (2) and (3) display the actual total
probability of correct diagnosis when a specific SK resolution and a threshold are applied to
the dataset, alongside the total probability of correct diagnosis, what was predicted, using
the proposed machine learning model. The top SK parameter combinations in Table 3
(2) and (3) are chosen, using the machine learning predictions; but, when these top SK
parameter combinations are applied to the data, it would still be the ‘actual’ total diagnosis
probability that results.

As an example, the topmost row in Table 3 (3) shows, that the SK technology parame-
ters of resolution equal to 510 Hz and the threshold equal to 0.7, would result in the actual
total probability of correct diagnosis of 99%. The machine learning model correctly identi-
fies this as the best performing parameter set, though, for reference, the model predicted
total probability of correct diagnosis is 97%. If the main SK technology parameters are
applied to the data, you would always obtain the diagnosis probability deemed as actual
total probability of correct diagnosis. Interestingly, the model created using the novel con-
sistency vector of percentages over-predicts the diagnosis effectiveness, while conversely,
the model utilising the novel consistency with SK peak data slightly under-predicts the
probabilities of correct diagnosis.
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Table 3. Results for the top 10 combinations either (1) actual, (2) predicted using novel consistency vectors, or (3) predicted
using novel consistency vectors with SK peak information. Both novel methods have used 3 consistent SK peaks data as
input to the machine learning as this performed universally well in the sensitivity analysis. The rows highlighted in green
indicate the actual best performing combination of SK technology parameters for the data and how they are predicted with
the novel techniques.

Novel Consistency Parameter Novel Consistency Parametar with SK Peaks
ACTUAL top 10 combinations Model PREDICTED top 10 combinations Model PREDICTED top 10 combinations

SK parameter Diagnosis
effectiveness

SK parameter Diagnosis
effectiveness SK parameter Diagnosis

effectiveness
Resolution
Threshold

Resolution
Threshold Actual Predicted Resolution

Threshold Actual Predicted

510 0.7 0.99 580 0.6 0.95 0.98 510 0.7 0.99 0.97
550 0.65 0.99 500 0.725 0.97 0.98 520 0.7 0.97 0.97
510 0.675 0.98 510 0.6 0.96 0.98 510 0.725 0.98 0.96
560 0.625 0.98 500 0.675 0.96 0.98 510 0.625 0.92 0.96
530 0.675 0.98 520 0.675 0.97 0.98 540 0.675 0.96 0.96
530 0.7 0.98 520 0.725 0.95 0.98 530 0.65 0.91 0.96
500 0.625 0.98 510 0.7 0.99 0.97 510 0.6 0.96 0.96
530 0.625 0.98 520 0.7 0.97 0.97 540 0.625 0.88 0.96
520 0.65 0.98 540 0.7 0.95 0.97 480 0.775 0.97 0.96
510 0.725 0.98 530 0.65 0.91 0.97 510 0.675 0.98 0.96

(1) (2) (3)

The top performing combination of SK resolution and threshold calculated by the
traditional computationally heavy method (Table 3 (1), highlighted green) was also identi-
fied using the novel computationally light method (Table 3 (3)). This combination of SK
technology parameters is also identified in the top 10 of Table 3 (2) when using the novel
consistency vectors, but it is not identified as one of the best performing parameters. In
both machine learning cases many of the other top 10 results also match closely between
all of the techniques. As shown in Section 3.5, this is also achieved with a time saving of up
to 94%.

For the dataset analysed, using the method currently favoured in literature of setting
SK resolution equal to mesh frequency and the SK threshold calculated using a 1% statistical
significance [8], this would result in the total probability of correct diagnosis of 92%, which
serves as a benchmark for the novel techniques. Utilising the novel SK based consistency
vector and machine learning techniques identified the same set of SK technology parameters
for best diagnosis as using traditional heavy methods, with a resultant SK resolution equal
to 510Hz and SK threshold set at 0.7. This combination results in a total probability of correct
diagnosis of 99%. For reference, these parameters are equivalent to 1.275× mesh frequency
and a 0.874% significance threshold. Applying the novel techniques would therefore reduce
incorrect diagnosis rate by 88% comparatively. The case using the percentage based novel
consistency vector does not identify the top performing combination of SK technology
parameters, but does still identify combinations that outperform the mesh frequency and
1% significance combination.

This is a significant result for increasing the relevance and applicability of the novel
SK technology adaptation to online condition monitoring applications.

4. Conclusions

This paper proposes two new consistency vectors—the novel percentage-based con-
sistency and the novel consistency incorporating SK peak values—for adaptation of SK
based vibration diagnosis of multistage gearboxes to variable load conditions. These can be
used alongside machine learning algorithms to give an early prediction of total probability
of correct diagnosis. Data were collected from a pair of back-to-back gearboxes run in
multiple combinations of speed and load which underwent time synchronous averaging
and removal of mesh harmonics to leave a classical residual signal. SK calculations are the
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performed using the STFT before Wiener filters are derived and the consistency vectors
calculated.

The first proposal is the novel consistency vector that automatically computes con-
sistency across multiple frequency bands, and the second is the novel consistency vector
that also incorporates SK peak values of consistent bands. The latter of these was proposed
to allow additional sensitivity to the machine learning process. The signal processing has
been performed using hundreds of unique combinations of SK technology parameters,
with the consistency vectors recorded for each. Automated decision-making algorithms
using k nearest neighbours and cluster analysis also computes a total probability of correct
diagnosis for each processing iteration.

Exponential Gaussian regression was used with each of the consistency vectors in
turn as inputs, and total probability of correct diagnosis as the target variable. It has been
shown that the number of input dimensions, i.e., how many consistent frequency bands to
consider in the machine learning, has a significant effect on the effectiveness of the machine
learning model. Up to ten dimensions were analysed, with best results typically seen
using 3–5 input dimensions, with the optimal number being dependent on the specific data
and how damage related energy was distributed amongst the consistent frequency bands.
Models were generated and tested using 5-fold cross validation, and the effectiveness
was measured numerically using the mean absolute percentage error. Overall, the new
consistency vectors lead to more effective machine learning models and utilising the SK
data also leads to more accurate predictions when compared to other machine learning
inputs.

Utilising the novel consistency incorporating SK peak values has been proven to add
sensitivity to the machine learning process and improve diagnosis prediction, particularly
when the SK values are close to the threshold, i.e., in scenarios with low levels of damage
related energy. SK technology parameters require adaptation [1,21], when gearboxes are
operated in varying speed and load conditions, though this can be a computationally heavy
process. Consistency vector calculation is computationally light and quick to perform,
therefore allowing quick pre-selection of SK technology parameters to a speed and load
scenario.

The traditional method identified an SK resolution of 510 Hz and a threshold of 0.7
as the optimal technology variables for the dataset being used, a result that was mirrored
when using the novel machine learning algorithms and SK peak consistency vectors as
inputs. When analysing the top 10 combinations of SK technology parameters identified in
each case they are very similar and would lead to good damage prediction and gearbox
state diagnosis—in both cases better than the 1% significance and mesh frequency option.
The machine learning models typically under-predicted the diagnosis probability slightly,
however the trends and top performers were the same. Increasing the number of samples
may lead to further increases in accuracy and reduce the prediction error.

Time savings with the new technique can be up to 94% compared to adaptation using
the traditional method, with a diagnosis prediction equal to the optimal SK technology
parameter pairings evaluated using the long and arduous traditional technique. The
novel technique also performs better than the previously accepted best result using an
SK resolution of fmesh and 1% significance threshold, with an 88% reduction in incorrect
diagnosis. This makes the adaptation of SK technology more applicable to online condition
monitoring and increases the relevance to industry.
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