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A B S T R A C T   

Cervical cancer remains a significant global public health concern, often exhibits cisplatin resistance in clinical 
settings. Hypoxia, a characteristic of cervical cancer, substantially contributes to cisplatin resistance. To evaluate 
the therapeutic efficacy of cisplatin in patients with cervical cancer and to identify potential effective drugs 
against cisplatin resistance, we established a hypoxia-inducible factor-1 (HIF-1)-related risk score (HRRS) model 
using clinical data from patients treated with cisplatin. Cox and LASSO regression analyses were used to stratify 
patient risks and prognosis. Through qRT-PCR, we validated nine potential prognostic HIF-1 genes that suc-
cessfully predict cisplatin responsiveness in patients and cell lines. Subsequently, we identified fostamatinib, an 
FDA-approved spleen tyrosine kinase inhibitor, as a promising drug for targeting the HRRS-high group. We 
observed a positive correlation between the IC50 values of fostamatinib and HRRS in cervical cancer cell lines. 
Moreover, fostamatinib exhibited potent anticancer effects on high HRRS groups in vitro and in vivo. In summary, 
we developed a hypoxia-related gene signature that suggests cisplatin response prediction in cervical cancer and 
identified fostamatinib as a potential novel treatment approach for resistant cases.   

1. Introduction 

Cervical cancer ranks fourth throughout the world in incidence and 
remains a leading cause of cancer-related mortality in women world-
wide [1,2]. According to the National Comprehensive Cancer Network 
guidelines, early-stage cervical cancer is typically treated with radical 
hysterectomy and lymph node dissection [3]. Locally advanced cervical 
cancer is conventionally managed with adjuvant concurrent chemo-
radiotherapy [4]. Cisplatin-based chemotherapy constitutes the 
cornerstone of treatment for patients with recurrent or metastatic cer-
vical cancer, as it insignificantly reduces the risk of mortality by 
approximately 30–50 % [4]. However, a significant proportion of pa-
tients eventually develop cisplatin resistance, thus leading to therapy 
failure and increased mortality rates [5]. Therefore, there is an imper-
ative need to identify more accurate predictors for cervical cancer to 
identify patients who stand to benefit from cisplatin-based 
chemotherapy. 

Hypoxia, a characteristic feature of solid tumors, contributes to 
cancer resistance against various treatment modalities, such as radio-
therapy, conventional chemotherapy, immunotherapy, and targeted 
therapy [6,7]. Specifically, in cisplatin-resistant cancers, hypoxia fosters 
aberrant pathological manifestations, such as disrupted vasculature, 
decreased p53 expression and DNA mismatch repair, increased cell cycle 
arrest, low intracellular pH, and epithelial to mesenchymal transition 
(EMT) [8,9]. These alterations establish a conducive environment for 
tumor cells to evade the therapeutic effects of cisplatin [10,11]. As the 
principal mediator of the hypoxic response, hypoxia-inducible factor-1 
(HIF-1) disrupts the transcription of essential target proteins such as 
VEGF, IL-6, and survivin, thereby hindering drug-induced apoptosis 
[12]. Although several studies have focused on developing 
hypoxia-based approaches for predicting tumor grade and prognosis 
[13–15], there is currently no established hypoxia-related gene signa-
ture for screening patients with cervical cancer to identify those patients 
who are likely to benefit from cisplatin therapy and to predict its 
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effectiveness. 
In this study, we established a prognostic model termed the HIF-1- 

related risk score (HRRS) for patients with cervical cancer who 
received cisplatin treatment by using data from a cervical cancer cohort. 
The ability of HRRS to suggest cisplatin responses was evaluated across 
various cervical cancer cell lines. Additionally, gene–drug association 
analysis was performed based on risk characteristics, which identified 
fostamatinib (an FDA-approved drug) as a potential candidate for 
treating patients with HRRS-high. Both in vivo and in vitro experiments 
corroborated the advantageous effects of fostamatinib in combating 
cisplatin-resistant cervical cancer cells. In summary, our HRRS model 
demonstrates promise in suggesting the cisplatin therapy response in 
patients with cervical cancer and presents an avenue for personalized 
cancer management. 

2. Materials and methods 

2.1. Reagents and chemicals 

Cisplatin (≥ 98 % purity), isoflurane and dimethyl sulfoxide (DMSO) 
were acquired from Chinese Sigma Reagent Network (Shanghai, China), 
and fostamatinib (≥ 98 % purity) was purchased from GlpBio Chinese 
Station (Shanghai, China). Dulbecco’s modified Eagle’s medium 
(DMEM), fetal bovine serum (FBS) and penicillin–streptomycin (P/S) 
were obtained from Gibco (Waltham, MA, USA). 

2.2. Cell lines and culture conditions 

Human cervical cancer cell lines including HeLa, Siha, C33A and 
Caski, were obtained from the American Type Culture Collection (ATCC, 
Manassas, VA, USA). All cell lines were maintained in complete DMEM 
supplemented with 10 % FBS and 1 % P/S at 37 ◦C with 5 % CO2. 

2.3. Data collection 

The clinical (Supplementary Table S1) and mRNA (Supplementary 
Table S2) expression information of cervical cancer patients (n = 115) 
treated with cisplatin from The Cancer Genome Atlas (TCGA) was 
downloaded through the online tool Sangerbox (http://sangerbox.com/; 
accessed on April 25th 2022). HIF-1 related genes were downloaded 
from the Kyoto Encyclopedia of Genes and Genomes database (KEGG, 
https://www.genome.jp/kegg/; accessed on April 25th 2022). Magnetic 
resonance imaging (MRI) (Supplementary Table S3) data were collected 
from The Cancer Imaging Archive (TCIA, https://wiki.cancerimaging 
archive.net/pages/viewpage.action?pageId=19039396; accessed on 
October 7th 2022). An expression matrix file (GSE113005, Supple-
mentary Table S4) of cancer cells treated with fostamatinib or vehicle 
control [16] was downloaded from the Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/; accessed on December 3rd 2023). 

2.4. MRI image segmentation 

The MRI images were opened using ITK-SNAP v3.8.0 software, and 
the lesion was distinguished from the surrounding normal tissue on 
sagittal (SAG) and axial (AX) T2WI images according to the signal dif-
ference. Subsequently, to assess the size, shape, and characteristics of 
the cervical cancer, the region of interest (ROI) area of the lesion was 
obtained by a radiologist (Jin Fang) with a decade-long experience in 
interpreting MRI images for cervical cancer. The results were then 
independently validated by two other radiologists (Shuixing Zhang and 
Ying Wang) who have 20 years and 5 years of experience in interpreting 
MRI images respectively, in order to minimize potential bias. 

2.5. HIF-1 related gene signature generation 

To identify prognostic genes related to cisplatin-treated cervical 

cancer, we used the R software package “survival” [17] to integrate 
survival time, survival status, and gene expression data, and evaluated 
the prognostic significance of each gene using the single-factor Cox 
analysis [18]. With log-rank test p value < 0.05, we identified 2348 
prognostic genes for cervical cancer (Supplementary Table S5). The 
genes overlapping between cervical cancer prognostic genes and HIF-1 
related genes were selected for LASSO Cox regression analysis by 
using the “Glmnet” R package [19,20]. With the tenfold cross-validation 
method, we screened out the most candidate genes. Afterwards, we used 
the expression levels and corresponding LASSO Cox coefficients to 
calculate the HIF-1 related risk score (HRRS) for each patient. The for-
mula was as follows:HRRS =

∑
i Coefficient(mRNAi) ×

Expression(mRNAi). Based on the median risk score, the patients were 
categorized into high-risk and low-risk groups, and the relationships 
between HRRS and gene expression levels, survival time and survival 
status were analyzed. Similarly, two previously reported seven-gene 
signature (ACSL1, ALDOA, FOXK2, GPI, MDH1B, MDH2 and 
MTHFD1) and the six-gene signature (HSPA5, ANGPTL4, PFKM, GOT1, 
IER3 and PFKFB4) were calculated according to their mentioned cor-
responding coefficients [21,22] and the gene expression levels in 
cisplatin-treated patients (TCGA cohort). Patients were stratified into 
high-risk and low-risk groups according to the median level of the 
six-gene signature or seven-gene signature for following survival anal-
ysis. Furthermore, the Kaplan-Meier (K–M) survival analysis was con-
ducted by using the R package "survivalROC", whereas receiver 
operating characteristic (ROC) curve analysis and area under the 
receiver operating characteristic curve (AUC) were performed using the 
R packages "survConcordance" and "survivalROC". 

2.6. Enrichment analysis 

Gene Ontology (GO) [23–25], Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [26] and gene set enrichment analyses (GSEA) [27] 
analysis were conducted, as has been previously described [28]. In brief, 
we utilized the R package "clusterProfiler v4.4.4" [24,25] for GO and 
KEGG analyses, and GSEA Software v3.0 for GSEA analyses. GSEA de-
fines significance as having a normalized enrichment score (NES) with 
an absolute value greater than or equal to 1, a nominal p value (NP) less 
than 0.05, and a p value after Benjamin-Hochberg adjustment, which 
indicates a false discovery rate (FDR) less than 0.25. 

2.7. Identification of differentially expressed genes (DEGs) 

The identification of DEGs between the high- and low-risk groups 
was performed using the R package "t.test" with the criteria of a fold 
change (FC) ≥ 1.5 and p < 0.05. The expression profiles of the top 50 
DEGs were visualized through heatmap plots. 

2.8. Gene–drug association analysis 

The WEB-based gene set analysis toolkit (WebGestalt, http://www. 
webgestalt.org/; accessed on May 5th 2022) was used to predict the 
potential drugs associated with upregulated genes in the high HRRS- 
group. Based on the given parameters (organism: Homo sapiens; 
method: overrepresentation analysis; functional database: DrugBank; 
minimum number of genes for a category: 5; maximum number of genes 
for a category: 2000; multiple test adjustment: BH; significance level: 
10), fostamatinib was identified as the preferred drug choice. The 
interaction network between fostamatinib and associated genes was 
generated by using a web-based application named STITCH (http://stit 
ch.embl.de/; accessed on 5 May 2022). 

2.9. qRT–PCR 

qRT–PCR was performed as previously described [29] with minor 
modifications. Briefly, the total RNA extraction was performed out using 
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TRIzol (Invitrogen, CA, USA), and cDNA synthesis was performed using 
the PrimeScriptTM RT Reagent Kit with gDNA Eraser (Takara Biomed-
ical Technology, Beijing, China). Real-time PCR was then utilized to 
measure the gene expression levels of EGLN1, AKTIP, ANGPT2, SER-
PINE1, EGFR, PRKCB, CAMK2N2, IFNG, and PIK3R2 following the in-
structions provided by the manufacturer. The experiment was 
conducted in triplicate using the Applied Biosystems Step One Plus 
System 2.2.3 (Thermo Fisher Scientific) with SYBR Green PCR Master 
Mix (Bio-Rad, Hercules, CA, USA). The cycle threshold (CT) values of 
each sample were utilized to analyze the PCR-derived data. The utilized 
primers for qRT–PCR are listed in Table 1. 

2.10. Cell viability assay 

Cervical cancer cells were cultured in 96-well plates for 24 h before 
being exposed to various drug concentrations for an additional 24 h. The 
viability of these cells was assessed using a CCK-8 assay (Topscience, 
Shanghai, China), as has been previously described [30]. The IC50s were 
calculated by GraphPad Prism 9. 

2.11. Colony formation assay 

To analyze the ability of cells to survive long-term drug treatment, 
cells were seeded into 6-well plates at a density of 2000 cells per well. 
These cells were cultured for 4 days and then treated with different 
concentrations of fostamatinib for another 10 days. After two washes 
with PBS, the plates were fixed with methanol for 10 min at room 
temperature and stained them with 1 % crystal violet for another 
10 min. The colonies were counted using ImageJ software v 1.44I. 

2.12. Animal experiments and treatments 

Female Athymic Nu/Nu mice (aged 4–5 weeks) were acquired from 
Vitonlihua (Beijing, China) and housed in accordance with the Institu-
tional Animal Care and Use Laboratory Animal Center at Jinan Uni-
versity in Guangzhou, China (Approval No. IACUC-20210915–03). To 
induce subcutaneous implantation of cervical cancer tumors, HeLa cells 
were injected into the groin of mice. The cells were suspended in 200 μL 
of PBS at a concentration of 5 × 106 cells per mouse. Once the average 
tumor volume reached 200–300 mm3, the mice were randomly divided 
into three different experimental groups (n = 5 per group): the control 
group, which received only the vehicle; the treatment Group 1, which 
received 40 mg/kg fostamatinib intraperitoneally once daily; and 
treatment Group 2, which received 80 mg/kg fostamatinib 

intraperitoneally once daily. The relative tumor volume was calculated 
using the following formula: Volume (mm3) = (length × width2) × 0.5. 
At the end of the experiment, all naked rodents were euthanized and 
their tumors were weighed. After the mice were sacrificed, blood was 
collected to determine biochemical and hematological parameters; 
additionally, tumor tissues were collected for immunohistochemical 
analysis with Ki-67 and TUNEL assays, and organs (heart, liver, spleen, 
lung, and kidney) were collected for hematoxylin and eosin (H&E) 
staining. 

2.13. High-field (9.4 T) MRI 

The MRI images of the mice were obtained by using a BioSpec 94/30 
small animal 9.4 T MRI system (Bruker BioSpin, Ettlingen, Germany) 
equipped with ParaVision software v6.0.1. Image acquisition was per-
formed using a rat body quadrature volume coil with an inner diameter 
of 86 mm (Bruker BioSpin, Ettlingen, Germany). Each animal was 
placed in a prone position on a rat cradle. A self-selected echo sequence 
(SE) was utilized for imaging. T1-weighted images were acquired with 
the following parameters: echo time (TE): 3 ms, repetition time (TR): 
3100 ms, average: 4, slice thickness: 1 mm, matrix size: 256 × 256, field 
of view (FOV): 35 × 35 cm2, and acquisition time (TA): 179 s). T2- 
weighted images were obtained with the following parameters: TE: 
20 ms, TR: 2000 ms, average: 3, thickness: 1 mm, matrix size: 
256 × 256, and FOV: 35 × 35 cm2. During MRI acquisition, the mice 
were anesthetized with isoflurane (2–3 % maintenance anesthesia con-
centration), and their temperature, heart rate, and respiration were 
monitored. 

2.14. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 8.0 soft-
ware. The data are represented as the mean ± the standard deviation 
(SD). For all comparisons between the control and treatment groups, p 
values were calculated using Student’s t tests. For statistical signifi-
cance, * p < 0.05, * * p < 0.01, and * ** p < 0.001. 

3. Results 

3.1. Establishment of a hypoxia-related prognostic signature for cisplatin- 
treated patients with cervical cancer 

Given that hypoxia is identified as the primary contributor to 
cisplatin resistance [7], we downloaded 93 genes associated with the 
HIF-1 signaling pathway (HIF-1 is a core transcription factor in hypoxia) 
from the KEGG database to construct a feasible hypoxia-associated 
prognostic model for assessing survival risk among cisplatin-treated 
patients with cervical cancer. Subsequently, we intersected the 
HIF-1-related genes with 2348 cervical cancer prognostic genes (Sup-
plementary Table S5; log-rank < 0.05), which were identified through 
single-factor Cox analysis, thus yielding 19 prognosis-related genes 
linked to HIF-1 (Fig. 1A; Supplementary Table S6). LASSO regression 
analysis was then applied to these 19 genes to identify the prognostic 
genes (Fig. 1B). By employing tenfold cross-validation to mitigate the 
overfitting, with an optimal λ of 0.05, we identified a total of nine genes 
(EGLN1, AKTIP, ANGPT2, SERPINE1, EGFR, PRKCB, CAMK2N2, IFNG, 
and PIK3R2) (Fig. 1C). Subsequently, on the basis of the expression 
levels of these nine genes along with their corresponding LASSO Cox 
coefficients, we established the HRRS as follows: HRRS = (0.65 ×

expression of EGLN1) + (0.59 × expression of AKTIP) + (0.23 ×

expression of ANGPT2) + (0.14 × expression of SERPINE1) + (0.03 ×

expression of EGFR) + (− 0.11 × expression of PRKCB) + (− 0.20 ×

expression of CAMK2N2) + (− 0.46 × expression of IFNG) + (− 0.51 ×

expression of PIK3R2). The nine genes displayed a close protein-protein 
interaction network (Fig. 1D) and were functionally linked to angio-
genesis regulation, protein import, the Rap1 signaling pathway, the Ras 

Table 1 
Primer sequences for qRT-PCR.  

Primer Sequences (5’->3’) 

EGLN1 Forward GACGACCTGATACGCCACT 
EGLN1 Reverse ACATGACGTACATAACCCGTTC 
AKTIP Forward GCAGCCATCTTATCGCTCT 
AKTIP Reverse AACTGTAAACTTAAATACGCCAT 
ANGPT2 Forward TAAGCAGCATCAGCCAACCA 
ANGPT2 Reverse GCCTCCTGTTAGCATTTGTGA 
SERPINE1 Forward TCATATCCTTGCCCTTGAGT 
SERPINE1 Reverse CCACAAAGAAACACTAGGAGC 
EGFR Forward CTGGTCTGCCGCAAATTCCG 
EGFR Reverse GGACACTTCTTCACGCAGGT 
PRKCB Forward ACTTGACAACGTGATGCTCGAT 
PRKCB Reverse AGAATGTCTTGGTTGTCACCCC 
CAMK2N2 Forward GCCTCAGCCTCTTTCTAAGGGAC 
CAMK2N2 Reverse GCCTCAACACCCATCCTATCTGC 
IFNG Forward GATTACAAGGCTTTATCTCA 
IFNG Reverse CAGGCATATTTTCAAACCG 
PIK3R2 Forward CCCGGCAGAAGAAAATCAACGA 
PIK3R2 Reverse TTGATCTTGCCCACGTACCAA 
GADPH Forward TCTGACTTCAACAGCGACACC 
GADPH Reverse CTGTTGCTGTAGCCAAATTCGTT  
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signaling pathway, EGFR tyrosine kinase inhibitor resistance, and the 
HIF-1 signaling pathway (Fig. 1E). Among the nine genes, EGLN1, 
AKTIP, ANGPT2, SERPINE1 and EGFR were identified as risk factors that 
were positively correlated with HIF-1 expression, whereas PRKCB, 
CAMK2N2, IFNG, and PIK3R2 were identified as protective variables 
that were negatively correlated with HIF-1 (Fig. 1F, G). 

3.2. HRRS serves as a potential indicator of poor prognosis and 
malignancy 

We stratified cisplatin-treated patients with cervical cancer into 
high- and low-risk groups based on the median value of HRRS (Sup-
plementary Table S7) and observed elevated expression levels of the five 
risk-associated genes in the high-risk group compared to the low-risk 
group, whereas the four protective genes exhibited the opposite trend. 

Fig. 1. Construction of the prognostic HIF-1-related gene signature based on the TCGA cohort. (A) The intersection of HIF-1-related genes and cervical cancer 
prognostic genes is visualized in a Venn diagram. (B, C) LASSO regression analysis of the 19 overlapping genes. (D) A PPI network of the nine key HIF-1-related genes. 
(E) GO analysis (biological processes and molecular functions) and KEGG pathway enrichment analysis of the nine key HIF-1-related genes. (F) LASSO coefficients for 
the nine key HIF-1-related genes. (G) The correlation between the mRNA expression levels of HIF-1 and those of the nine key HIF-1-related genes. 
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The differences in the expression of these nine genes between the high- 
and low-risk groups were significant, as indicated by the p values 
(Fig. 2A). An expression heatmap elucidated the detailed relationship 
between the expression of the nine genes and HRRS. As the HRRS 
increased, patients with cervical cancer had shorter survival times and 
increased mortality, as indicated by more patients (red dots) in the 
group with high-risk scores (right side of the dashed line), in which the 
expression of protective genes (PRKCB, CAMK2N2, IFNG, and PIK3R2) 
decreased (Fig. 2B). Moreover, a greater proportion of stage IV cases was 
correlative with HRRS-high (Fig. S1A). Other clinical characteristics, 
such as age, tumor type (T), lymph node status (N), metastasis status (M) 
and histologic grade, were not significantly associated with the HRRS 
(Fig. S1A). Kaplan–Meier analysis of the HRRS demonstrated that a 
higher HRRS (high-risk group) was significantly associated with poorer 
prognosis in cisplatin-treated patients (HR = 6.17, p = 1.6e-6; Fig. 2C). 
The predictive performance of the HRRS was assessed by using 1-, 3-, 
and 5-year ROC curves, and the average AUC values for 1-, 3-, and 5-year 

prognosis prediction in cisplatin-treated patients with cervical cancer 
reached 0.90, 0.85 and 0.87, respectively (Fig. 2D). 

We also conducted two previously reported six-gene signature [22] 
and seven-gene signature [21] used in cervical cancer, to compare their 
performance on cisplatin-treated patients from TCGA cohort with our 
HRRS model. According to result of six-gene signature, cisplatin-treated 
patients with high-risk group displayed lower survival (HR = 2.85, 
p = 3.8e-3) than low-risk group, with AUC values for 1-, 3-, and 5-year 
prognosis prediction in cisplatin-treated cervical cancer patients 
reached 0.74, 0.70 and 0.69, respectively (Fig. S2A-C). For the perfor-
mance of seven-gene signature, cisplatin-treated patients with high-risk 
group displayed no significant difference in survival rate with low-risk 
group (HR = 0.97, p = 0.93), and the AUC values for 1-, 3-, and 
5-year prognosis prediction in cisplatin-treated patients with cervical 
cancer reached 0.54, 0.52 and 0.52, respectively (Fig. S2D-F), suggest-
ing the performance of our HRRS to assess the cisplatin response of 
cervical cancer patients is better than two reported multigene models. 

Fig. 2. Assessment of the prognostic HIF-1-related gene signature. (A) Boxplots were generated to compare the expression levels of the nine key HIF-1-related genes 
between the high- and low-risk groups. (B) A comparison between the risk scores and survival statuses of cisplatin-treated patients with cervical cancer. The cor-
responding mRNA expression Z scores of the nine genes are depicted using a heatmap. The dashed line stratifies all of the patients into high- and low-risk groups 
based on the median value of HRRS. The right side of the dashed line represents patients with high-risk score, which is associated with more deaths (red dots). (C) 
Survival curves of cisplatin-treated patients categorized as high or low risk in the TCGA cervical cancer cohort. (D) ROC plots and AUC scores at 1, 3, and 5 years were 
generated to assess the overall survival prediction capability of the HRRS. 
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Furthermore, we developed a nomogram based on the HRRS and clini-
copathological variables, including stage and grade, to quantify the risk 
and survival probability for individual cisplatin-treated patients. The 
nomogram demonstrated that only the statistical outcomes of the HRRS 
exhibited significant differences, thus justifying their inclusion in the 
model construction (Fig. S1B). Calibration analysis demonstrated that 
the nomogram’s prediction lines for 3- and 5-year survival probabilities 
closely approximated the ideal performance (45-degree line) (Fig. S1C). 
Compared with other features, the nomogram exhibited a similar pre-
dictive capacity to HRRS for survival, with an average AUC of approx-
imately 0.9, which was markedly superior to that of clinical stage and 
histologic grade (Fig. S1D). These results suggest that the HRRS could 
serve as a potential individual factor for quantifying risk and survival 
probability in cisplatin-treated patients. 

We subsequently analyzed the clinical significance of the high- and 
low-HHRS groups in 17 patients with cervical cancer who had available 
preoperative whole-volume tumor MRI images, transcriptomic data, and 
clinical information. Patients with high HRRS had a higher proportion of 
T-stage 4, stage IVA- IVB, and mortality outcomes compared to those 
with low HRRS. In addition, individuals classified as unclassified (grade 
X, T-stage X) were more likely to be associated with the high-risk group 
(Fig. 3A; Supplementary Table S8). The transcriptomic profiles of the 
nine genes in the two HRRS subtypes were depicted in a heatmap 
(Fig. 3A). Despite the small sample size of 17 patients, it remains evident 
that five risk-associated genes (EGLN1, AKTIP, ANGPT2, SERPINE1, and 
EGFR) were upregulated in the high-HRRS group, whereas protective 
genes (PRKCB, CAMK2N2, IFNG, and PIK3R2) were enriched in the low- 
risk group. In the ROI in the MRI images, it is observable that cases in the 

Fig. 3. Clinical significance of the high- and low-HRRS groups. (A) Unsupervised clustering of all HRRS-related genes in 17 patients with cervical cancer with 
available preoperative whole-volume tumor MRI images. Patient annotations included risk score, age, status, stage, tumor stage, and histologic grade. (B) Repre-
sentative MRI images of patients from the low- and high-risk groups, displaying axial and sagittal T2W images for each patient with the ROI delineated in red. 
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low-risk group displayed regular shapes, smooth margins, and distinct 
boundaries, whereas those in the high-risk group had large, irregular, 
heterogeneous masses that breached the cervical stroma and exhibited 
parauterine infiltration (Fig. 3B). Notably, five patients, including 
TCGA-VS-A958, TCGA-VS-A94Z, TCGA-VS-A94W, TCGA-VS-A94Y, and 
TCGA-VS-A94X, consistently presented with clinical stage IIB. However, 
our HRRS was able to categorize patients into high- and low-risk groups, 
thus aligning with the MRI results. These results indicate the good 
predictive performance of the nine-gene signature in distinguishing 
differences in cervical cancer-grade malignancy and outcomes. 

3.3. The HRRS is a promising predictor of cisplatin resistance 

Given the ability of the HRRS to suggest the clinical outcomes of 
cervical cancer patients who receive cisplatin treatment, we conducted 
additional experiments to examine whether this gene signature could 
serve as an indicator for cisplatin resistance in vitro. To achieve this, we 
performed qRT–PCR to quantify the mRNA expression levels of EGLN1, 
AKTIP, ANGPT2, SERPINE1, EGFR, PRKCB, CAMK2N2, IFNG, and 
PIK3R2 in different cervical cancer cell lines (Fig. 4A). These cell lines 
encompassed diverse histological subtypes, including cervical squamous 
cell carcinoma (SiHa and Caski) and cervical adenocarcinoma (HeLa and 
C33A), thereby facilitating cross-validation of our findings to ensure the 
potential of HRRS. By using HeLa cells as a control, we observed the 
highest expression of most genes in Caski, whereas the expression levels 
of the five risk-associated genes were lowest in C33A (Supplementary 
Table S9). These results indicate significant variations in the expression 
levels of the nine genes among the four cell lines. Additionally, HRRS 
values were calculated for each cell line based on the qRT–PCR assays, 
which yielded values of 0.36 for HeLa cells, − 1.14 for SiHa cells, − 1.84 
for C33A cells, and − 2.19 for Caski cells (Fig. 4B). To determine the 
correlation between the HRRS of the four cell lines and their response to 
cisplatin, we evaluated the sensitivity of each cell line to cisplatin by 
treating them with increasing concentrations of cisplatin (0–50 µM) 
over a 24-h period. The IC50 values for cisplatin in HeLa, SiHa, C33A, 
and Caski cells were determined to be 32.18 ± 3.65, 26.43 ± 1.55, 1.12 
± 0.35, and 4.93 ± 0.57 µM, respectively (Fig. 4C). Through correlation 
analysis, we observed a positive correlation between the IC50 and HRRS 
in these cervical cancer cell lines (R2 = 0.79; Fig. 4D). Specifically, cells 
with high HRRS, such as HeLa and SiHa cells, exhibited resistance to 
cisplatin, whereas those with low HRRS, namely C33A and Caski cells, 
demonstrated sensitivity to the drug. These results indicate that the 
signature may serve as a suggestive indicator of cisplatin resistance in 
vitro. 

3.4. Differential biological behaviors of HRRS subtypes 

To explore the underlying mechanisms contributing to differences in 
the degree of malignancy, cisplatin response, survival time, and survival 
status among the HRRS groups, we performed GSEA to identify hallmark 
gene sets associated with different risk groups. Using the criteria of | 
NES| ≥ 1, NP < 0.05, and FDR < 0.25, we identified 11 hallmark gene 
sets enriched in the cisplatin-treated TCGA cohort. Among these genes, 
eight hallmark gene sets were enriched in the high-risk group, encom-
passing genes related to TGF-β signaling, protein secretion, UV response, 
androgen response, cholesterol homeostasis, unfolded protein response, 
hypoxia, and glycolysis (Fig. 5A). Notably, these gene sets have been 
reported to be associated with chemoresistance and malignant tumor 
progression [10,31–37]. Moreover, genes highly expressed in the 
low-risk group were significantly enriched in allograft rejection, inter-
feron-γ response, and interferon-α response (Fig. 5B). These results 
suggest that distinct patterns of hallmark gene sets in the two HRRS 
groups may partially explain the aforementioned disparities between 
high- and low-HRRS populations. 

3.5. HRRS-based treatment strategy for cisplatin resistant patients 

To identify potential drugs that could benefit patients with high 
HRRS, we employed Student’s t test to discern DEGs between high- and 
low-risk groups. A total of 745 DEGs were identified, comprising 375 
upregulated and 370 downregulated genes in the high-risk group 
(criteria: FC ≥ 1.5, p < 0.05; Fig. 6A; Supplementary Table S10). The 
expression levels of the top 50 DEGs were visualized via cluster analysis 
(Fig. 6B). The upregulated DEGs were primarily linked to EMT, KRAS 
signaling, apical junctions, inflammatory responses, androgen re-
sponses, spermatogenesis, peroxisomes, hedgehog signaling, and 
pancreatic β cells (Fig. 6C). Some of the enriched pathways, such as EMT 
[38], KRAS signaling [39], inflammatory response [40] and hedgehog 
signaling [41], are reported to link to cisplatin resistance. Notably, we 
found an upregulation of the androgen response pathway in patients 
with high HRRS. Although emerging evidence suggests a role for 
androgen receptor activation in cervical cancer progression [42,43], 
additional studies are necessary to investigate the complex interplay 
between the androgen response and cisplatin resistance in cervical 
cancer. Conversely, downregulated DEGs were associated with path-
ways such as cell cycle-related pathways and apoptosis, presenting po-
tential therapeutic avenues for cancer (Fig. 6D). Subsequently, we 
employed the WebGestalt web-based tool to explore drug–gene in-
teractions and found that fostamatinib exhibited the most significant 
association with the upregulated genes (Fig. 6E). Thereafter, we con-
structed a fostamatinib-gene interaction network using the STITCH 
database. Fostamatinib interacted with EMT-related genes, including 
EGFR, RPS6KA3, STAT3, HIPK2, SMAD2, SMAD7, BMPR2, ACVR1, 
TGFBR1, SHC1, and GRB2, forming a tightly interconnected network 
(Fig. 6F). Fostamatinib, an FDA-approved specific spleen tyrosine kinase 
(SYK) inhibitor, has demonstrated significant efficacy in treating chronic 
lymphocytic leukemia [44] and pancreatic ductal adenocarcinoma [45]. 
Currently, research on fostamatinib’s application in cervical cancer is 
limited; herein, our study identified fostamatinib as a potential thera-
peutic option for patients with cisplatin-resistant cervical cancer. To 
establish a clear relationship between fostamatinib and high-HRRS, we 
comprehensively analyzed the changes in the expression of DEGs be-
tween the high- and low-HRRS groups following fostamatinib treatment. 
We overlapped the upregulated and downregulated genes in the 
high-HRRS group with the 16,311 genes in an available gene expression 
dataset GSE113005, respectively (Table S11). Analysis of the gene 
expression alterations induced by fostamatinib in these overlapping 
genes revealed that the expression level of upregulated DEGs was pre-
dominantly downregulated (Fig. S3A), whereas the expression level of 
downregulated DEGs was mostly upregulated (Fig. S3B). These results 
indicate that fostamatinib may inhibit cisplatin-resistant cervical cancer 
by systematically altering the expression levels of DEGs between high- 
and low-HRRS groups. 

3.6. Fostamatinib provides therapeutic efficacy against cisplatin-resistant 
cervical cancer cells in vitro and in vivo 

To validate the anticancer effect of fostamatinib in cisplatin-resistant 
cervical cancer cells, we selected two relatively cisplatin-resistant cell 
lines (HeLa and SiHa cells) for subsequent in vitro experiments. Initially, 
both HeLa and SiHa cells were treated with increasing concentrations of 
fostamatinib (0–20 µM) for 24 h, and cell viability was determined by 
using a CCK-8 assay. As shown in Fig. 7A, fostamatinib exhibited a dose- 
dependent inhibition of cell viability in both HeLa and SiHa cells, with 
IC50 values of 6.96 ± 1.10 µM and 13.55 ± 0.72 µM, respectively. 
Fostamatinib-treated HeLa and SiHa cells exhibited significant cell 
shrinkage and diminished cellular adhesion (Fig. 7B). Moreover, we 
performed colony formation assay to examine the inhibitory effects of 
fostamatinib on the growth of cervical cancer cells. As shown in Fig. 7C, 
the colony formation of HeLa and SiHa cells was significantly inhibited 
by fostamatinib in a dose-dependent manner. Conversely, the cisplatin- 
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Fig. 4. Validation of the predictive capability of HRRS in cervical cancer cells regarding their response to cisplatin. (A) qRT–PCR analysis of the mRNA expression of 
EGLN1, AKTIP, ANGPT2, SERPINE1, EGFR, PRKCB, CAMK2N2, IFNG, and PIK3R2 in four cervical cancer cell lines. (B) Risk score of the indicated cervical cancer cell 
lines calculated based on the HRRS formula. (C) Cell viability of cervical cancer cell lines treated with elevated concentrations of cisplatin (0–50 µM) for 24 h, as 
determined via CCK-8 assays. The bars indicate the SDs, n = 3; * p < 0.05, * * p < 0.01, * ** p < 0.001. (D) Correlation between the IC50 and risk score in the four 
cervical cancer cell lines. 
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sensitive cell lines C33A and Caski appeared to be more resistance to 
fostamatinib than did the cisplatin-resistant cell lines, with IC50 values 
of 35.94 ± 10.47 µM and 21.52 ± 4.89 µM, respectively (Fig. S3C), the 
fostamatinib-resistant effect in C33A and Caski cells was further 
confirmed by colony formation assay (Fig. S3D). 

We next established a HeLa xenograft model to examine the anti-
cancer effect of fostamatinib in vivo. Mice intraperitoneally injected with 
either 40 mg/kg or 80 mg/kg of fostamatinib exhibited significant in-
hibition of tumor growth. The inhibitory effect of fostamatinib on tumor 
growth increased along with the elevated concentration of fostamatinib, 
as evidenced by the reduced tumor volume observed in both 9.4 T MRI 
images (Fig. 8A) and the images of the excised HeLa tumors (Fig. 8B). 
Tumor growth curves (Fig. 8C), tumor weight (Fig. 8D) and Ki-67 pro-
liferation index (Fig. 8E) further confirmed the efficacy of fostamatinib 
in inhibiting tumor growth. Moreover, TUNEL staining demonstrated a 
significant induction of tumor cell apoptosis following fostamatinib 
treatment compared to control group (Fig. 8F). Notably, evaluations of 
body weight, blood parameters, and histological examination of vital 

organs (liver, kidney, spleen, lung, and heart) revealed no significant 
differences between the groups treated with various concentrations of 
fostamatinib and the control group (Fig. 8G-I). These findings suggest 
that fostamatinib treatment exerts a potent anticancer effect against 
cervical cancer with minimal adverse effects. 

4. Discussion 

Cisplatin-based chemotherapy is commonly employed for the treat-
ment of various tumors, including cervical cancer. However, numerous 
patients develop resistance to cisplatin during treatment, thus leading to 
therapy failure and increased mortality rates [5]. Mounting evidence 
suggests that the hypoxic microenvironment fundamentally shields 
tumor cells against cisplatin treatment [7]. HIF-1, an oxygen-sensitive 
transcriptional activator, plays a crucial role in activating numerous 
genes that facilitate adaptation to hypoxia, including those that promote 
angiogenesis, cell survival, and drug resistance [46,47]. In this study, we 
constructed a HIF-1-related gene signature to suggest the clinical 

Fig. 5. Comprehensive analysis comparing hallmark gene sets in the high- and low-risk groups based on the HRRS. (A) Significant enrichment of hypoxia-related 
pathways and cancer proliferation-related pathways in high-risk patients with cervical cancer, as indicated by GSEA. (B) Significant enrichment of interferon 
response-related pathways in low-risk patients with cervical cancer, as indicated by GSEA. 
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outcomes and responses to cisplatin treatment in patients with cervical 
cancer. Moreover, we found that fostamatinib could benefit patients 
with cisplatin-resistant cervical cancer and validated its efficacy in 
inhibiting cervical cancer both in vitro and in vivo. Our study presents an 
effective method for suggesting cisplatin treatment outcomes prediction 
in patients with cervical cancer and provides a potential therapeutic 
strategy for patients with cervical cancer who exhibit tolerance to 
cisplatin. 

Several hypoxia-based methods have been leveraged to assess clin-
ical outcomes and therapeutic responses in patients with cancer, 
including pancreatic ductal adenocarcinoma [48] lung adenocarcinoma 
[15], hepatocellular carcinoma[48]. In this study, we focused on the 
influence of hypoxia on the clinical outcomes of cisplatin-treated pa-
tients with cervical cancer. To this end, we developed an HRRS prog-
nostic model based on nine prognostic genes in the HIF-1 signaling 
pathway. Among the nine genes, five (EGLN1, AKTIP, ANGPT2, 

Fig. 6. Fostamatinib has potential efficacy against cervical cancer in high-risk groups. (A) Volcano plot of DEGs between the high- and low-risk groups: red points 
represent upregulated genes, black points indicate no significant change, and green points represent downregulated genes. (B) A heatmap depicting the top 50 up- 
and downregulated genes alongside their respective risk scores. (C) GSEA of upregulated genes to enrich hallmark gene sets. (D) GSEA of downregulated genes to 
enrich hallmark gene sets. (E) The WebGestalt web-based tool was used to predict drugs targeting the identified hallmark gene sets. (F) A gene–drug association 
network of fostamatinib and its associated genes. 
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SERPINE1, and EGFR) were positively correlated with HIF-1 and 
considered to be risk factors, while the remaining four genes (PRKCB, 
CAMK2N2, IFNG, and PIK3R2) were negatively correlated with HIF-1 
and regarded as being protective factors. 

To date, several studies have established their multigene models to 
predicts the prognosis of cervical cancer patients. A study developed a 
15-gene classifier using generalized linear regressions and binomial lo-
gistic models, and demonstrated that the classifier could accurately 
identify patients with cervical cancer who would benefit from neo-
adjuvant chemotherapy [49]. Moreover, a seven-gene signature (ACSL1, 
ALDOA, FOXK2, GPI, MDH1B, MDH2, and MTHFD1) associated with the 

TCA cycle [21] and a six-gene signature (HSPA5, ANGPTL4, PFKM, 
GOT1, IER3, and PFKFB4) associated with glycolysis [22] were devel-
oped to predict the prognosis of cervical cancer patients. However, gene 
models for predicting the prognosis of cisplatin-treated patients with 
cervical cancer remain limited. After side by side comparing their per-
formance with our HRRS model based on cisplatin-treated patients 
(TCGA cohort), we found that, classified by the six-gene signature, 
cisplatin-treated patients with high-risk group displayed lower survival 
(HR = 2.85, p = 3.8e-3) than low-risk group, even so, our HRRS ach-
ieved greater sensitivity and specificity than other reported models in 
predicting the prognosis of patients with cervical cancer, and thus we 

Fig. 7. Fostamatinib suppresses the growth of cervical cancer cells in vitro. (A) A CCK-8 assay was performed to assess the cell viability of HeLa and SiHa cells 
following treatment with increasing concentrations of fostamatinib (0–20 µM) for 24 h. (B) The morphology of HeLa and SiHa cells was examined after 24 h of 
incubation with fostamatinib (10 μM) or DMSO. Scale bar, 40 µm and 20 µm. (C) The colony formation ability of Hela and SiHa cells was compared after incubation 
with various concentrations of fostamatinib (0–15 μM). The bars indicate the SDs, n = 3; * p < 0.05, * * p < 0.01, * ** p < 0.001. 
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Fig. 8. Fostamatinib suppresses the growth of HeLa cell tumors in vivo. Nude mice bearing HeLa-derived xenografts were intraperitoneally injected with either 
fostamatinib (40 mg/kg or 80 mg/kg) or vehicle every other day (n = 5/group). (A) Tumor sizes were determined through MRI before and after treatment. (B) 
Representative tumors retrieved from xenograft models. (C) Tumor growth curves were generated for both the treatment and control groups. (D) Tumor weights in all 
three groups. (E) The Ki-67 proliferation index in tumor xenografts treated with fostamatinib or vehicle was analyzed via immunohistochemistry; Scale bar, 20 µm. 
(F) TUNEL assay of apoptotic cells in tissues. Blue corresponds to 4’,6-diamidino-2-phenylindole (DAPI, nucleus), and green denotes TUNEL. Scale bar, 200 µm. (G) 
Mouse body weights were recorded every 2 days throughout the treatment period. (H) –Hematological parameters, including aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), urea, creatinine (CREA), total protein (TP), and red blood cells (RBCs), were assessed in the specified groups. (I) Representative 
images of H&E staining of livers, kidneys, spleens, lungs, and hearts collected from the indicated groups. Scale bar, 200 µm. The bars indicate the SDs; * ** p < 0.001. 
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proposed the use of the HRRS as a potential individual factor for risk 
assessment and the determination of survival probability in 
cisplatin-treated patients. 

In the TCGA cohort of patients with cisplatin-treated cervical cancer, 
the overall survival of patients with HRRS-high was negatively associ-
ated with a good prognosis. The general applicability of the HRRS model 
was validated using cervical cancer cell lines, which demonstrated that 
cervical cancer cell lines exhibiting low HRRS were significantly sensi-
tive to cisplatin compared to those with high HRRS. This indicates that 
the HRRS is proficient in predicting the therapeutic efficacy of cisplatin 
in patients with cervical cancer. Our GSEA provided a partial explana-
tion for the substantive difference observed between the different risk 
groups. We discovered that genes in the high-risk group were associated 
with several signaling pathways that contribute to chemoresistance and 
malignant tumor progression, such as EMT, TGF-β signaling, and 
glycolysis [38,50–52]. Conversely, upregulated genes in the low-risk 
group were significantly enriched in signaling pathways such as the 
interferon response [53] and apoptosis pathways, thus suggesting po-
tential therapeutic options for cancer. These findings elucidate how 
disparate patterns of hallmark gene sets delineate the differences be-
tween the two HRRS groups in the cisplatin-treated TCGA cervical 
cancer cohort. 

Fostamatinib, also known as R788, stands as the foremost approved 
specific SYK inhibitor for refractory immune thrombocytopenia [54]. 
SYK is a pivotal tyrosine kinase that induces BCR signaling to activate 
Ca2+ and PI3K signaling pathways [54], thereby emerging as a target for 
numerous diseases, including various immune system diseases and 
cancers [55]. As an effective SYK inhibitor, fostamatinib has consider-
able potential in cancer therapy. For example, fostamatinib has been 
reported to inhibit B-cell receptor signaling and cancer proliferation in 
chronic lymphocytic leukemia [44]. Additionally, recent studies have 
highlighted its ability to reprogram the tumor immune microenviron-
ment, thus rendering it a potential treatment strategy for pancreatic 
ductal adenocarcinoma [45]. However, fostamatinib has not been uti-
lized for cervical cancer treatment. Our bioinformatics analysis indi-
cated that fostamatinib may be a potential therapeutic option for 
patients with cisplatin-resistant cervical cancer. Drug repurposing is an 
efficacious strategy for harnessing new applications of existing drugs 
beyond their original indications, with significant advantages in terms of 
cost savings and bypassing safety concerns [56]. Given the demon-
strated feasibility of utilizing fostamatinib as an anticancer agent across 
various tumor types, repurposing it for treating cisplatin-resistant tu-
mors has emerged as being a viable strategy. 

Our analysis revealed that EGFR, RPS6KA3, STAT3, HIPK2, SMAD2, 
SMAD7, BMPR2, ACVR1, TGFBR1, SHC1, and GRB2 as being primary 
targets of fostamatinib (Fig. 6F). Most of these genes are associated with 
EMT, immune response, and hypoxia. For example, EGFR, an epidermal 
growth factor receptor, plays a role in coordinating hypoxia-induced 
resistance and the development of EMT [57]. STAT3, initially identi-
fied as an IL-6 transcription factor, mediates hypoxia-induced gene 
expression and promotes EMT [58,59]. Therefore, targeting these genes 
in patients with cisplatin-resistant cervical cancer may modulate hyp-
oxia, EMT, and immune crosstalk, thereby exerting significant anti-
cancer effects. Our in vivo and in vitro experiments indicated that 
fostamatinib specifically suppressed those high-HRRS cervical cancer 
cells, underscoring its potential for treating cisplatin-resistant cervical 
cancer. 

Certain limitations must be acknowledged in this study. First, the 
HRRS signature was developed using retrospective data obtained from 
the TCGA database, thus necessitating further validation with larger 
sample sizes in subsequent investigations. Second, in vivo and in vitro 
investigations are imperative to examine the role of the nine genes in 
cisplatin resistance in cervical cancer. Third, additional clinical samples 
and trials are necessary to substantiate the potential of fostamatinib for 
treating cisplatin-resistant cervical cancer. 

5. Conclusion 

We established HRRS as a tool to suggest clinical outcomes and 
therapeutic responses to cisplatin in patients with cervical cancer. 
Additionally, we discovered that fostamatinib, an FDA-approved SYK 
inhibitor, is a viable precision treatment for patients with cisplatin- 
resistant cervical cancer and high HRRS. Our findings hold significant 
promise for future therapeutic strategies. 
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