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The use of anti-biofouling polymers has widespread potential for counteracting
marine, medical, and industrial biofouling. The anti-biofouling action is usually
related to the degree of surface wettability. This review is focusing on anti-
biofouling polymers with special surface wettability, and it will provide a new
perspective to promote the development of anti-biofouling polymers for biomedical
applications. Firstly, current anti-biofouling strategies are discussed followed by a
comprehensive review of anti-biofouling polymers with specific types of surface
wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We
then summarize the applications of anti-biofouling polymers with specific surface
wettability in typical biomedical fields both in vivo and in vitro, such as cardiology,
ophthalmology, and nephrology. Finally, the challenges and directions of the
development of anti-biofouling polymers with special surface wettability are
discussed. It is helpful for future researchers to choose suitable anti-biofouling
polymers with special surface wettability for specific biomedical applications.
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INTRODUCTION

The first known documentation of fouling is a papyrus dating
from 412 BCE (1). To date, many kinds of fouling, such as dust,
ice, crude oil, barnacles, bacteria, and blood, have been described
and researched. Fouling has serious impacts on human life, as it
degrades material surfaces, increases drag resistance in ships, and
promotes infection in hospitals (1, (Almeida et al., 2007; He et al.,
2021)). Our previous review defined four categories of foulant,
namely, organic, inorganic, biofouling, and composite fouling
(He et al., 2021). Biofouling is a persistent and widespread
problem, the consequence of the aggregation of undesirable
and often pathogenic organisms on surfaces, comprising
biofilm produced by microorganisms and macroscale
biofouling (macrofouling) resulting from foulants such as
bacteria, cells, and proteins. As shown in Figure 1, biofouling
usually begins with a surface film formed by organic molecules, to
which different foulants attach, resulting in mixed communities
that may undergo long-term changes over long periods of time
(Rosenhahn et al., 2010). The presence of biofouling has
significant impacts in various fields, including ships’ hulls,
water pipes, biosensors, filters, and in the biomedical field
where it contaminates applications such as surgical products,
sutures, and dressings (Liu et al., 2020a).

Biofouling has been divided into three categories: marine,
industrial, and medical (Callow and Callow, 2011; Bixler et al.,
2014). In marine and freshwater environments, biofouling
involves the undesirable attachment of organisms to artificial
surfaces, such as ceramic, metal, or plastic (Dobretsov et al., 2013;
Mieszkin et al., 2013; Hu et al., 2020). In the medical field,
microorganisms may attach to devices and biosensors,
resulting in the infection of patients (Jorge et al., 2012;
Ammons and Copié, 2013; Leslie et al., 2014; Gaw et al.,
2017). In industrial situations, microorganisms may feed and
proliferate using nutrients in membranes, eventually blocking the
pores (Bixler and Bhushan, 2012). Biofouling of microbes and
viruses to surfaces, especially for medical biofouling, still remains
an urgent problem to be solved owing to their crucial roles in
medical implants, CLs, catheters, hemodialyzers, biosensors, and
respirators (Jorge et al., 2012; Ammons and Copié, 2013; Leslie
et al., 2014; Gaw et al., 2017). For example, the COVID-19
emergency lasted nearly 2 years but there is still no sign of it
disappearing. The COVID-19 virus as a new kind of biofoulant is
probably inhibited to fouling the materials with an anti-
biofouling ability. Suhas S. Joshi and coauthors reported that
fullerene-coated anti-biofouling surfaces could be a possible
solution to decrease the adhesion of the COVID-19 virus on
the surface, as they will be hydrophobic and toxic to the virus
envelope (Siddiquie et al., 2020a).

The use of chemical coatings based on biocides or enzymes is
the initial strategy in the prevention of fouling (Lejars et al., 2012).
Although these strategies are effective in fouling prevention, they
may be toxic to animals and plants in terrestrial and marine

environments if there are some harmful materials in the coatings
(Yebra et al., 2004), such as organotin, copper, etc. Because of this,
there are restrictions and even prohibitions on the use of such
materials. A following developed strategy is the use of self-
polishing coatings. These rely on the hydrolysis of side-chains
or degradation of the main polymer chain (Zhang and Chiao,
2015; Yang et al., 2020). Nevertheless, these coatings still have
adverse environmental. Thus, the traditionally used chemical and
self-polishing coatings are not adequate for the complex
conditions present in the world today (Zhang et al., 2016). In
biomedical situations, it has been proposed to use materials that
either prevent the attachment of microorganisms to devices or
destroy them in the vicinity of the device. These materials include
coatings that repel or prevent attachment or kill the
microorganisms in the vicinity. A variety of polymers have
been developed to counteract or reduce biofilm (Carr et al.,
2011; Jorge et al., 2012; He et al., 2021), including: 1) cationic
or peptide-mimicking polymers, or composites that can retain
and release bioactive compounds; and 2) systems that can prevent
microbial attachment by either physical or chemical means.
Antifouling and antimicrobial coating may be differentiated by
ability of the former to repel microbes or modify the structure of
biofilm, while the latter have either bacteriostatic or bactericidal
activities. Antifouling coatings use steric repulsion or nanoscale
rough topography to prevent microbial attachment, while
antimicrobial materials interact directly, resulting in microbial
death through physical contact or the release of bactericidal
compounds (Zheng et al., 2021). In general, environmentally
safe and non-toxic antifouling polymer coating materials thus
require specific attributes of surface chemical compositions and
physical structures, which both significantly affect the surface
wettability that can be quantified as the water droplets contact
angle (WCA, 0–180°) on the surface (Zhu et al., 2012; He et al.,
2013; Tian et al., 2014; Yu et al., 2015; Kuang et al., 2016; Martin
et al., 2017; Yu et al., 2018; Li et al., 2019a; Zhu et al., 2019). As
defined by Young’s equation (Young, 1805), the Wenzel model
(Wenzel, 1936), and the Cassie-Baxter model (Cassie and Baxter,
1944), the surface wettability can be described as
superhydrophilic (WCA <10°), hydrophilic (WCA <90°),
hydrophobic (WCA ≥90°), and superhydrophobic (WCA
≥150°), as shown in Figure 2.

Since the surface wettability and antifouling action of coatings
are dependent on the properties, both chemical compositions and
physical structures, of the surfaces (Maan et al., 2020), there
should be some relationship between the surface wettability and
antifouling ability of materials. Actually, many organisms with
antifouling ability such as Lotus Leaf, Rice Leaf, and Shark Skin
have a natural special surface wettability. After the design
principle of materials with special surface wettability has been
proposed by Lei Jiang et al. (Su et al., 2016), alterations in surface
wettability allow the fine-tuning of bionic antifouling coatings
and such techniques have attracted much attention over the past
decade (He et al., 2021). The fluoro- and silicone-based
hydrophobic polymers used in traditional antifouling materials
reduce the attachment of the fouling substances to the surface
(Lejars et al., 2012; Dobretsov and Thomason, 2011; Liang et al.,
2020; Carl et al., 2012). Together with the chemical composition

1http://corrosion-doctors.org/Seawater/Fouling.htm
1http://corrosion-doctors.org/Seawater/Fouling.htm
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of the material, physical properties including the “Lotus Leaf,”
“Rice Leaf,” and “Shark Skin” effects also influence the antifouling
action (Zhang et al., 2016; Zhao and Liu, 2016; Shi et al., 2015; Lee
and Yong, 2015; Roach et al., 2008; Pan et al., 2019; Jiang et al.,
2015; Ball, 1999; Pu et al., 2016; Azemar et al., 2015; Kang et al.,
2013; Bixler and Bhushan, 2013; Zhu et al., 2010; Bixler and
Bhushan, 2014; Wu et al., 2011; Lee et al., 2013; Xia and Jiang,
2008). Engineered micro-topographical structures together with
specific chemicals are commonly used for bionic implementation
(Scardino and de Nys, 2011; Zarghami et al., 2019). Jie Zheng and
coauthors have reviewed hydrophilic non-fouling materials and
emphasized the importance of using strongly hydrated groups
with optimal physical attributes on the material surface,
concluding that, together with methods for coating surfaces,
are critical for the development of stable and successful non-
fouling materials for use in biomedical devices and applications
(Chen et al., 2010). As shown in Figure 3, we have
comprehensively reviewed the antifouling strategies for the
four types of fouling according to different super-phobic

surfaces, namely, superhydrophobicity in air (He et al., 2011;
Martin and Bhushan, 2017), superoleophobicity in air (Chen
et al., 2019; Li et al., 2020), superhemophobicity in air (Movafaghi
et al., 2017; Galante et al., 2020), and underwater
superoleophobicity (Du et al., 2017; Su et al., 2018).

In this review, we will focus on the anti-biofouling strategies,
because the removal of fouling resulting from the deposition of
organic or inorganic material is usually easier than eliminating
biofouling. Superhydrophobic or superoleophobic surfaces are
often able to prevent and release inorganic fouling, while
superoleophobic surfaces or surfaces with underwater
superoleophobicity are suitable for organic contaminants.
Biofouling, however, usually involves a variety of foulants, and
the solution is not simple. The most effective method, in terms of
both cost and efficacy, is the use of surface wettability to
counteract the attachment of foulants. Actually, an anti-
biofouling surface can be achieved by tuning its surface
wettability (Krishnan et al., 2008; He et al., 2021). For
instance, anti-biofouling measures directed against bacteria

FIGURE 2 |Diagrams of the degree ofWCA (θWCA ) andwater droplets on the four surface types in air. Reprinted with permission fromRef fromRef. (He et al., 2021).
Copyright 2021, Elsevier B.V.

FIGURE 1 | Surface colonization by a fouling organism. Reprinted with permission from Ref. (Rosenhahn et al., 2010). Copyright 2010, Royal Society of Chemistry.
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rely on hydrophilic or superhydrophobic effects (Liu et al.,
2020b). In addition, surfaces with superhydrophobicity, usually
containing a layer of air that blocks contact between the foulant
and the surface (Simovich et al., 2020), are effective against
fouling, as shown in Figure 3.

Biofouling extensively exists in biomedical applications both
in vivo and in vitro, such as cardiology, ophthalmology,
nephrology, and various surgical equipment. Bacteria, cells,
and proteins usually adhere to and forming dense collagenous
capsule around the biomedical implants, which would induce
inflammatory responses, and may give rise to infection and/or
implant rejection (Chan et al., 2020). Thus, in view of the
necessity for anti-biofouling in biomedical applications, we will
focus on the anti-biofouling strategies based on polymers with
special surface wettability such as superhydrophilicity,
hydrophilicity and hydrophobicity but excluding
superhydrophobicity which can be found in our previous
review (He et al., 2021). Meanwhile, we just focus on the
biomedical applications in cardiology, ophthalmology, and
nephrology. Moreover, biofoulants mentioned in this review
are focused on the usual bacteria, cells, and proteins. Although
there are some reviews about antifouling polymers (Lejars et al.,
2012;Wu et al., 2019; Maan et al., 2020), our review is focusing on
anti-biofouling polymers with special surface wettability, and it
will provide a new perspective to promote the development of

anti-biofouling polymers. Meanwhile, the anti-biofouling
strategies reviewed in this manuscript will offer help for future
researchers to choose suitable polymers for specific anti-
biofouling applications.

ANTI-BIOFOULING POLYMERS WITH
SPECIAL SURFACE WETTABILITY

Anti-biofouling polymers are attractive as they can avoid the
introduction of drugs to achieve anti-biofouling but their efficacy
is determined by the polymer and foulant species (Francolini
et al., 2015). As summarized in Table 1, numerous proposals with
various surface wettability have been reported to generate anti-
biofouling ability. The various types of polymers and biofoulants
are also listed in Table 1, which clearly reveals the relationship
between the polymers and foulants (bacteria, cells, proteins, etc.).

Superhydrophilicity
Surfaces that prevent both microbial attachment and non-specific
protein adsorption are required in the biomedical sphere. These
should be hydrophilic as the polymer surface should bind water in
preference to microorganisms. Wetting is thus an important
consideration (Chen et al., 2010). According to these criteria, a
number of anti-biofouling polymers have been developed that

FIGURE 3 | Antifouling strategies based on various super-phobic surfaces. Reprinted with permission from Ref. (He et al., 2021). Copyright 2021, Elsevier B.V.
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TABLE 1 | A summary of polymers with different surface wettability and the relevant types of foulants for anti-biofouling applications (sorted in alphabetical order of the
description of the typical polymers for each special surface wettability).

Strategy based
on
surface
wettability

WCA(°) Typical polymers Foulants Ref

Superhydro-
philicity

0 MI-dPG (a) Bacteria: E. coli, S. aureus Li et al. (2019b)
<5 PCBAA (a) Cells: GLC-82 cells Xu et al. (2017)

(b) Proteins: FITC-BSA, FITC-HSA
(c) Blood: Blood cells, Blood proteins

0 Pluronic
®
F127 (a) Cells: L929 Zheng et al. (2010)

(b) Proteins: Fibrinogen, BSA.
0 PPGL (a) Proteins: Anti-BSA, Anti-myoglobin Gam-Derouich et al. (2011)
6 Sulfobetaine silane (a) Bacteria: P. aeruginosa, S.

epidermidis
Yeh et al. (2014)

(b) Proteins: BSA, Mucin, Lysozyme,
Liposomes

10 Zwitterionic bottlebrush polymers (a) Bacteria: E. coli Xia et al. (2019)
(b) Proteins: BSA, Lysozyme,
β-Lactoglobulin

7 Zwitterionic hydrogels (a) Bacteria: S. aureus, E. coli Chan et al. (2020)
(b) Cells: Human primary dermal
fibroblasts, Red blood cells
(c) Proteins: BSA
(d) Blood: Platelets

Hydrophilicity 28 PAA (a) Proteins: BSA Lei et al. (2021)
(b) Cells: L929 cells
(c) Blood: Blood erythrocytes

27 PCBAA (a) Bacteria: E. coli, S. aureus Wang et al. (2018); Zhang et al. (2021a)
(b) Cells: L929
(c) Protein: BSA, HRP-conjugated
anti-IgG

26–74 PEG (a) Bacteria: S. epidermidis, S. aureus,
P. aeruginosa

Cheng et al. (2015); Wang and He, (2019)

(b) Cells: Human corneal epithelial cells
(c) Proteins: BSA, Lysozyme
(d) Fungi: C. albicans, F. solani

41 PEGDA (a) Blood: Platelet-rich-plasma Guo et al. (2019)
41 PEGylated (a) Cells: NIH 3T3 cells Chen et al. (2015a)

(b) Protein: BSA.
58 PEO (a) Bacteria: S. aureus Martínez-Gómez et al. (2015)
60 PHEMA (a) Protein: BSA Zhu et al. (2015)

(b) Blood: Platelet.
25 Pluronic

®
F127 (a) Cells: L929 Zheng et al. (2010)

(b) Proteins: Fibrinogen, BSA.
72 Poloxamers 338 (a) Bacteria: E. coli Stirpe et al. (2020)
17 Poly(carboxylbetaine-co-dopamine

methacrylamide) copolymer
(a) Bacteria: E. coli, P. aeruginosa, S.
aureus

Liu et al. (2020c)

(b) Fungi: C. albicans
56 Poly (citric acid) (a) Proteins: BSA Abidin et al. (2016)
36 Poly(p-phenylene terephthalamide) (a) Bacteria: E. coli Chen et al. (2018)

(b) Proteins: BSA
12–38 PSBMA (a) Bacteria: E. coli, S. epidermidis Chen et al. (2012); Sin et al. (2014); Li et al. (2017); Zhang

et al. (2021b)(b) Cells: Human MG63 osteoblast,
HT1080 fibroblast, L929
(c) Blood: Plasma protein, Blood
platelets, Blood erythrocytes, Blood
leukocytes

63 PVA (a) Proteins: BSA Lan et al. (2021)
(b) Cells: L929 cells

20–60 PVP (a) Bacteria: S. aureus, E. coli Telford et al. (2010); Ran et al. (2011); Wu et al. (2012);
Jiang et al. (2013); Liu et al. (2013); Zhu et al. (2017)(b) Cells: L929 cells

(c) Proteins: FITC-BSA, Fibrinogen, IgG,
Lysozyme
(d) Blood: Platelets

(Continued on following page)
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effectively prevent the adhesion of proteins, cells, and bacteria.
These include hydrophilic polymers (Epstein et al., 2012; Keefe
et al., 2012; Chen et al., 2015a; Mohan et al., 2015; Zhu et al., 2015;
Guo et al., 2019; Jiang et al., 2020), e.g., PEG, PEGylated
polymers, PHEMA, polysaccharides, and zwitterionic polymers
(Carr et al., 2011; Chen et al., 2012; Sin et al., 2014; He et al., 2016;
Kang et al., 2016; Wang et al., 2018; He et al., 2019; Liu et al.,
2020c; Erathodiyil et al., 2020; Su et al., 2020; Zhang et al., 2020;
Zhang et al., 2021a; Zhang et al., 2021b; Zhou et al., 2021), e.g.,
PSBMA, PCBMA, and PCBAA. Although these polymers differ
in their structures and chemistry, they are all able to bind strongly
to water, resulting in the presence of a layer of water that reduces
interaction and attachment between the surface and the foulant.
Effective surface hydration is achieved through hydrogen
bonding in the case of hydrophilic polymers, and ionic
solvation in the case of zwitterionic materials (Liu et al.,
2020a). In addition, some papers have been published on the
synthesis and application of polyglycidol and its derivatives with
various morphologies. For example, the PPGL with a WCA near
zero showed a superhydrophilic character and good anti-
biofouling ability tested in anti-BSA and anti-myoglobin
experiments (Gam-Derouich et al., 2011).

Superhydrophilic anti-biofouling zwitterionic polymers show
great potential for biomedical applications (Chan et al., 2020; Xu
et al., 2017; Xia et al., 2019). Rongxin Su and coauthors reported
an anti-biofouling three-block polymer with zwitterionic chains
on the bottlebrush polymers that showed high stability in high-
saline solutions and over an extensive pH range (Xia et al., 2019).
The anti-biofouling properties benefited from a low WCA near
10° as demonstrated by serum albumin and lysozyme adsorption
with ultralow fouling properties of lower than 0.2 ng cm−2 (Xia
et al., 2019). Jackie Y. Ying and coauthors produced a novel
superhydrophilic anti-biofouling, biocompatible hydrogel
formed by the crosslinking of polymers with calcium and
monomers of methacryloyl-L-lysine (MLL), a zwitterionic
amino acid (Chan et al., 2020). The resultant hydrogel
containing 30% MLL was found to be strongly porous with a
high degree of water encapsulation. The WCA on a glass slide
with hydrogel coating decreased to 7.6° and the superhydrophilic

hydrogel was effective in preventing bacterial, cell, and protein
adhesion. The anti-biofouling hydrogel did not form capsules
when subcutaneously implanted in mice over 2 months (Chan
et al., 2020). Lei Zhang and coauthors reported an efficient and
simple strategy (Figure 4A) to modify hydrophobic electrospun
meshes with zwitterionic PCBAA hydrogels to obtain
superhydrophilic anti-biofouling meshes with WCAs of less
than 5° (Figures 4B,C) (Xu et al., 2017). The coated
superhydrophilic mesh resisted attachment of FITC-BSA,
FITC-HSA proteins, and GLC-82 cells (Figures 4D–4K).
Furthermore, the hydrogel structure retained its stability under
physiological conditions for a minimum of 3 months. This report
demonstrates an effective technique for modulating hydrophilic
surfaces on different fibrous structures, and may have widespread
biomedical applications.

Hydrophilicity
Among hydrophilic polymers, PEG-based polymers are probably
the most investigated for biomedical applications, as PEG is both
non-immunogenic and anti-thrombogenic, as well as being
largely resistant to protein adsorption. The anti-biofouling
action of PEG-based polymers is the result of both steric and
hydration effects and is dependent on the size, branching, and
surface-packing density of the specific PEG molecule (Francolini
et al., 2015). A high degree of hydration on the surfaces of the
polymers is necessary for effective anti-biofouling actions,
although the molecular mechanisms and details involved are
not fully understood. Jie Zheng and coauthors conducted a
computational investigation of the properties of four
poly(N-hydroxyalkyl acrylamide) (PAMs) brushes with
different carbon spacer lengths (CSLs � 1, 2, 3, and 5) using
molecular mechanics (MM), Monte Carlo (MC), and molecular
dynamics (MD) simulations (Liu et al., 2020a). MM assessed the
type of packing structure of the brushes, while MC simulations
were used to evaluate the interaction between the brushes and a
lysozyme, and MD was utilized for examining the interactions
between the brushes, proteins, and water molecules. The results
showed that minor variations in the CSL structure are able to
influence both the surface hydration and antifouling properties of

TABLE 1 | (Continued) A summary of polymers with different surface wettability and the relevant types of foulants for anti-biofouling applications (sorted in alphabetical order
of the description of the typical polymers for each special surface wettability).

Strategy based
on
surface
wettability

WCA(°) Typical polymers Foulants Ref

85 Segmented PU with -SO3H (a) Bacteria: S. epidermidis Francolini et al. (2012)
25–80 Others (a) Bacteria: S. aureus, E. coli Huang et al. (2011); Seo et al. (2011); Chen et al. (2014);

Li et al. (2014); Xie et al. (2015); Yin et al. (2015); Wang
et al. (2016); Valencia et al. (2018); Xie et al. (2018); Ji
et al. (2019); Ye et al. (2019)

(b) Cells: L929 cells, Bovine aortic
endothelial cells
(c) Proteins: BSA, Fibrinogen, Lysozyme
(d) Blood: Platelet-rich plasma, Platelet-
poor plasma

Hydrophobicity 125 2-perfluorooctylethyl methacrylate (a) Proteins: FITC-BSA, Fibrinogen Wang et al. (2015)
100–147 PDMS, PU, silicone oil (a) Bacteria: E. coli Siddiquie et al. (2020b)

101 Poly(siloxane-urethane) (a) Proteins: BSA. Santiago et al. (2016)
106 Others (a) Bacteria: S. aureus, E. coli Kim et al. (2016); Wang et al. (2017)

(b) Proteins: BSA, Lysozyme
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the surface, confirming experimental findings using surface
plasmon resonance and sum frequency generation vibrational
spectroscopy, as well as measurements of contact angles. These
results promote improved understanding of PAM brushes and
their properties in relation to anti-biofouling materials and
surfaces (Liu et al., 2020a).

Polyurethane (PU) is a commonly used biocompatible polymer,
being used in numerous biomedical engineering applications,
including dressings, joints, and catheters. Adsorption of proteins
to its surface frequently occurs in biological andmedical situations,
with consequent deleterious effects. Thus, investigation of PU-
protein interactions is critical. Both the chemical constituents of the
material and its physical topography influence adsorption, and
these factors have been extensively investigated over the past few
decades. These studies have demonstrated the efficacy of tethering
hydrophilic polymers, such as PEO, to the surface. Surfaces
modified in this way are strongly resistant to nonspecific
protein adsorption, with both the lengths and densities of the
PEO chains playing significant roles (Zheng et al., 2010).

In their investigation of suitable materials for preventing the
complications of infection and thrombosis in devices making
contact with the blood, Francolini and coauthors designed and
synthesized a heparin-mimetic segmented PU (Francolini et al.,
2012). This introduced sulfate and sulfamate moieties that are
responsible for the anticoagulant activity of heparin onto PU. It
was found that the modified PU was more hydrophilic than the
parent compound. These polymers also reduced the degree of
bacterial attachment, measured as colony-forming units (CFUs)
found per cm2 of polymer (Figure 5A). These observations were
confirmed by SEM (Figures 5B,C), which demonstrated bacterial
colonization and aggregation on surfaces lacking the -SO3H
groups (Figure 5B), and no accumulation of bacteria on

surfaces with the -SO3H groups (Figure 5C). These results
show that increasing the hydrophilicity of the polymer as well
as the addition of -SO3H groups affected the antifouling action of
the surface (Francolini et al., 2012).

Hydrophobicity
Hydrophilic anti-biofouling polymers tend to swell, resulting in lower
space for interaction and thus reduced attachments (Rosenhahn et al.,
2010; Eshet et al., 2011). The use of hydrophobic polymers can evade
this issue. Hybrid poly(siloxane-urethane) copolymers were
developed by Lourdes Irusta and coauthors using isophorone
diisocyanate trimers, polycaprolactone triols, and hydroxy-
terminated PDMS (Santiago et al., 2016). The authors then used
quartz crystal microbalance with dissipation monitoring to measure
BSA adsorption, observing that the protein was adsorbed in a
conformation that did not allow water retention. This indicates
that the increased surface hydrophobicity produced by the PDMS
was responsible for the improved antifouling action of these
copolymers (Santiago et al., 2016). Xinping Wang et al. described
the preparation of acrylate block polymer brushes with two 2-
perfluorooctylethyl methacrylate units at the brush end on an Au
substrate with a “grafting to” method (Wang et al., 2015). It was
found that the amount of fibrinogen adsorbed to the surface was
reduced in proportion to the hydrophobicity of the perfluoroalkyl
chains (Wang et al., 2015).

Suhas S. Joshi and coauthors investigated the effects of introducing
femtosecond laser-induced submicron physical structures onto
PDMS and PU surfaces for biomedical applications, as shown in
Figure 6 (Siddiquie et al., 2020b). Highly regular and single scale
submicron laser-induced periodic surface structures (LIPSS), and
multiscale structures (MS) containing both submicron- and micron-
scale features were obtained by femtosecond laser processing on

FIGURE 4 | The process of preparing anti-biofouling zwitterionic hydrogels (A). WCA on uncoated mesh (B) and coated superhydrophilic mesh (C). Fluorescence
micrographs of FITC-BSA (D,E) and FITC-HSA (F,G) adsorption on uncoated (D,F) and coated structures (E,G), respectively. Merge of uncoated and coated materials
after FITC-BSA adsorption (H), and the enzyme-linked immunosorbent assay (ELISA) results (I). Fluorescence micrographs of cell adhesion test on uncoated mesh (J)
and coated superhydrophilic mesh (K). Scale bar � 100 μm. Reprinted with permission from Ref. (Xu et al., 2017). Copyright 2018, IOP Publishing, Ltd.
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stainless-steel (SS) substrates and following replicate processing with
PDMS and PU elastomers. Surface hydrophobicity was enhanced on
LIPSS and MSs surfaces (Figure 6A). It was observed that the
hydrophobic submicron-textured PDMS and PU surfaces were
stable and performed well for up to 100 h when immersed
(Figure 6B). E. coli attachment was significantly reduced (>89%)
on both LIPSS- and MS-modified surfaces (Figures 6C,D).

ANTI-BIOFOULING POLYMERS WITH
SPECIAL SURFACE WETTABILITY FOR
BIOMEDICAL APPLICATIONS
As discussed in Section 2 above, various strategies to achieve
different surface wettability can produce anti-biofouling ability
for different biomedical applications with extensive alternative
schemes. In this section, we will review the applications of anti-
biofouling polymers with special surface wettability in typical
biomedical fields both in vivo and in vitro, including cardiology,
ophthalmology, and nephrology.

Heart Valves in Cardiology
Although the bioprosthetic heart valve (BHV) has been used
in clinical applications, there are still some complications,

including calcification and thrombosis, which will shorten the
service life of BHV. Hydrophilic polymers such as PAA are
usually utilized to enhance the anti-biofouling actions of
materials (Zhang et al., 2021c). Our previous article
proposed a strategy to fabricate a hydrophilic-coated anti-
biofouling BHV using PAA and PDMS in the inner and outer
valves (Lei et al., 2021). We evaluated the anti-biofouling
properties, including anti-coagulation, anti-cell adhesion,
anti-calcification, and ability to resist BSA adsorption, both
in vivo and in vitro (Figure 7). The anti-biofouling-coated
sample (PHIL) was significantly better than the GLUT-treated
control sample in various tests, including attachment of L929
cells, whole blood, FITC-BSA, and calcification. These results
indicate the effectiveness of this method to produce
hemocompatible biomedical materials with good anti-
biofouling abilities.

Polymeric heart valves have attracted much attention
(Bezuidenhout et al., 2015; Guo et al., 2019; Kambe et al.,
2019). Xing Zhang and coauthors reported that a composition
of PEGDA hydrogels and polyethylene terephthalate/polyamide6
(PET-PA6) fabric (PEGDA/PET-PA6) was fabricated to form
artificial heart valve leaflets (Guo et al., 2019). The WCA on the
PET-PA6 fabric was about 129° (Figure 8A) but it decreased to
about 41° (Figures 8B,C) after the introduction of PEGDA

FIGURE 5 | S. epidermidis colony-forming units per cm2 of PEUA (control), amidated, and -SO3H group-containing polymers (A). SEM results showing the
aggregates of bacterial on the PEUA surface (B) and the absence of aggregates on the PEUEA–SO3H surface (C) after 24 h of exposure. Reprinted with permission from
Ref. (Francolini et al., 2012). Copyright 2012, Elsevier B.V.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 8073578

He et al. Anti-Biofouling Polymers with Surface Wettability

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


hydrogels, showing an obvious increase of surface
hydrophilicity. After porcine platelet-rich plasma was
cultivated for 2 h, a few platelets were seen on the PET-PA6
material (Figures 8D,E), while none were visible on the
PEGDA/PET-PA6 composite (Figures 8F,G). Therefore, the
increased hydrophilicity from the PEGDA hydrogels could
enhance the anti-biofouling ability of the composite artificial
heart valve leaflets with a low thrombogenic risk when
interacting with blood.

IOLs and CLs in Ophthalmology
Biofoulant adhesion, including the attachment of bacteria,
cells, or proteins, to devices such as IOLs can result in the

failure of the implant. We fabricated a simple and economical
PVA coating with or without the introduction of a “bridge.”
The “bridge” comprised an intermediate adhesive layer (AL)
to augment the interaction between the coating and the IOL
material (Figure 9A) (Lan et al., 2021). Cell proliferation on
the material was measured using CCK-8 assays (Figure 9B)
and the adhesion of L929 cells measured by CLSM is shown in
Figure 9C. The fluorescent protein adsorption performance
and the fluorescence intensity of FITC-BSA on different
samples were shown in Figure 9D. Increasing the PVA
coating time to 10 s resulted in a reduction in the WCA to
approximately 63°, in conjunction with augmented
hydrophilicity and anti-biofouling action against both L929

FIGURE 6 | Static WCA on unmodified, LIPSS-, and MSs-modified SS, PDMS, and PU surfaces (A). Differences in water CA with different immersion times (B).
Bacteria on the different surfaces (C, above). Bacterial contacts on the surfaces are shown in red, and fluorescencemicrographs indicate bacterial attachment to different
PDMS and PU surfaces (below). Numbers of attached bacteria in relation to topography (D). Reprinted with permission from Ref. (Siddiquie et al., 2020b). Copyright
2020, American Chemical Society.
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cells and BSA. The coating prepared by AL “bridge” could
greatly improve the mechanical stability of PVA coating on
PMMA IOL surface to extend the lifetime of anti-biofouling
ability, which could provide a new means of preparing a
transparent hydrophilic anti-biofouling PVA coating
applicable to IOLs.

Besides the IOL, CLs are a common application in
ophthalmology and the development of anti-biofouling CLs
would ensure safety. Gongyan Liu and coauthors introduced
the zwitterionic anti-biofouling carboxybetaine groups onto
the surface of CLs to significantly increase their wettability

and reduce their adsorption of bacteria and proteins (Liu
et al., 2020c). Yiyan Yang and coauthors reported a series of
polymers that were conjugated with adhesive catechol, anti-
biofouling PEG, and hydrophobic urea/ethyl onto branched
poly(ethylenimine). The CLs were coated by immersing in
aqueous solutions of the modified polymers, and the coating
was found to tolerate autoclaving, remaining on the device for
its lifetime of approximately 7 days (Cheng et al., 2015).
Silicone is widely utilized in biomedical devices, and the
most commonly used silicone is PDMS as it is transparent,
inert, inflammable, and non-toxic. Chun-Jen Huang and

FIGURE 7 | Anti-biofouling behavior of L929 cells, whole blood, FITC-labeled BSA, and calcification experiments on pristine BHV treated with GLUT and the sample
treated with anti-biofouling coating (PHIL). Reprinted with permission from Ref. (Lei et al., 2021).

FIGURE 8 | Profiles of water droplets on PET-PA6 fabric (A) and PEGDA/PET-PA6 composite (B), andWCA results of the samples (C). SEMmicrographs showing
platelet adherence on the PET-PA6 fabric (D,E) and PEGDA/PET-PA6 composites (F,G). Reprinted with permission from Ref. (Guo et al., 2019). Copyright 2019,
Elsevier B.V.
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coauthors developed a stable superhydrophilic zwitterionic
interface on PDMS by covalent silanization of sulfobetaine
silane (SBSi) (Yeh et al., 2014). This was effective against
biofouling by both Pseudomonas aeruginosa and S.
epidermidis even after storage for 30 days at room
temperature (Figures 10A–C), and the SBSi-modified

commercially available silicone hydrogel CLs showed similar
excellent anti-biofouling ability. Meanwhile, the adsorption of
BSA, mucin, lysozyme (Figures 10D–F) and sulforhodamine B
sodium (SRB)-encapsulated liposomes (Figures 10G,H) on
SBSi-tailored PDMS showed an obvious decrease compared
with that on pure PDMS.

FIGURE 9 | Fabrication process of hydrophilic PVA with an intermediate AL on PMMA IOL surface (A). Cell proliferation measured by CCK-8 assay (B) and
proliferation at 1, 3, and 5 days pre- and post-modification (C). Fluorescent protein absorbance (D, left) and the fluorescence intensity (D, right) of FITC-BSA in different
samples. Reprinted with permission from Ref. (Lan et al., 2021). Copyright 2021, Royal Society of Chemistry.
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Urinary Catheters and Hemodialysis
Membranes in Nephrology
Urinary catheters and hemodialysis membranes are the typical
polymer materials used in nephrology. Various strategies to
prevent bacterial adhesion and growth on medical devices
have been developed. Poloxamers are nontoxic hydrophilic

copolymers and Poloxamer 338 (P388) can be used to prevent
the formation of biofilm and consequent infection. The anti-
biofouling behavior was investigated by the adhesion of Ec5FSL
and Ec9FSL E. coli on a segment of a hydrophilic P388-adsorbed
silicone urinary catheter compared to an uncoated segment.
Neither E. coli isolate was detected on the former due to the

FIGURE 10 | Fluorescence micrographs showing P. aeruginosa (A) and S. epidermidis (B) adsorption to partially modified PDMS. Quantification of adsorption on
PDMS samples as a function of treatment and time (C). Enzyme-linked immunosorbent assay (ELISA) measurements for adsorption of BSA (D), mucin (E), and lysozyme
(F) on samples of PDMS, PDMS-O2, and PDMS-SBSi. Adsorption of SRB-encapsulated liposomes on SBSi-patterned PDMS samples prepared by elastomeric stencil
(G) and microchannels (H). Fluorescence intensities are indicated by red lines below the images. Reprinted with permission from Ref. (Yeh et al., 2014). Copyright
2014, American Chemical Society.
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excellent anti-biofouling ability of hydrophilic P388 (Stirpe et al.,
2020).

Hemodialysis membrane is another typical example of a
nephrological application. PSF is frequently used for
ultrafiltration membranes due to its stability under various
conditions (Xie et al., 2015; Yin et al., 2015). A variety of
surface modifications for ultrafiltration membranes have been
investigated to combat biofouling. A novel zwitterionic
molecule, MPDSAH, was grafted onto PSF membranes
using benzophenone to increase their anti-biofouling
actions (Yu et al., 2009). Measurement of WCA indicated
the enhancement of membrane hydrophilicity by this
modification. The passage of water was somewhat reduced
by the modification, while adsorption of BSA was significantly
reduced. The increase in anti-biofouling action was shown to
be related to increased surface hydrophilicity (Yu et al., 2009).
The immobilization of heparin on PSF allowed use of the
membrane for dialysis. The higher the heparin density,
the lower WCA and the platelet adherence. The flux of the
heparin-modified membrane also recovered well after BSA
filtration, indicating the improved anti-biofouling action of
the heparin-modified membrane (Huang et al., 2011).

PES is a typical PSF and is frequently used for hemodialysis
membranes. Poly (citric acid)-grafted-MWCNT (PCA-g-
MWCNT) was included as a nanofiller in PES to generate a
hemodialysis mixed-matrix membrane (MMM) with
improved hydrophilicity (from 77° to 56°) and anti-
biofouling ability (Abidin et al., 2016). The passage of pure

water and the resistance to BSA were increased as a result of
the presence of numerous hydrophilic groups derived from
PCA-g-MWCNT (Abidin et al., 2016). Changsheng Zhao and
coauthors synthesized a hydrophilic triblock copolymer of
PVP-b-PMMA-b-PVP via reversible addition-fragmentation
chain transfer polymerization (Figure 11A) (Ran et al., 2011).
After the introduction of the copolymer, the membranes
showed a lower WCA (Figure 11B), lower BSA adsorption
(Figure 11C), prolonged blood coagulation times
(Figure 11D), and reduced platelet adhesion (Figure 11E).
These results suggested that modifying the surface
hydrophilicity of PES improves their anti-biofouling action,
allowing the membranes to be used for blood purification,
including hemodialysis (Ran et al., 2011).

PHEMA, the simplest hydroxylated polymethacrylate,
can impart an anti-biofouling character to surfaces. Lixin
Xue and coauthors reported another hemodialysis
membrane based on biobased and biodegradable PLA and
PHEMA (Zhu et al., 2015). Anti-biofouling and
hemocompatible PLA membranes were developed using
different concentrations of PLA-PHEMA copolymers as the
blending additive (M0 indicates pure PLA membrane, and
M20 indicates 20 wt% copolymer). The results showed that
PLA/PLA-PHEMA membranes with high PLA-PHEMA
concentrations showed augmented hydrophilicity (WCA
decreased from 75° for M0 to 60° for M20), water
permeability, anti-biofouling (decreased BSA adsorption
and platelet adhesion, Figures 2, 12A,C,D) and

FIGURE 11 | Synthesis of the PVP-b-PMMA-b-PVP block copolymer (A). WCA of the modified membranes (B). BSA adsorption (C). Activated partial
thromboplastin time (D). SEM micrographs showing platelet adhesion (E, h, number of the adherent platelets on the membranes adsorbed from platelet-rich plasma
estimated from the SEM pictures). Reprinted with permission from Ref. (Ran et al., 2011). Copyright 2011, Elsevier B.V.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 80735713

He et al. Anti-Biofouling Polymers with Surface Wettability

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


hemocompatibility (increased plasma recalcification time
(PRT), Figure 12B). These findings indicate that PLA-
PHEMA copolymers were effective in optimizing PLA
membranes for hemodialysis applications (Zhu et al., 2015).

CONCLUSION AND OUTLOOK

The ability of polymers to combat biofouling can be enhanced by
the regulation of special surface wettability, including

FIGURE 12 | Hemocompatibility of M0 and PLA/PLA−PHEMA membranes (M5, M10, M15, and M20). Adsorption of BSA to membranes (A). Plasma
recalcification times for membranes (B). SEMmicrograph (C) and the number (D) of adherent platelets on the membrane surfaces. Reprinted with permission from Ref.
(Zhu et al., 2015). Copyright 2015, American Chemical Society.

FIGURE 13 | Adsorbed fibrinogen (A) and BSA (B) on PU, PU/P, PUL and PUL/P. SEMmicrograph showing cell morphologies on PU (C,D), PU/P (E,F), and PUL/
P (G,H). Reprinted with permission from Ref. (Zheng et al., 2010). Copyright 2010, Elsevier B.V.
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FIGURE 14 | Fabrication process (A) of MI-dPG based coatings with different wettability characteristics and physical structures, MI-dPG (B), superhydrophilic NP
(C), hydrophilic NP (D), superhydrophobic NP (E), superamphiphobic NP (F). Quantification of bacterial attachment and their corresponding micrographs (G). Reprinted
with permission from Ref. (Li et al., 2019b). Copyright 2019, Royal Society of Chemistry.
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superhydrophilicity, hydrophilicity, hydrophobicity, and
superhydrophobicity. In this review, we focus on the anti-
biofouling polymers with superhydrophilicity, hydrophilicity
and hydrophobicity but excluding superhydrophobicity which
can be found in our previous review (He et al., 2021). Meanwhile,
we just focus on the biomedical applications in cardiology,
ophthalmology, and nephrology. Moreover, biofoulants
mentioned in this review are focused on the usual bacteria,
cells, and proteins. This review will provide a new perspective
to promote the development of anti-biofouling polymers.
Meanwhile, the anti-biofouling strategies reviewed in this
manuscript will offer help for future researchers to choose
suitable polymers for specific anti-biofouling applications.
Considering the biomedical applications of anti-biofouling
polymers, most research has focused on materials with
superhydrophilicity or hydrophilicity which may be more
achievable than hydrophobicity or superhydrophobicity.
However, there is still some research that obtained excellent
anti-biofouling polymers by hydrophobic manipulation.
Therefore, exploring more anti-biofouling polymers with
hydrophobic or superhydrophobic properties should be a
research priority in the future to avoid the drawbacks of anti-
biofouling polymers with hydrophilic properties. Meanwhile,
there are some issues that should be paid more attention, that
are discussed below.

Exploring the Inherent Correlation Between
the Anti-Biofouling and Surface Wettability
Protein adsorption depends not only on the hydrophilic or
hydrophobic properties of materials, but also on topographical
features, including surface curvature, roughness, and geometrical
characteristics. There is research focusing on the effects of surface
micro- or nano-typography on adsorption. In 1964, Curtis andVarde
described the effects of surrounding topography on cells. It is
generally accepted that both the topography and chemical
characteristics of surfaces can influence the growth and properties
of cells (Zheng et al., 2010). Hong Chen and coauthors fabricated
lotus leaf-like polyurethane/Pluronic® F-127 surface (PUL/P) by
replica molding using a lotus leaf as the template (Zheng et al.,
2010). When water droplets touched the superhydrophilic PUL/P
surface, the drop spread rapidly with a WCA near zero, suggesting
enhancement of the surface by the adoption of the lotus leaf-like
structure compared to thosewithout (PU/P). Adsorption of both BSA
and fibrinogen was significantly lower on the PU/P surface (Figures
13A,B). Further reductions in adsorption were observed on the
superhydrophilic PUL/P surface (Figures 13A,B). Experiments
with L929 cells showed that cells adhered less to PU/P surfaces
(Figures 13C–F). Meanwhile, cell adhesion to the superhydrophilic
PUL/P was reduced with cells showing spherical shapes and
diminished viability (Figures 13G,H). The superhydrophilic PUL/
P thus appears to resist non-specific protein adsorption and cell
attachment, with these effects deriving from both topographical and
chemical structures. However, adsorption and adhesion to the
hydrophobic lotus leaf-like polyurethane surface (PUL) were
obviously enhanced compared with the hydrophilic PU, in
apparent contradiction of the anti-biofouling strategies based on

hydrophobic polymers discussed in section 2.3. Biofoulants
adsorption and adhesion may be increased or decreased with the
increased hydrophobicity. Therefore, the inherent correlation
between the anti-biofouling and surface wettability was still non-
uniform, and in-depth research should be applied. A comprehensive
consideration and more quantitative research of the influence of
chemical compositions and physical structures on the anti-biofouling
ability should be under consideration.

Design and Fabrication of Surfaces
Both chemical and physical properties influence the resistance of
surfaces to biofoulants. This is borne out in natural antifouling
materials (Magin et al., 2010). Rainer Haag and coauthors
reported the effect of extreme wettability ranging from
superhydrophilicity to superhydrophobicity on the antibacterial
efficiency of an MI-dPG and silver nanoparticle (AgNPs) coating
(Li et al., 2019b). As shown in Figure 14A, MI-dPG or hierarchical
micro- and nanometer roughed MI-dPG (hMI-dPG) was formed by
controlling surface polymerization and subsequent modification by
AgNPs, linear polyglycerol (lPG-NH2) or fluorination. Different
surface wetting properties containing superhydrophilic,
hydrophilic, superhydrophobic, and even superamphiphobic
wettability were achieved by different post-functionalization
without obvious physical structural changes, demonstrated by
WCA and SEM (Figures 14B–F). The resulting superhydrophilic
polymer coatings were effective in repelling both E. coli and S. aureus,
and the coating properties in relation to their antibacterial activities
are shown in Figure 14G. The results indicated that the polymer
coatings with superhydrophilic or superamphiphobic properties had
good anti-biofouling ability but those with hydrophilic and
superhydrophobic character showed less anti-biofouling ability.

Therefore, it is necessary to develop surfaces with quantifiable
physical structures for optimization of anti-biofouling action. We
previously reported a simple and mold-free technique for
fabricating surfaces by 3D printing (He et al., 2017), which
may assist in the precise design and manufacture of physical
surfaces to combat biofouling (Mazinani et al., 2019).

Anti-biofouling Polymers With Good
Biocompatibility
Biocompatibility is defined as the ability of a material to
perform with an appropriate host response in a specific
application (Grainger, 1999; Barrère et al., 2008). It is an
important issue for the chosen of anti-biofouling polymer
types especially when these materials will be used in
biomedical fields. If anti-biofouling polymers used in vivo
are not biocompatible, they will elicit pernicious local or
systemic inflammatory responses and induce the biomedical
implants failed. Therefore, good biocompatibility should be
paid more attention in the future researches of anti-biofouling
polymers with special surface wettability.

Long-Term Anti-Biofouling Polymers
Anti-biofouling surfaces are easily damaged by scratching,
degradation, and rough handling. This damage destroys the
surface characteristics leading to a loss of anti-biofouling
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activity. The development of robust and long-lasting anti-biofouling
polymers remains a major challenge (Wu et al., 2019). Investigation
of self-repairingmaterials, inspired by the repairmechanisms seen in
natural organisms (Cai et al., 2014) would be advantageous to
maintain and restore the properties of surfaces. This is a
promising strategy for obtaining long-term and robust anti-
biofouling surfaces (Wang et al., 2011; Chen et al., 2015a; Chen
et al., 2015b; Chen et al., 2016; Liu andGuo, 2018;Wang et al., 2020).
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