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To understand neural encoding of neuropathic pain, evoked and resting activity of

peripheral human C-fibers are studied via microneurography experiments. Before

different spiking patterns can be analyzed, spike sorting is necessary to distinguish the

activity of particular fibers of a recorded bundle. Due to single-electrode measurements

and high noise contamination, standard methods based on spike shapes are insufficient

and need to be enhanced with additional information. Such information can be derived

from the activity-dependent slowing of the fiber propagation speed, which in turn

can be assessed by introducing continuous “background” 0.125–0.25Hz electrical

stimulation and recording the corresponding responses from the fibers. Each fiber’s

speed propagation remains almost constant in the absence of spontaneous firing or

additional stimulation. This way, the responses to the “background stimulation” can be

sorted by fiber. In this article, we model the changes in the propagation speed resulting

from the history of fiber activity with polynomial regression. This is done to assess the

feasibility of using the developed models to enhance the spike shape-based sorting.

In addition to human microneurography data, we use animal in-vitro recordings with a

similar stimulation protocol as higher signal-to-noise ratio data example for the models.

Keywords: neuropathy, machine learning, pain, spike count, neural encoding, microneurography,

activity-dependent slowing

INTRODUCTION

Microneurography is an electrophysiological technique of recording peripheral nerve fibers’
activity in awake human subjects (Hagbarth and Burke, 1977). It allows the researchers to collect
data from C-fibers: unmyelinated thin fibers linked to encoding of different sensory sensations,
especially pain, itch, and temperature or serving as efferent nerve fibers for the autonomous nervous
system (Ackerley andWatkins, 2018). This way microneurography becomes a unique tool to study
the neural signaling of pain and itch in healthy subjects and in patients with different pathologies
of the peripheral neural system. There is a major technical problem, which makes this area of
research particularly challenging. The signal is recorded extracellularly, so it typically contains
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FIGURE 1 | Example of the marking method in two-fiber recording. Each line represents a time interval of the recorded data which is locked to a given background

electrical stimulus (single blue square wave). The electrically induced action potentials of two different nerve fibers are shown in green and red with slightly different

latency. They can be sorted to the respective fiber by their stable latency (conduction velocity). When two extra electrical pulses are applied (line 6) and the fibers

discharge each two action potentials, the response to the regular electrical stimulus is delayed. If there is spontaneous discharge (line 11), it is currently not possible to

sort the exact spikes to the respective fiber. It can only be deduced that the fiber with the greater latency shift (green) has fired more action potentials before the

latency shift than the other nerve fiber (red).

overlapping activities of several fibers. There is only little number
of available recordings, where the experimenters were able to find
a needle placement such that there is a single fiber with very
strong signal present and the rest of the fibers could be neglected.

In in-vitro recorded data, the fibers can be separated with a
certain level of success using tools, such as template matching
(Gerstein and Clark, 1964) or clustering (Rey et al., 2015);
however, their success is based on the consistency of spike
shapes across fibers. Unfortunately, in awake human subjects, the
slight patient movements, drift of the microelectrode, changing
peripheral activity of sympathetic nerves, and other factors
during the recording are causing insufficient reliability of the
spike shape alone.

To deal with this problem, in microneurography, there exists
an approach called “marking method” (see Figure 1 and Schmelz
et al., 1995 for more details). The basic idea is that during the
recording process, background electrical stimulation of the nerve
ending is applied. Typically, frequencies of 0.25 or 0.125Hz
are used. This stimulation allows the researchers to track the
responses of the main fibers involved in the recording, as
under similar stimulation, the time between the stimulus and
recorded action potential remains close to constant. In Figure 1,
the case of two fibers is illustrated. The fibers are slightly
different in their propagation speed, which allows to observe their
separated responses. Further, using standardized protocols for
electrical stimulation (Serra et al., 1999; Weidner et al., 1999)
in combination with natural stimuli like mechanical stimulation,
it is possible to classify the fibers functionally. The best-known
categories are CM (mechano-sensitive C-fiber) or class 1a and
CMi (mechano-insensitive C-fiber) or class 1b, which can be
further subdivided into more categories.

Low-frequency background stimulation results in
similar latencies of the responses, while higher frequencies
typically smoothly increase the latencies (Serra et al.,
1999). If an additional stimulation is introduced in
a form of electrical pulses or mechanical force, we
typically observe a sudden latency increase (see line 6
in Figure 1). If there is spontaneous neuropathic firing
present (see line 11 in Figure 1), similar latency increases can
be observed.

Those latency changes, called activity-dependent slowing
(ADS) are directly linked to the changes in fiber speed
propagation, as discussed in earlier works on microneurography
(Schmelz et al., 1995; Namer et al., 2019), and were studied
extensively in the last decades (Schmelz et al., 1995; Bostock
et al., 2003; Dickie et al., 2017). The research is linking the
number of preceding spikes to latency changes, typically via
linear approximations. It is also known that the timing of extra
stimuli relative to the background pulse and the frequency
influences ADS.

We hypothesize, that a reliable model of the dependencies
between the preceding activity and resulting ADS can help us to
understand the encoding of pain in two ways. First, it will provide
us with a better understanding of activity-induced changes in
the fiber speed propagation and therefore an understanding of
peripheral signal processing which is encoding the stimulus in
its quantity and quality (Weidner et al., 2002). Second, it can be
used to accept or reject spike sorting decisions based on different
spike-shapes features and provide more reliable spiking patterns
of single C-fibers, which can be further statistically analyzed to
compare evoked and spontaneous firing patterns in different
groups of human volunteers.
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In this article, we employ simple machine learning algorithms
(polynomial regression) to study the dependency between the
history of fiber’s spiking activity in the past and the resulting
latency. The objective behind the choice of this simple modeling
approach is that it is easy to understand and interpret. Since
the proposed way of accessing the activity history is at the
developmental stage, it is important to track the dependencies
between different variables.

In previous works, such as (Weidner et al., 2000), the
experimental researchers reported a strong influence of the
parameters, such as the number of spikes and their distance from
the next background stimulus on the subsequent latency. In our
preliminary research based on mechanically stimulated rat nerve
fiber, we showed the feasibility of capturing this information by
dividing the fiber history into intervals of adaptive sizes and
building a multivariate regression model of the ADS (Troglio
et al., 2021). Here, we continue this work by taking multiple
differently stimulated fibers, both animal and humans, and
arranging the emerged in Troglio et al. (2021) ideas into a
structured approach, so that searchable parameter space can
be defined and explored. We use polynomial regression as a
model because of its good interpretability. It is important that
at this stage of the research we can track the influence of
each variable and understand the dependencies between the
variables. We start by building individual models for the studied
fibers and presenting promising results, as well as encountering
challenges. Further, we test the inter-fiber model generalizability
and identify the challenges of the available data sets and possible
future solutions.

METHODS

Data
In this project, we used data recorded from isolated mice and
rat peripheral nerve fibers and from human peripheral C-fibers
recorded with microneurography technique. Both techniques
are described in detail previously (Hagbarth, 1979; Weidner
et al., 1999; Uebner et al., 2014). There are strong limitations in
the choice of data sets which can be used for testing machine
learning methods. We are using in-vitro recorded animal data,
where the noise level is low and the Spike2. template matching
for fiber separation can be reliably used in combination with
expert knowledge. In-vivo human data typically has the above-
described problem of multiple fiber recordings, but we can use
several exceptionally successful recordings where there is a single
prominent fiber, and its action potentials can be labeled by a
human expert. In both cases, the data preparation requires a lot
of work, and the selection is suboptimal from the point of view of
machine learning methods.

The stimulation protocols for all datasets are visualized in
Figures 2, 3. The y-axis values of the main time series (green
dots) correspond to the latencies of the fiber responses to the
background stimulus, called further “latencies”. In all data sets,
we observe rapid jumps related to additional stimulation, called
“extra latencies” as opposed to “main latencies” for intervals with
no extra stimulation. After such jumps, we typically observe
subsequent latency relaxation to the lower values. Some data sets

have visible drifts related to the high frequency of the background
stimulation or temperature-related drifts in case of the HES-I set.

Mouse Electrical Stimulation Protocol I (MES-I)
The background electrical stimulation is at 0.125Hz throughout
the whole record duration. Additional electrical stimuli are
introduced in every 10th regular interval with three varying
parameters: number (from 1 to 32), frequency (0 for a single
pulse, otherwise 2–50Hz), and the distance to the next regular
stimulus (10–4,000 ms).

Mouse Electrical Stimulation Protocol II (MES-II)
This fiber is also only electrically stimulated, but the regular
frequency changes. In the first interval (up to 4,000 s), the
background stimulation is 0.25Hz and later changes to 0.125Hz.
The number of pulses of the additional stimulation varies from 1
to 6, the distance to the next regular pulse from 200 to 2,000ms,
and the frequency from 0 (single pulse) to 20 Hz.

Rat Mechanical Stimulation Protocol I (RMS-I)
A rat fiber with background pulses at 0.1, 0.5, and 4Hz.
Additionally, mechanical stimulation with a half-sine shape of
the applied force is introduced typically every 180 s. The length
of the sine wave remains 250ms and the amplitude varies from
8 to 12 mN. The mechanical stimulus triggers a train of 20–30
action potentials.

Rat Mechanical Stimulation Protocol II (RMS-II)
This fiber is similar to RMS-I, though it is most likely a different
fiber subtype with much higher reactivity. Background electrical
stimulation is applied at 0.1, 0.5, 2, and 5Hz. The half-sine
mechanical pulses last for 250ms and have amplitudes of 14–
15 mN. The mechanical stimulation is typically applied every
180 s with two breaks. Amechanically evoked spike train contains
10–30 action potentials.

Human Electrical Stimulation Protocol I (HES-I)
The first human data set with only electrical stimulation has a
background stimulation frequency at 0.25Hz. The frequency of
extra pulses is always 10Hz and 4 pulses with varying distances
from 60 to 3,500 ms.

Human Electrical Stimulation Protocol II (HES-II: P1a,

P1b, P2a, P2b)
The human data sets P1a and P1b are stimulated at 0.25Hz and
for a short period of time at 0.5Hz (at 2,700 s). There are single
extra pulses and multiple extra pulses. The distance to the next
regular stimulus ranges from 10 to 2,000ms and the frequency of
extra pulses from 10 to 100Hz. The number of additional pulses
varies from 2 to 12. For the data sets P2a and P2b, the protocol is
not available.

Data Preparation
Spike Extraction
There are two types of spikes that we distinguish in this
work (see Figure 1). First, the responses to the regular
continuous background stimulation (see Section Data), whose
latency is dependent on the absence or presence of additional
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FIGURE 2 | Animal in-vitro data. The figures depict four animal experimental protocols. The green dots represent the latencies of responses with x-values

corresponding to the onset of the detected spike and y-values corresponding to the response latency in milliseconds. The red dashed line represents the frequency of

the background electrical stimulation in hertz. (A) MES-I (Mouse Electrical Stimulation, set I). (B) MES-II (Mouse Electrical Stimulation, set II). (C) RMS-I (Rat

Mechanical Stimulation, set I). (D) RMS-II (Rat Mechanical Stimulation, set II). In (A,B) the colored circles correspond to the number of pulses in an additional electrical

stimulation train. In case of a single extra pulse, it is marked as cross. The color of the lines attached to the colored circles depicts the frequency of the extra pulses. In

(C,D) the blue dots denote the time of mechanical stimuli.

stimuli in the preceding time interval. The second type
of spikes is action potentials corresponding to additional
stimulation or spontaneous fiber activity. In principle, a
healthy fiber should present very limited spontaneous activity,

and therefore for additional electrical stimuli, we expect
the number of spikes to be approximately equal to the
number of stimulation pulses. For mechanical stimulation,
the number of spikes depends on multiple factors, such as
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FIGURE 3 | Human microneurography (in-vivo) data. The figures depict five human experimental protocols. The green dots represent the latencies of responses, with

x-value corresponding to the timestamp of the detected spike and y-value corresponding to the response latency in milliseconds. Red dashed line represents the

frequency of the background electrical stimulation, in hertz. Colored circles correspond to the number of pulses in additional electrical stimulation train. In case there is

a single extra pulse, it is marked as cross. The color of the lines attached to the colored circles depicts the frequency of the extra pulses. For patient 2, the complete

protocol is not available and only the latencies are plotted. (A) HES-I (Human Electrical Stimulation, set I). (B) HES-II, P1a (Human Electrical Stimulation, Patient 1,

Fiber a). (C) HES-II, P1b (Human Electrical Stimulation, Patient 1, Fiber b). (D) HES-II, P2a (Human Electrical Stimulation, Patient 2, Fiber a). (E) HES-II, P2b (Human

Electrical Stimulation, Patient 2, Fiber b).
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FIGURE 4 | Spike train resulting from mechanical stimulation with a half sine-shaped mechanical force.

applied mechanical force or frequency of the background
stimulation (see Uebner et al., 2014 for more details).
Figure 4 illustrates the half-sine-shaped mechanical stimulation
used in the presented protocols and the resulting exemplary
spike train.

All animal data and HES-I set are analyzed with Spike2.
(2022). The spikes are identified, and shape-based templates
are created using expert-defined thresholds. The templates
are further merged by the expert via visual tracking of the
consistent latencies to the background stimuli. In animal in-
vitro data, the number of fibers is limited, and the data quality
is high, which enables reliable sorting. In HES-I, the recording
captures a very prominent fiber, which also allows sorting
with Spike2.

HES-II data were analyzed with Dapsys (DAPSYS; Turnquist,
2016) by manual tracking of the latencies. The latencies of the
responses to background stimulation are computed from the
onset of corresponding action potentials and the stimulus.

Latencies Normalization
The differences between the measured latencies can be very large.
With fiber types and individual differences being a recognized
factor, the largest absolute differences can be pinpointed to
the varying distances between the stimulating and recording
electrodes (from millimeters in in-vitro rat recording up to 20–
30 cm in adult human microneurography).

There exists the data normalization procedure which is
standard in most microneurography laboratories: After a break
of 2min without continuous background stimulation the
“unconditioned” latency of the first electrically induced spike
is taken as baseline latency and all subsequent latencies are
divided by this value. Thus, latency changes are always given as
percentage of this baseline latency.

In this work, not all available data had this protocol available.
However, since this first unconditioned latency of this protocol
is usually identical to the minimal latency, we used the minimal
latency value which was visually checked for not being an outlier.

Data Filtering
HES-I shows strong drifts of the latency due to the temperature
changes (as follows from the experimental notes). Since we do
not have any information on the temperature fluctuations, in
addition to the raw data, we work with the filtered signal, where
a high pass filter of 0.005Hz is applied. There was a single latency
in the filtered data that was an outlier (at 2,500 s), which was
removed based on the latency range of the other action potentials.

Variables of the Models
In the constructed models, we consistently use the normalized
latency value as one-dimensional output.

The size of the input vector is a varying number which
depends on the length of the fiber spike count history. In the
preliminary work (Troglio et al., 2021), we learned that the long-
term history (more than 1min) can still influence the latency, but
the closer we are getting to the stimulus of interest, the stronger
the influence is. Therefore, it is important to be able to consider
both: very short (below 200ms) and very long-time windows,
keeping in mind that large input vectors are not suitable for the
models based on small data sets.

We propose the following approach to balance the time
precision and the size of the feature vector (see Figure 5A).

• For each model, we define the minimal considered history
interval (Tmin) and the number of intervals N.

• For each background stimulus resulting in an action potential
with normalized latency l, we take Tmin seconds before the
stimulus and count the number of spikes within this interval,
resulting in number s1.

• Then, we increase the interval size by a factor of 4, and count
all spikes there, including those already counted in s1, resulting
in s2.

• We continue this process until we reach N intervals. This way
we obtain the input vector [s1, s2, ..., sN] and an output value l.
The largest resulting interval is denoted by Tmax.

It is important to note that the time windows overlap
and the spikes in smaller intervals are also included in
larger intervals (inclusive count). The approach with the
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FIGURE 5 | Data preparation. (A) Intervals for the spike count. Example with minimal interval length Tmin = 0.5 s and number of intervals N = 3. The resulting input

vector is (1, 5, 6). (B) Background electrical protocol of the set RMS-II which serves as a basis for the 3-fold division. Each different stimulation is divided into three

pieces which add up to the final 3-folds (fold 1 in purple, fold 2 in yellow and fold 3 in green).

exclusive count was tested and rejected, because of its poor
performance, possibly due to a large amount of sparse
input vectors.

Predictive Models for Individual Fibers
The investigation was started from building optimized
computational models of individual fibers, so that the
differences, similarities, and practical problems can be analyzed
and compared. Further, we tested the feasibility of model
generalizations between the fibers.

Train and Test Data Division
Following earlier work (Troglio et al., 2021), we used 3-fold cross-
validation. While dividing the data, the following points need to
be considered:

• Subsequent latencies are dependent, so the data should be
treated as time series and not divided by randomization.

• The densities of latencies are not uniform in time and depend
on the protocol. Therefore, we need to use the number of data
points instead of the time intervals for the division.

• There are strong drifts in the data which are dependent
on the protocol, and therefore different protocols should be
represented in all folds.

Thus, in this work, we identified different background electrical
protocols and divided each of the identified uniform intervals
into three equal pieces, labeled fold 1, 2, and 3. All pieces with
the same label form the corresponding fold. Figure 5B shows
an illustration of the concept on the RMS-II set as an example.
This division does not fully solve the problem of the dependency
between data pieces and only the future validation with the leave-
one-out approach will answer the question about the realistic
model fit.

Linear Regression
The basic predictive model used in this article is linear
regression, due to its simplicity and interpretability. The
degree of the polynomial is a varying parameter denoted
as d. The implementation of the Python library Scikit-learn
(Pedregosa et al., 2011) was used for all computations.

Please note that we tested support vector machines (SVM) and
shallow artificial neural networks (ANN) with no essential benefit
to the prediction performance. To keep the article structure
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clear, we only report linear regression model results here. More
complex models will be considered again on later stages of the
research, when more data becomes available.

Filtering Output
After the model is fitted to the train data set, it predicts the
latencies for the test set. The predictions are filtered based on
the minimum and maximum latency of all latencies. Therefore,
predictions that are smaller or larger than the observed latencies
are excluded.

Parameter Optimization
For each fiber, we perform a separate parameter grid search. The
minimal interval length Tmin varies from 0.125 to 1 s; the number
of intervals N varies from 5 to 10, and the polynomial degree of
the regression model d varies from 1 to 3.

In this manuscript, we decided not to use a separate data
subset for the optimization, neither to use nested folds. The
reason is the size of the individual data sets in combination with
the focus on investigating of the model feasibility for different
types of fibers and stimulations, rather than an interest in exact
performance metrics.

The metrics used to decide on the best performance are the
R2-score averaged over all 3-folds. As discussed in Troglio et al.
(2021), it remains a suboptimal metric as it is highly prone to
large drifts on cost of local dynamics, and we will work on an
improved score in future research.

For the best models of each fiber, we track the coefficients
of the corresponding regression models, so that we can better
understand the influence of each input variable.

Multi-Fiber Validation
The regression models were tested for inter-fiber generalizability.
Most data sets represent different fiber types and different
protocols, so the goal was to understand the main issues relevant
for the generalizability rather than obtain an optimal model fit.

We checked the performance of the following combinations:

• Best performing model parameters of both sets are trained on
RMS-I and tested on RMS-II and vice versa.

• Best performing model trained on MES-I is tested on MES-II
and vice versa.

• P1a, P1b, P2a, and P2b sets represent mechano-sensitive
C-fibers (CM) from two patients, stimulated with similar
electrical protocols. We checked all possible combinations,
that is 4 for the same patient data and 8 for two
different patients.

We did not use the HES-I set, as the raw data has
too strong temperature-related drift and the filtering causes
scale mismatches.

Note that in the future, we aim to train the model on a large
amount of data collected from a specific uniform group of fibers
(e.g., healthy CM) and to be able to predict the latencies for
a previously unseen fiber of the same type. In such a setup,
leave-one-out validation will become possible.

RESULTS

Individual Fibers
In Table 1, we present the results of the optimized models for
each fiber. The total number of latencies is reported to give
information about the size of train and test sets. Parameters
d, Tmin, Tmax, and N are as defined in the previous section.
The last column reports the R2 averaged over the 3-folds. The
graphs presenting the experimental data and the corresponding
predicted values can be found in Figure 6 (animal data) and
Figure 7 (human data). The prediction is made by training the
optimized model on 2-folds and using it to predict the outputs
for the third fold. The predicted values for 3-folds are plotted
together in the same figure (red). HES-I set is evaluated and
plotted both in its raw form and after applying the high pass filter
for the drift removal.

Most fibers showed the superiority of the first-degree
polynomials, and Table 2 presents three chosen animal fibers
with the coefficient’s values corresponding to the spike counts in
the listed intervals to illustrate the significance of the features.
Since each fold of the 3-fold approach trains a different model, we
present all three versions to ensure the robustness of the results.

Inter-fiber Generalizability
We use the best-performing model for a single fiber as a train
set (see Table 2), train it on the complete fiber instead of 2-folds
and then compute the R2-score for the test fiber. The results
of bidirectional generalizability tests of the animal data with
the mechanical and extra electrical stimulations are presented
in Figures 8, 9. The R2-scores are negative for the mechanical
data as the two sets have completely different scales of latency
values. The scores for the fibers MES-I and MES-II (0.55 and
0.45) support the feasibility of the generalization.

Finally, different combinations of the fibers from HES-II
were examined. The full results are presented in Table 3. First,
we checked the performance of the model train and tested
on different fibers of the same patient (4 combinations) and
then the eight combinations of different patients are listed.
Figure 10 presents the best results for the same patient fibers
and for different patients. Additionally, the worst-performing
combination is presented for comparison.

DISCUSSION

In the presented project, we studied the feasibility of predicting
activity-related changes of conduction velocity in the neural fiber
propagation speed. Since changes in conduction velocity, seen
as changes in response latency, are dependent on the preceding
activity and correlate to its magnitude, they represent the short-
term (range of minutes) memory of the nerve fiber and are
used as a tool to quantitatively estimate the preceding activity
of the nerve fiber in microneurography. Thus, predictive models
of latency changes could provide useful information to support
spike sorting algorithms, which are based on spike shapes. The
combination of latency changes predicting the preceding activity
with shape-based spike sorting might increase substantially the
accuracy of sorting algorithms for microneurography data with
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TABLE 1 | Summarized results of the optimized individual regression models per fiber.

Fiber Total number of

latencies

d (Polynomial

degree)

Tmin (Minimal

time)

Tmax (Maximal

time)

N (Number of

intervals)

R2 averaged

over 3 folds

MES-I 1,197 1 0.250 1,024 7 0.64

MES-II 1,245 1 1.000 1,024 6 0.16

RMS-I 6,904 1 0.250 1,024 7 0.90

RMS-II 10,560 1 0.500 2,048 7 0.75

HES-I (raw) 961 1 1.000 4,096 7 0.49

HES-I (f) 910 1 1.000 1,024 6 0.54

HES-II P1a 567 2 0.125 128 6 0.63

HES-II P1b 568 2 0.500 128 5 0.45

HES-II P2a 872 1 0.500 512 6 0.63

HES-II P2b 769 1 1.000 1,024 6 0.60

Total number of latencies reflects the data set size, d denotes the degree of the polynomial model, Tmin and Tmax denote correspondingly the minimal and the maximal time interval for

the spike count, and N denotes the number of intervals.

The bold values show the best and worst R2 values of all predictions for each fiber.

low signal-to-noise ratio, overlaying signals from other nerve
fibers and similar spike shapes of different nerve fibers.

Below we will discuss what we learned from the individual
fiber models and from the attempts to generalize the models to
different fibers. Finally, we will propose the next steps necessary
to use this knowledge in practice for the spike sorting problem
as it is manifested for the special case of microneurography
experiments.

Individual Fibers
Feasibility of the Modeling Approach
The models built on individual fibers showed promising
performance quality. Importantly, the proposed approach to the
spike counting in time windows increased by a factor of 4 proves
to be universal for the very different stimulation protocols. In
future work, the adjustment of the interval definition to the
specific protocols could be considered. This should be done
based on stimulation protocols, since the distance between the
additional stimulation and the subsequent background pulse
is essential for the latency formation due to the existence of
two different molecular processes underlying the changes in
response latency (Bucher and Goaillard, 2011). In short-term
effects (in a range of <1 s), passive membrane changes as seen
in the recovery cycle are properly involved (Weidner et al., 2002;
Bostock et al., 2003), whereas long-term effects (range longer
than 1 s up to several minutes) might be based on the ion
accumulation within the nerve fiber or longer-lasting molecular
effects, such as slow inactivation of sodium channels (De Col
et al., 2008). Therefore, the interval definition should be directly
linked to this distance for improved temporal resolution. The
choice of folds is already made dependent on the stimulation
protocol, which is important to handle large drifts related to the
background stimulation frequency. R2 was already reported in
Troglio et al. (2021) as a suboptimal goodness-of-fit measure,
as it is highly biased by the large drifts of the data set. Drifts
can be based on temperature changes of the skin. Especially
in in-vivo human recordings, the activity of the sympathetic
nervous system due to a “fight or flight” response results in

vasoconstriction with concomitant temperature drop. Also, the
long-term activity of the nerve fiber can lead to an accumulation
of activity-dependent slowing of conduction velocity which
is associated with reduced excitability (De Col et al., 2012).
For the successful use of the developed models to the spike
sorting task, it is important to correctly predict the drifts, but
also individual activity-related latency jumps. Therefore, as a
first step, we are working on the development of a weighted
score, which considers both the large-scale behavior (drift),
as well as the small-scale important phenomena, like the fit
of the evoked latency jumps and the subsequent recovery to
lower values.

In the presented results, we do not observe large differences
of the model qualities between in-vitro and in-vivo data.
However, it should be noticed that on the preparation level, the
proportion of the potentially usable data sets for such modeling
is much higher in the collected in-vitro data. Human in-vivo
data represents on average much lower signal-to-noise levels,
shorter recording times (a challenge for single-fiber modeling)
and, most importantly, the issue of fiber separation. In further
research, we hope to use latency models built on combined
in-vitro and high-quality in-vivo data to support the fiber
separation in other human data sets. However, this approach
is not feasible for the case of high-level neuropathic firing, as
spiking activity may vary strongly and have unpredictable effects
on the latency.

Common Trends in Individual Fiber Models
All models show similar overall behavior: the automatically
optimized length of the largest considered time interval (Tmax)
is rather large, starting from 128 s for the shortest time series
and increasing up to 4,096 s for the HES-I unfiltered data set.
This last value of the time window will be limited in future
algorithms, preventing the grid search to take Tmax above a
certain proportion of the overall record duration. Nevertheless,
we can see in Figure 2, particularly in panel (D) (RMS-II), that
the switch to higher baseline stimulation (4Hz) causes a clear
drift to higher latencies and as long as the latencies keep growing,
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FIGURE 6 | Original latencies from animal fibers and the predicted latencies. (A) MES-I, R2
= 0.64. (B) MES-II, R2

= 0.16. (C) RMS-I, R2
= 0.90. (D) RMS-II,

R2
= 0.75.

the moment of the stimulation change matters and so does
the history.

It is likely that the unusually high Tmax in HES-I can be
attributed to the model’s attempt of translating the temperature-
related drift into something explainable in terms of the available
input features.

Further, for most fibers, d = 1 (linear model)
seems to work best. The cause can be the proportion
of feature vector size to the available training data
points. We expect that when we have larger uniform
data sets available, higher degree polynomials will take
over the optimization process. Larger data sets will also
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FIGURE 7 | Original latencies from human fibers and the predicted values. (A) HES-I, raw data, R2
= 0.49. (B) HES-I, filtered data, R2

= 0.54. (C) HES-II, P1a,

R2
= 0.63. (D) HES-II, P1b, R2

= 0.45. (E) HES-II, P2a, R2
= 0.63. (F) HES-II, P2b, R2

= 0.60.
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FIGURE 8 | Bidirectional generalizability of the models built on animal fibers with additional mechanical stimulation. The fibers belong most likely to different subtypes,

hence the scale of their reaction to the similar stimulation differs strongly and the models cannot be directly generalized. (A) Model is trained on RMS-I and tested on

RMS-II, R2
= −1.62. (B) Model is trained on RMS-II and tested on RMS-I, R2

= −135.25.

FIGURE 9 | Bidirectional generalizability of the models built on animal fibers with additional electrical stimulation. (A) Model is trained on MES-I and tested on MES-II,

R2
= 0.55. (B) Model is trained on MES-II and tested on MES-I, R2

= 0.60.
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TABLE 2 | Coefficients of the three chosen animal models of degree d = 1.

Fiber Length (in seconds) of time intervals

where the spikes are counted

Fold 1 Fold 2 Fold 3

MES-I 0.25 0.089650 0.076663 0.089589

1 −0.002876 −0.002616 −0.004198

4 0.009672 0.009656 0.008564

16 0.005120 0.003784 0.004783

64 0.000940 0.001006 0.001074

256 0.000918 0.000891 0.000436

1,024 0.000378 0.000269 0.000276

Intercept 0.941203 0.955804 0.984416

RMS-I 0.25 −0.005113 −0.004380 −0.004438

1 0.000759 0.000899 0.000872

4 0.000651 0.000634 0.000463

16 0.000679 0.000603 0.000574

64 0.000070 0.000023 0.000027

256 0.000068 0.000075 0.000075

1,024 0.000003 0.000004 0.000004

Intercept 0.945311 0.952889 0.957989

RMS-II 0.5 0.096538 0.077731 0.088526

2 −0.006505 0.001612 −0.002157

8 0.001181 0.003510 0.000047

32 0.002351 0.002083 0.000314

128 0.000492 −0.000003 0.000472

512 0.000106 0.000293 0.000213

2048 0.000184 0.000094 0.000010

Intercept 0.424364 0.576478 0.905347

The bold values show the negative coefficients for all models.

TABLE 3 | R2-scores for different two-fiber combinations of human fiber models from HES-II.

Train Test R2, model optimized on train set R2, model optimized on test set

Same subject P1a P1b 0.77 0.77

P1b P1a 0.84 0.84

P2a P2b 0.04 −0.20

P2b P2a −5.75 –6.07

Different subjects P1a P2a −9.94 –8.24

P1a P2b 0.60 0.01

P1b P2a −11.08 –5.14

P1b P2b 0.55 –0.18

P2a P1a 0.06 0.18

P2a P1b 0.25 0.31

P2b P1a 0.58 0.72

P2b P1b 0.31 0.55

The bold values show the best R2 values for all two-fiber combinations.

allow to use full potential of more complex machine
learning models.

We tracked the regression coefficients of three chosen models
in Table 2. The general tendency is that the further we move
from the latency in question, the less weight this history
has in the model. It agrees with the results from Weidner
et al. (2002). Small coefficients associated with long history

intervals suggest that we should consider imposing a limit of
maximal history Tmax, due to little informative value of the very
long-time intervals.

The negative coefficients associated with the interval of 1
and 0.25 s in MES-I and RES-I, could be possibly related to
supernormality effect (Weidner et al., 2000; Bostock et al., 2003).
In RMS-II, the intervals with negative coefficients are too large for
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that association. However, the larger intervals are also including
smaller intervals in their count (inclusive count), which makes
the interpretation difficult. In the current article, the exclusive
count was not reported as performing worse than the inclusive
count, but we are working on improving this approach by
filtering off the sparse features generated by exclusive count.

Inter-fiber Model Generalizability
Since the fibers are not uniform regarding their sub-types and
protocols, there were limited options for the testing model
generalizability. We started by studying the bidirectional model
generalizability between two pairs of rat and mice fibers:
electrically and mechanically stimulated.

Train on MES-I and test on MES-II worked very well,
achieving the scoremuch better than the 3-folds average onMES-
II alone (R2 of 0.55 vs. 0.16). The real improvement, as assessed
visually by comparison of the Figures 6B, 9A is less impressive
and is partially due to the focus of R2 scores on large data drifts.
Nevertheless, the result is still promising.

The second pair is far less successful, which was to be expected
looking at the normalized latency values at the analogous parts of
the stimulation protocol. RMS-II shows much higher sensitivity
levels. In this experiment, it was difficult to control for the
isolation of the specific fiber type and there is a high probability,
that RMS-I and RMS-II belong to different types, hence such
large differences in scales and they are reflected in the feature
coefficients as well (see Table 2).

To illustrate the qualitative similarities between RMS-I and
RMS-II, in Figure 11, we present the plots of the latency
dependency of the spike count in the preceding 100 s for
both fibers. In the time-series plots, the color is varying in
accordance with the baseline electrical protocol. The same
color is kept in the plots of the latency dependency from
the count. In both fibers, we can clearly distinguish linear
parts corresponding to the accumulative latency growth right
after each increase in the frequency of the baseline electrical
protocol. The linear increase of latency being dependent on
low-frequency stimulation points to slow axonal accumulating
processes. These are not saturating in the range which we
observe, but might saturate out of our observation range with
longer stimulation periods (De Col et al., 2008). This fits well to
the experimental observation of sodium accumulation within the
axon with long-term activity (De Col et al., 2008). Less organized
jumps are related to mechanically stimulated parts. The decrease
of the latency has a rather nonlinear shape, which suggests
that there are different molecular processes compared to the
processes underlying frequency-dependent latency increase. The
latency decrease might be based on a combination of increased
sodium/potassium pump activity which is not linearly combined
with other processes. We conclude that with a sufficient amount
of data higher level polynomials and other nonlinearmodels need
to be used.

In the next step, we studied all pair-wise combinations of four
fibers from the HES-II set. The huge advantages of HES-II data
are uniform fiber types (CM, mechanosensitive C-fiber), good
data quality, similar protocols, and shared subject for P1a/P1b
and P2a/P2b, respectively. The within-subject transferability

works very well for the first patient, with the models achieving
higher scores than on respective single fibers. That can be the
result of the increased training data set. It is also important
to realize that the two data sets are not independent and
therefore the results are not fully reflecting the goodness of the
model generalizability.

The two models of the second subject show an opposite
situation with large negative R2-scores. This is not a result of
bad data quality, as both single fibers showed good results.
Rather, the low scores should be attributed to the normalization
problem (see Figure 12). In the case of the second subject, our
applied normalization was not successful. There seems to be
a drift between the two data sets and the distance increases
with time. This is explained by the variance in the dependency
of latency changes from previous activity in individual nerve
fibers which is seen already at the 2Hz stimulation protocol
in Figure 12 before second 1,500 in a different amount of
activity-dependent conduction velocity slowing and reduced
normalization of the latency of P2b. Since, as discussed above,
there are slow processes leading to an accumulation of latency
increase and thus the latencies drift apart over time with
accumulating preceding activity. The same issue propagated to
the inter-subject generalization attempts, with all combinations
of P1a, P1b, and P2b much more successful than any model
involving P2a.

Interestingly, the performance of models trained on P1a and
P1b data and tested on P2b is slightly superior to the opposite
direction. If we additionally consider the scores achieved for
the parameters optimized for the test set, we can speculate that
quadratic terms with enough training data perform better than
purely linear combinations.

The large disadvantage of the fitted models (propagating for
the single-fiber model) is that the predicted latencies form “steps”
instead of attempting to fit the latency recoveries after additional
stimulations are applied. This may be possible to fix by improving
the goodness-of-fit measurement and giving more weight to the
recovery shapes.

Further Steps
Data Quality Improvement and Control
During our study, we identified several major challenges in
building successful multi-fiber models which can help us to
better understand the pain encoding mechanisms. Firstly, we
need to build a database with structurally stored metadata and
easy-to-use experimental data. The first steps are already made
through developing the data handling platform openMNGlab
(Schlebusch et al., 2021), which is using the Neo tool for
electrophysiological data handling (Garcia et al., 2014). We
are also working on introducing a uniform metadata structure
and making it searchable with odML tables (Zehl et al., 2016).
This approach will allow us to organize larger data amounts
and group it to uniform collections where generalizability
is feasible.

Further, due to the experimental protocols, the spiking activity
is overrepresented in some parts of the baseline intervals on cost
of others. For instance, mechanical stimulation linked to high
spike count is always applied very close to the baseline electrical
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FIGURE 10 | Selection of illustrations of generalizability performance in the HES-II set. (A) Model is trained on P1b and tested on P1a (same patient, best performing

pair of fibers), R2
= 0.84. (B) Model is trained on P2b and tested on P1a (different patients, best performing pair of fibers), R2

= 0.72. (C) Model is trained on P1b and

tested on P2a (worst performing combination overall), R2
= −11.08.

stimulus resulting in high counts overrepresented at this specific
position. To support activity diversity, we are working on
alternative protocols which can improve model training.

Problems caused by untracked temperature changes are
represented by the set HES-I. In future experiments, wherever
possible the temperature will be recorded. To handle already
available data, we will work on the improvement of the
filtering methods.

In our future work, it will be important to introduce
standardized data quality assessment and rejection criteria
for the full data sets or selected fragments. It can be done
in analogy to artifact removal routinely performed in EEG
research (Delorme and Makeig, 2004) and incorporated in the
openMNGlab pipeline.

Methodology Improvement
The normalization process improvement is necessary to handle
the problems, such as reported above on HES-II, when P2a and
P2b were not well aligned despite the used normalization. There
is considerable variance in the dependency of latency changes
and preceding activity not only between different nerve fiber
classes, but also within a nerve fiber subclass for individual nerve
fibers. We may consider repeating a fixed electrical stimulation
routine several times and normalize the data piecewise to correct
the fiber individuality. An exemplary protocol consisting of 2Hz
stimulation for a certain period (Serra et al., 1999) was used in
HES-II data and for the second patient is manifested by two data
“hills” at c.a. 1,500 and 3,500 s (see Figures 3D, E). The distance
between P2a and P2b increased between those timestamps.
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FIGURE 11 | (A) RMS-I, time series plot. (B) RMS-I, latency plotted as a function of spike count. (C) RMS-II, time series plot. (D) RMS-II, latency plotted as a function

of spike count. In (A,C), the colors represent different frequencies of background protocols. In (B) and (D), the spike count is computed in the preceding 100 s.
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FIGURE 12 | Latencies from two fiber pairs of two different patients (set HES-II). (A) Patient 1, fibers P1a, and P1b. Example of successful normalization. (B) Patient 2,

fibers P2a, and P2b. The normalization is not optimal and the differences between two fibers seem to drift in time, resulting in poor generalizability between the models.

There is an improvement potential in the spike counting
interval definition adjusted better to the specific protocol.
Particularly, setting the minimal considered time interval Tmin

individually can be very helpful. Further, the rejection of the
sparse features to avoid unnecessary lengthy input vectors will
be considered.

When the amount of readily available uniform data is
large enough, it is important to consider more complex
models. There has been some preliminary work done toward
employing (N)ARX models—autoregressive models with
exogenous input (Astrom, 1970; Siegelmann et al., 1997).
Supplementary Figures S1, S2 illustrate the results of the ARX
implementation with the history of three steps and the spike
count in the past 8.1 s as an exogenous input for MES-I and
MES-II. Those models showed large potential in handling the
issues of drift and normalization.

Importantly, a large analysis-ready data set in combination
with a multi-fiber model, where in particular the normalization
issues are solved, will allow the creation of a separate set
for parameter optimization and the leave-one-out validation
approach. This setup will allow us to update the current
suboptimal measures of the model fit and obtain more
reliable knowledge on the perspectives of fiber activity-to-
latency modeling.

Despite the problems, current results can be already tested for
practical applications, with one of themost important being spike
sorting. We are currently working on preparation of the golden
standard data and testing the performance of shape-based spike

sorting for the human microneurography data. In the next step,
we will test if tracking fiber latency changes can be practically
beneficial for the sorting process, particularly if combined with
recently developed algorithms that support the handling of data
drifts and experimental protocol changes (Davey et al., 2020;
Buccino et al., 2022).

CONCLUSIONS

This study is a first step in the direction of usingmachine learning
to create hypotheses about fiber latency changes as readout for
molecular mechanisms. We continued the research reported in
Troglio et al. (2021) and show for the first time that it is possible
to prepare data from microneurographic peripheral nerve fiber
recordings for the use of machine learning algorithms and
examine the dependency of conduction velocity (latency) from
the preceding activity which represents the short-term memory
of an axon.

We proposed a systematic approach to the data preparation,
feature extraction with balancing feature vector size and
precision of the spike location and parameter optimization.
The results show that we can predict the fiber latency changes
based on the preceding activity even with simple polynomial
regression models.

We conclude further that in uniform data subsets with a
matching experimental protocol and fiber types, we can expect
that the built models can be generalized to previously unseen
data. Thus, we might be able to automatically predict (backcast)
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preceding activity from resulting latency changes, which we can
assess via conventional analyzing methods in microneurography.

It is particularly relevant in multifiber recordings with low
signal-to-noise ratio in which we can only analyze data using
the “marking method” and estimate previous activity very
roughly via visually tracked latency changes. The machine
learning approach is expected to support automatic spike
sorting algorithms that in turn will allow us to improve our
understanding of the peripheral pain signaling mechanisms.
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