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Abstract
Gut microbiome contributes to host health by maintaining homeostasis, increasing 
digestive efficiency, and facilitating the development of immune system. Wild grey-
lag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea), migrating along the 
central Asian flyway, appear to be one of the most popular species in the rare birds 
rearing industries of China. However, the structure and function of the gut microbial 
communities associated with these two bird species remain poorly understood. Here, 
for the first time, we compared gut metagenomes from greylag geese to ruddy shel-
ducks and investigated the similarities and differences between these two bird spe-
cies in detail. Taxonomic classifications revealed the top three bacterial phyla, 
Firmicutes, Proteobacteria, and Fusobacteria, in both greylag geese and ruddy shel-
ducks. Furthermore, between the two species, 12 bacterial genera were found to be 
more abundant in ruddy shelducks and 41 genera were significantly higher in greylag 
geese. A total of 613 genera (approximately 70%) were found to be present in both 
groups. Metabolic categories related to carbohydrate metabolism, metabolism of co-
factors and vitamins, lipid metabolism, amino acid metabolism, and glycan biosynthe-
sis and metabolism were significantly more abundant in ruddy shelducks, while 
greylag geese were enriched in nucleotide metabolism and energy metabolism. The 
herbivorous greylag geese gut microbiota harbored more carbohydrate-active en-
zymes than omnivorous ruddy shelducks. In our study, a range of antibiotic resist-
ance categories were also identified in the gut microbiota of greylag geese and ruddy 
shelducks. In addition to providing a better understanding of the composition and 
function of wild birds gut microbiome, this comparative study provides reference 
values of the artificial domestication of these birds.
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1  | INTRODUC TION

Animals are colonized by rich and complex communities of micro-
organisms, both externally (e.g., on skin and feathers) and inter-
nally (e.g., in the gastrointestinal and reproductive tracts) (Colston 
& Jackson, 2016; McFall-Ngai et al., 2013). Advances in next-
generation sequencing and bioinformatic technologies permit the 
study of these microorganisms, their genes, and their metabolites 
(termed the microbiome) at an unprecedented scale (Eisen, 2015; 
Jovel et al., 2016). Trillions of microbes inhabit the gastrointestinal 
tract of animals, forming a dynamic ecological community within the 
gut, which is termed the “gut microbiome” (Ley et al., 2008; Lloyd-
Price, Abu-Ali, & Huttenhower, 2016). A wealth of studies have 
shown that gut microbiome plays an important role in several fun-
damental and crucial processes in humans and other animal hosts, 
such as development (Malmuthuge, Griebel, & Guan, 2015), immune 
homeostasis (Ahern, Faith, & Gordon, 2014), nutrient assimilation 
(Kau, Ahern, Griffin, Goodman, & Gordon, 2011), vitamins synthesis 
and sterols metabolism (O’Mahony, Clarke, Borre, Dinan, & Cryan, 
2015), and diseases (e.g., obesity, diabetes, and cancer) (Kinross, 
Darzi, & Nicholson, 2011; Lee & Hase, 2014). Given these import-
ant findings, many gut microbiome projects have been launched in 
several countries (Pylro, Mui, Rodrigues, Andreote, & Roesch, 2016; 
Stulberg et al., 2016). However, most of these projects and studies 
describe the microbiota of humans and some mammalian animals; a 
major gap identified was that there was no project for the vast ma-
jority of ecologically relevant taxa, birds.

Compared to other mammalian vertebrates, several characteristics 
make birds some of the most interesting and useful models for study-
ing the gut microbiome. First, bird brood parasites lay their eggs in the 
nests of appropriate brood hosts, thus offering a unique and power-
ful model to investigate the influence of genetic and environmental 
factors on the colonizing process of gut microbiota (Hird, Carstens, 
Cardiff, Dittmann, & Brumfield, 2014). Second, whereas mammals ac-
quire important maternal microbes during the birth process, many birds 
regurgitate food to their young, providing a mode of vertical trans-
mission of gut microbiome across generations (Godoy-Vitorino et al., 
2010; Putignani, Del Chierico, Petrucca, Vernocchi, & Dallapiccola, 
2014). Third, birds possess a cloaca, serving dual functions for excre-
tion and sexual copulation. Thus, the gastrointestinal tract microbiota 
of birds provide another avenue for exploring the potential exchange 
of components of the endogenous microbiome during reproduction 
(Kreisinger, Cizkova, Kropackova, & Albrecht, 2015).

Currently, there are two main strategies for the analysis of gut 
microbiome using next-generation sequencing, shotgun metage-
nomics, and 16S rRNA gene sequencing. The metagenomics ap-
proach, in which all the DNA fragments in a sample are sequenced 
rather than only 16S rRNA amplicons, results in greater in-depth 
coverage and more informative sequencing datasets (Turaev & 
Rattei, 2016). Analyses of these datasets will help to elucidate 
the composition of microbial communities and are valuable re-
sources for identifying carbohydrate-active enzymes and antibi-
otics resistance genes present in gut communities. To the best of 

our knowledge, only very limited metagenomic analyses of the 
functional aspects of avian gut microbiota have been reported 
(Danzeisen, Kim, Isaacson, Tu, & Johnson, 2011; Godoy-Vitorino 
et al., 2012; Lu, Santo Domingo, & Shanks, 2007; Wang, Zheng, 
et al., 2017; Wang, Song, et al., 2017). A meta-analysis of these 
studies showed that the gut microbiota of birds were dominated 
by four major phyla, Firmicutes, Proteobacteria, Actinobacteria, and 
Bacteroidetes (Waite & Taylor, 2014, 2015).

In this study, metagenomic sequencing was performed to com-
pare the gut microbial compositions and functions of two bird 
species, greylag geese (Anser anser) and ruddy shelducks (Tadorna 
ferruginea). These birds belong to the same family (Anatidae) and 
are two ecologically and economically important waterfowl. grey-
lag geese and ruddy shelducks have worldwide distributions and 
migrate along the central Asian flyway between their breeding 
and wintering areas (Takekawa et al., 2013). In addition, these 
two species are artificially reared in several provinces of China to 
meet market demands (e.g., meat and eggs) and for conservation 
purposes. The results of this study provide a deeper exploration 
of the gut microbiomes of wild geese and ducks and may provide 
useful information for the further application of probiotic strains 
(isolated from the feces of wild geese and ducks) in the artificial 
rearing of these birds.

2  | MATERIAL S AND METHODS

2.1 | Ethics statement

This study conformed to the guidelines for the care and use of 
experimental animals established by the Ministry of Science and 
Technology of the People’s Republic of China (Approval number: 
2006-398). The research protocol was reviewed and approved 
by the Ethical Committee of Qinghai University. In this study, 
only feces of greylag geese and ruddy shelducks were collected 
for relevant molecular studies. No direct capture or hunting 
involved.

2.2 | Sampling

Fecal samples were taken from three wild greylag geese (in text ab-
breviation: GG group) and three wild ruddy shelducks (in text ab-
breviation: RSD group) from the Gengga-hai Lake (N36°11′59.8″ 
E100°05′39.7″, elevation 2,800 m) on the northeastern Qinghai-
Tibet Plateau, Qinghai Province, China. We chose the sampling sites 
utilized by these birds as stopover in autumn during migration and 
waited when they were foraging in the farmlands where only a single 
species was present in the morning. Fresh fecal material was col-
lected and stored in sterile tubes. The fecal samples were collected 
at a minimum distance interval of five meters to ensure that all fresh 
droppings were expelled from different individuals. All samples were 
transported to the laboratory using a −20°C portable freezer and 
stored at −80°C until further treatment.
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2.3 | DNA extraction and metagenomic sequencing

Metagenomic DNA was isolated from approximately 1 g of fecal 
sample, using the E.Z.N.A.® stool DNA Kit (Omega Bio-tek, 
Norcross, GA, USA) following the manufacturer’s instruction. DNA 
concentration and quality were assessed by Qubit fluorometer and 
agarose gel electrophoresis, respectively. The high-quality DNA was 
then used to create an Illumina DNA library and sequenced using 
Illumina NovaSeq (2 × 125 bp) (Illumina, USA) platform at Novogene 
Bioinformatics Technology Co. Ltd (Beijing, China).

2.4 | Sequence analyses and metagenome assembly

To obtain the clean data for subsequent analysis, the raw data from 
the Illumina NovaSeq sequencing platform were processed using 
Readfq (V8, https://github.com/cjfields/readfq). The specific pro-
cessing steps were as follows: (a) removed reads which contain low-
quality bases (default quality threshold value less than or equal to 
38) above a certain portion (default length of 40 bp); (b) removed 
reads in which the N base reached a certain percentage (default 
length of 10 bp); (c) removed reads which shared the overlap above 
a certain portion with Adapter (default length of 15 bp). To filter the 
reads that were of host origin, clean data were then blast against the 
host database using SoapAligner software (soap2.21, http://soap.
genomics.org.cn/soapaligner.html). The parameters were as follows: 
identity greater than or equal to 90%, -l 30, -v 7, -M 4, -m 200, -x 
400 (Law et al., 2013). Then, the high-quality reads of each sample 
were assembled by the SOAPdenovo software (V2.04, http://soap.
genomics.org.cn/soapdenovo.html) (Luo et al., 2012), with the pa-
rameters -d 1, -M 3, -R, -u, -F, -K 55 (Qin et al., 2014). After de novo 
assembly for each sample independently, all reads that not used 
from all samples were combined and performed mixed assembly in 
order to maximize the usage of data. Subsequently, we broke the 
assembled Scaffolds from N connection and obtained the Scaftigs. 
At last, the fragments longer than 500 bp in all of Scaftigs were used 
for further analysis.

2.5 | Gene prediction and 
construction of the nonredundant gene set

We used MetaGeneMark (V2.10, http://topaz.gatech.edu/
GeneMark/) to predict ORFs from the Scaftigs assembled from 
each sample as well as the Scaftigs from the mixed assembly. 
Then, the ORFs with length <100 bp were filtered out. For the 
predicted ORFs, CD-HIT software (V4.5.8, http://www.bioinfor-
matics.org/cd-hit) was used to reduce sequence redundancy (Fu, 
Niu, Zhu, Wu, & Li, 2012) and the unique initial gene catalogue 
(the genes here refer to the nucleotide sequences coded by unique 
and continuous genes) was obtained (Sunagawa et al., 2015). To 
obtain the gene catalogue (Unigenes) eventually used for subse-
quently analysis, the clean data of each sample were mapped to 
the unique initial gene catalogue using SoapAligner (soap 2.21). 
Based on the number of mapped reads and the length of gene, 

the abundance information of each Unigene in each sample was 
statistically analyzed.

2.6 | Gene taxonomic prediction

DIAMOND software (V0.7.9, https://github.com/bbuchfink/dia-
mond/) was used to blast the unigenes to the sequences of bacteria, 
fungi, archaea, and viruses which were all extracted from the NR da-
tabase (version: 20161115, https://www.ncbi.nlm.nih.gov/) of NCBI 
with the parameter of blastp, -e 1e-5 (Buchfink, Xie, & Huson, 2015). 
To identify bacterial taxa, the lowest common ancestor (LCA) algo-
rithm in MEGAN software was used (Huson, Mitra, Ruscheweyh, 
Weber, & Schuster, 2011). The exhibition of PCA (R ade4 package, 
version 2.15.3) (Avershina, Trine, & Knut, 2013) and NMDS (R vegan 
package, version 2.15.3) (Rivas et al., 2013) decrease-dimension 
analyses was based on the abundance of each taxonomic hierarchy. 
Analysis of similarities (ANOSIM) was performed using the vegan 
package in R (version 2.15.3). Metastats analyses were used to look 
for the different species between groups. Venn diagram analyses at 
the genus level were performed using VennDiagram package in the 
software R (2.15.3).

2.7 | Functional gene annotation

Functional annotation of metagenomes was conducted using 
DIAMOND software (V0.7.9) to blast unigenes to KEGG database 
(version 201609, http://www.kegg.jp/kegg/) (Kanehisa et al., 2014), 
CAZy database (version 20150704, http://www.cazy.org/) (Cantarel 
et al., 2009), and the Comprehensive Antibiotic Resistance Database 
(https://card.mcmaster.ca/) with the parameter setting of blastp, 
evalue ≤ 1e - 30 (Jia et al., 2017). For each sequence’s blast result, the 
best Blast Hit was used for subsequent analysis. The relative abun-
dance of each functional hierarchy equaled the sum of relative abun-
dance annotated to that functional level. Based on the abundance of 
each hierarchy, heat map of hierarchy cluster and Metastats analy-
sis were performed. Permutation test between groups was used in 
Metastats analysis, and the p value was corrected by controlling the 
false discovery rate using the Benjamini–Hochberg method (White, 
Nagarajan, & Pop, 2009).

3  | RESULTS

3.1 | Summary of the metagenomic datasets

A total of six metagenomes were sequenced using an Illumina’s 
NovaSeq platform (2 × 150 bp). The output data encompassed a 
total of 38,306.65 Mb of raw reads, with an average of 6,384.44 Mb 
per sample (Supporting Information Table S1). Then, these se-
quenced raw reads were filtered to obtain clean reads by remov-
ing the short and low-quality reads, adaptors and any eukaryotic 
sequences. As a result, a total of 36,473.30 Mb of clean reads were 
generated (Supporting Information Table S1) for further clear assem-
bly and annotation analyses. The de novo assembly of these clean 
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reads resulted in a total of 320.93 Mb of scaftigs (with the total 
length ranging from 14.49 to 117.78 Mb), with an N50 of 1150.67 bp 
(Supporting Information Table S1). Based on these scaftigs, a total of 
310,560 unigenes with an average length of 550.27 bp and an aver-
age GC content of 42.93% were predicted using the gene-finding 
algorithm MetaGeneMark (Supporting Information Table S1). These 
unigenes were then used for taxonomic analysis and functional an-
notation, and the results of which were summarized in Supporting 
Information Table S2.

3.2 | Comparison of the composition of the 
metagenome-based microbial communities in greylag 
geese and ruddy shelducks

To investigate the gut microbiome compositions of both greylag 
geese and ruddy shelducks, based on the BLAST results, approxi-
mately 150,882.57 unigenes were further classified into phyla 
and down to species level using the MEGAN software (Supporting 

Information Table S2). The top four phyla in greylag geese were 
Firmicutes (31.64%), Proteobacteria (11.51%), Tenericutes (6.34%), and 
Fusobacteria (0.96%) (Figure 1a and Supporting Information Table S3). 
In the ruddy shelducks group, Firmicutes also held the overwhelm-
ing predominance, with the average relative abundance of 39.99%, 
followed by Bacteroidetes (15.66%), Proteobacteria (3.93%), and 
Fusobacteria (3.40%) (Figure 1a and Supporting Information Table 
S3). Sequences that could not be classified into any known groups 
and that were detected with low abundance were grouped as “oth-
ers.” The proportion of these unclassified sequences varied between 
11.19% and 83.09% among the different samples (Figure 1a and 
Supporting Information Table S3). This indicated that a great number 
of unknown bacteria were present in the guts of these two species of 
birds. The most abundant genus was Streptococcus (7.25%), followed 
by Escherichia (5.72%), Mycoplasma (5.34%), Romboutsia (5.27%), and 
Staphylococcus (2.60%) in greylag geese (Figure 1b and Supporting 
Information Table S4). In contrast, the dominant microbial genera in 
ruddy shelducks were Enterococcus (16.70%), Bacteroides (10.87%), 

F IGURE  1 Taxonomic profiles of the microbial communities at the phylum level (a) and genus level (b) in each sample. GG refers to the 
greylag geese group; RSD refers to the ruddy shelducks group

F IGURE  2 The beta diversity results of PCA plot (a) and NMDS plot (b) indicating the microbial phyla distribution between the groups. 
GG refers to the greylag geese group samples; RSD refers to the ruddy shelducks group samples
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Streptococcus (7.17%), Megamonas (2.22%), and Lactobacillus (1.85) 
(Figure 1b and Supporting Information Table S4).

Differences in bacterial community composition between the 
two groups were estimated using principal component analysis (PCA) 
and nonmetric multidimensional scaling (NMDS) (Figure 2). At the 
phylum level, greylag geese populations were observed to demon-
strate a visually distinct profile from the ruddy shelducks. These 
dissimilarities in microbial communities were further confirmed by 
performing genus-level PCA and NMDS calculations (Supporting 

Information Figure S1). Furthermore, analysis of similarities 
(ANOSIM) was performed to determine whether the total variation 
in the gut microbiome was due to the differences within or between 
groups. The results showed that differences observed within group 
outweighed that occurring between groups (Supporting Information 
Figure S2). These interindividual variances may be partially due to 
the unequal and relatively small sample size of this study.

Metastats analyses were performed to detect differentially 
abundant genera between the two groups (Supporting Information 
Table S5). A total of 12 genera were found to be more abundant 
in RSD group and 41 genera were significantly higher in GG group 
(Supporting Information Table S5). A Venn diagram showed that 613 
genera were assigned to both groups, while 273 and 228 bacterial 
genera were only assigned to the RSD and GG groups, respectively 
(Figure 3).

3.3 | Functional profiling of the gut metagenome

Metagenome sequencing has the inherent advantage of allowing 
for an examination of gene content of the microbial populations 
and allows the direct inference of the metabolic capacity of these 
populations. To explore the overall functional profiles of the gut mi-
crobiome, a total of 141,279 out of 310,560 unigenes (45.49%) were 
identified by the KEGG database (Supporting Information Table 
S2). Of these unigenes, 82,371 (26.52%) could be assigned to 7,021 
KEGG ortholog group (KOs) and 49,795 (16.03%) could be assigned 
to 384 KEGG pathways (Supporting Information Table S2). The uni-
genes matching to level 1 and level 2 KEGG functional categories 
were shown in Figure 4. In detail, the dominant functional categories 

F IGURE  3 Venn diagrams showing the unique and shared 
microbial genera between Group GG and Group RSD. GG refers to 
the greylag geese group; RSD refers to the ruddy shelducks group

F IGURE  4 Summary of unigenes 
matched to each KEGG functional 
categories (level 1 and level 2) present in 
the gut metagenome datasets
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identified included metabolism (59.89%), genetic information pro-
cessing (13.37%), and environmental information processing (9.65%). 
The cumulative proportion of these three categories was above 
82.91% for all assigned unigenes. This indicated that the metabolic 
potential of the gut microbiota related to these two species of birds 
was highly active. The proportions of KEGG categories (level 1) in 
each sample were shown in Figure 5.

3.4 | Comparison of functionality of the greylag 
geese and ruddy shelducks gut metagenomes

Due to differences in genetics and diet compositions, significantly 
different abundances of functional genes and pathways were ex-
pected to be observed in greylag geese and ruddy shelducks. A heat 
map of a hierarchical clustering analysis of the top 35 abundant 
KEGG functional categories (level 2) showed that increased meta-
bolic categories involved in carbohydrate metabolism, metabolism 
of cofactors and vitamins, lipid metabolism, amino acid metabolism, 
and glycan biosynthesis and metabolism in RSD group, whereas the 
GG group were enriched in nucleotide metabolism and energy me-
tabolism (Figure 6). Furthermore, among the detected 384 KEGG 
pathways (level 3), nine pathways were found to be significantly dif-
ferent between GG and RSD groups through a Metastats analysis 
(Supporting Information Table S6).

3.5 | Diversity profile of CAZymes

Carbohydrate-active enzymes (CAZymes), encoded by gut microbes, 
play a crucial role in the breakdown of complex dietary carbohy-
drates into components that can be absorbed by the host intestinal 
epithelium. To determine the gut CAZymes profiles, we performed 
a CAZymes analysis using the metagenomic data from both greylag 
geese and ruddy shelducks. In total, 9,060 putative genes were iden-
tified (Supporting Information Table S2). The majority of these genes 
identified were assigned to glycoside hydrolases (5,491, 57.78%). 
In the RSD group, a total of 210 CAZymes were identified, includ-
ing five auxiliary activities (AAs), 43 carbohydrate binding modules 
(CBMs), 12 carbohydrate esterases (CEs), 89 glycoside hydrolases 
(GHs), 52 glycosyl transferases (GTs), and nine polysaccharide lyases 
(PLs). A total of 196 CAZymes were found in the GG group, including 
five AAs, 38 CBMs, 10 CEs, 78 GHs, 58 GTs, and seven PLs. The pro-
portions of each CAZymes were compared using Metastats analysis. 
GH24, 99, 104 and GT33, 72, 73, 80 were found to be significantly 
higher in GG group (p < 0.05) than that in RSD group, while three 
CAZymes had higher proportions in RSD group (p < 0.05), including 
GH27, GT10, and CBM20.

3.6 | Antibiotic resistance profiles

The high concentrations of antibiotics used in clinical, agricultural, 
livestock, and poultry settings provide a strong selective pressure 
that favors the exchange of antibiotic resistance genes (ARGs) be-
tween pathogens and gut microbes. To investigate the ARGs present 

in the gut microbiota of greylag geese and ruddy shelducks, the 
unigenes identified in the metagenome data were screened for 
antibiotic resistance factors using the Comprehensive Antibiotic 
Resistance Database (CARD). A total of 598 unigenes were anno-
tated in CARD and 125 antibiotic resistance ontologies (AROs) were 
identified (Supporting Information Table S2). Of these detected 
AROs, the top 20 most abundant AROs in each sample were shown 
in Figure 7. A range of antibiotic resistance categories were also 
identified, including resistance to rifampin, mupirocin, novobiocin, 
pulvomycin, fosfomycin, norfloxacin, ciprofloxacin, acriflavine, pleu-
romutilin, amoxicillin, daptomycin, aminocoumarin, and polymyxin. 
These AROs were further analyzed for their microbial origin. In the 
GG group, approximately 50% of the AROs were highly enriched in 
phyla Firmicutes (32%), Proteobacteria (12%), and Tenericutes (6%) 
(Figure 8a). In the RSD group, approximately 60% of AROs were 
found to be enriched in phyla Firmicutes (40%), Bacteroidetes (16%), 
Proteobacteria (4%), and Fusobacteria (3%) (Figure 8b). These results 
indicate that different types of gut microbes contribute differently 
to the occurrence of antibiotic resistance genes.

4  | DISCUSSION

The results presented in this study represent the first gut metagen-
omic characterizations of both greylag geese and ruddy shelducks. 
To date, although several datasets are available for the gut metagen-
omes of domestic birds (e.g., chickens and ducks) (Day, Ballard, Duke, 
Scheffler, & Zsak, 2010; Delforno et al., 2017; Lu et al., 2007), rela-
tively little information is available concerning the metagenomes of 
wild birds’ gut microbiota (Godoy-Vitorino et al., 2008, 2012; Wang, 
Zheng, et al., 2017; Wang, Song, et al., 2017). Therefore, this study 
provides a significant contribution to the vast, yet little explored, 
field of wild birds’ gut microbiome. Additionally, knowledge of the 
gut microbiomes of these two wild bird species could also provide 
a helpful reference for improving the rearing performance of wild 
birds in artificial rearing industries.

It was a logical choice to compare greylag geese samples with 
the ruddy shelducks’ gut microbiota, because these two species 
of birds inhabit the same region and share part of the same food 
items. Based on the taxonomic classification, the gut microbiotas 
of greylag geese and ruddy shelducks differed substantially at the 
phylum and lower taxonomic levels. The reasons for these differ-
ences were not clear. Maybe the different genetic backgrounds 
were responsible for these differences. Support for a host genetic 
effect on the gut microbiome comes mostly from large compara-
tive studies. For instance, Hird et al. sampled 116 intestines from 
59 neotropical bird species and found that host taxonomic cate-
gories were most frequently able to significantly explain the most 
variations in the gut microbiotas of birds (Hird, Sánchez, Carstens, & 
Brumfield, 2015). In mammals, such studies had also shown that host 
taxonomy was strongly associated with gut microbiotas (Ley et al., 
2008). Additionally, our study identified some common bacterial 
microbiota present in both greylag geese and ruddy shelducks. At 
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F IGURE  5 Relative abundance of different KEGG functional categories present in each sample. GG refers to the greylag geese group; 
RSD refers to the ruddy shelducks group

F IGURE  6 Heat map of hierarchical clustering analysis of the top 35 abundant KEGG functional categories (level 2) in Group GG and 
Group RSD. GG refers to the greylag geese group; RSD refers to the ruddy shelducks group
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the phylum level, Firmicutes, Proteobacteria, and Fusobacteria were 
found to be present at high abundance in each sample. Firmicutes 
and Proteobacteria, the most widespread intestinal phyla, are com-
monly observed within gut environments of many birds (Waite & 
Taylor, 2014; Wang, Cao, Li, et al., 2016; Wang, Cao, Yang, et al., 
2016; Wang, Zheng, et al., 2016). Members of these two phyla 
were frequently studied for their food digestion roles. For example, 
Firmicutes members were associated with insoluble fiber degrada-
tion (Berry, 2016), and Proteobacteria members were associated with 
cellulose activity (Reid, Addison, Macdonald, & Lloyd-Jones, 2011). A 
rich community of Fusobacteria was frequently reported in the guts 
of carnivorous and omnivorous birds (Waite & Taylor, 2014). In our 
study, the guts of ruddy shelducks contained 3.4% Fusobacteria. As 
an omnivorous bird, ruddy shelducks feed mainly on fish, shrimps, 
crabs, aquatic plants, and cereals. The appearance of Fusobacteria in 
the greylag geese gut microbiome is an interesting avenue for fur-
ther study, since this species was considered as an herbivorous bird, 
consuming a diversity of foods that includes leaves, roots, and seeds 
(Olsen, 2015). At the genus level, the results showed that about 70% 
of genera were assigned to both greylag geese and ruddy shelducks 
groups. These common genera may be shaped by the overlapping 
food items between two groups. Diet is a factor that directly affects 

gut microbial community composition (Zarrinpar, Chaix, Yooseph, & 
Panda, 2014). However, the fundamental characteristics of the re-
lationship between the diets and the wild birds’ gut microbiome are 
unknown. It should be of great research and practical application 
values to analyze these common genera to develop probiotics that 
may meet the demands of the artificial rearing industries for greylag 
geese and ruddy shelducks, helping to accelerate the domestication 
of these birds.

An Analysis of the overall functional profiles in the present study 
indicated that the gut microbes associated with these two bird spe-
cies exhibited high metabolic activities. These results were consis-
tent with earlier studies on the gut metagenomes of bar-headed 
geese (Anser indicus) (Wang, Zheng, et al., 2017; Wang, Song, et al., 
2017). This high metabolic rate may be related to the energy con-
sumption required to fulfill the demands of flight. Avian metabolism 
was reported to be approximately 60% higher than that those of 
most mammals (Scanes & Braun, 2012). The further comparison of 
the functional profiles of the datasets from greylag geese and ruddy 
shelducks revealed many remarkable differences, which suggested 
that not only the bacterial compositions but their functionalities 
were important. For example, functions related to carbohydrate 
metabolism, lipid metabolism, amino acid metabolism, and glycan 

F IGURE  8 Circos plots representing alignment of the proportion of different antibiotic resistance ontology and microbial phyla in Group 
GG (a) and Group RSD (b). The inner-ring refers to the distribution of different antibiotic resistance ontology in corresponding microbial 
phyla. The outer-ring refers to the relative abundance of different phyla in each group. GG refers to the greylag geese group; RSD refers to 
the ruddy shelducks group

F IGURE  7 Relative proportion of 
the top 20 most abundant antibiotic 
resistance ontology in each sample. GG 
refers to the greylag geese group samples; 
RSD refers to the ruddy shelducks group 
samples
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biosynthesis and metabolism were significantly more abundant in 
ruddy shelducks than that in greylag geese. It is reasonable to hy-
pothesize that the microbiota of the omnivorous ruddy shelducks 
is probably specialized to degrade more diverse types of foods than 
that of the herbivorous greylag geese, which eats a more homoge-
nous type of food. Several KEGG pathways (level 3) with different 
abundance dynamics in ruddy shelducks vs. greylag geese appear 
to be associated with the acclimation of microbiota to the nutrients. 
For example, we observed increases in the abundance of pentose 
and glucuronate interconversions [ko00040] in ruddy shelducks 
that may contribute to host glucose metabolism. We also observed 
increases in the abundance of pathways associated with limonene 
and pinene degradation [ko00903] and carotenoid biosynthesis 
[ko00906] in greylag geese that may contribute to the degradation 
and fermentation of plant material.

From these metagenome data, we also identified 9,060 putative 
carbohydrate-active genes. Conforming to expectations, the her-
bivorous greylag geese gut microbiota harbor more CAZymes than 
that of the omnivorous ruddy shelducks. These detected CAZymes 
would allow greylag geese and ruddy shelducks to make extensive 
use of plant material as a source of nutrients through the enzymatic 
activities of the gut microbes. The majority of the CAZymes genes 
identified were assigned to glycoside hydrolases in each sample. 
GHs are the most abundant enzymes used to break down polysac-
charides into smaller products (Berlemont & Martiny, 2016). Of the 
total detected GHs, GH24 (predominant activity is lysozyme), GH99 
(predominant activity is glycoprotein endo-α-1,2-mannosidase), 
and GH104 (predominant activity is peptidoglycan lytic transgly-
cosylase) were found to be significantly increased in greylag geese 
group, while the proportion of GH27 (predominant activity is α-
galactosidase) was significantly increased in ruddy shelducks group. 
These increased GHs in each group indicated an enrichment of dif-
ferent gut microbes that were specialized in utilization of diverse 
plant polysaccharides.

Due to unmonitored application of antibiotics, the widespread of 
antibiotic resistance genes (ARGs) and antibiotic resistant bacteria 
has become a great public concern (Wright, 2007). In our study, a 
range of antibiotic resistance categories were also identified in the 
gut microbiota of greylag geese and ruddy shelducks. The existence 
of these antibiotic resistance genes in wild birds supported the view 
that antibiotic resistance was naturally originated. Soil was increas-
ingly recognized as a vast repository of antibiotic resistance genes 
(Forsberg et al., 2012). Consequently, it is difficult to find a bird that 
has never been exposed to antibiotic polluted environments. Based 
on the analysis of the origin of these antibiotic resistance genes, ARGs 
profiles were found to be correlated with microbial community com-
positions. For instance, the majority of ARGs in greylag geese origi-
nated from the dominant phyla Firmicutes and Proteobacteria, and in 
ruddy shelducks from the phyla Firmicutes and Bacteroidetes. These 
phyla, known as prevalent antibiotic producing bacteria, were also 
reported to be present in the gut microbiota of four songbird species 
(Carter et al., 2018). These results indicated that highly mobile wild-
life, such as migratory birds, might enable the spread of antibiotic 

resistant bacteria when they are exposed to previously unexposed 
environments (Viana, Santamaría, & Figuerola, 2016). These results 
also indicated that manure management was important in wildfowl 
artificial rearing industries. Thus, it is necessary to reduce potential 
environmental contamination risks associated with antibiotic resis-
tance from feces of these birds and the abuse of antibiotics.

The present study had several limitations that should be ac-
knowledged. First, the relatively small sample size may reduce the 
accuracy of partial results. Second, because of feces used in this 
study were collected from wild birds, some physiological indexes of 
these birds remain unknown. Therefore, large variances existed be-
tween individuals. Lastly, large datasets under captive environments 
are needed to investigate potential mechanisms driving diets–micro-
biota interactions in the birds’ gut.

In summary, we used metagenomics to gain an insight into both 
the compositional (profiles of microbiota) and the functional capa-
bilities (KEGG functional categories, carbohydrate-active enzymes, 
and antibiotic resistance genes) of the gut microbiomes of two wild 
bird species, greylag geese and ruddy shelducks. By comparing the 
gut metagenomes of these two species, we also identified both sub-
stantial overlap and differences in microbial composition and func-
tion. Although it remains unclear to what extent these changes were 
determined by host genetics and/or diets, these results substantially 
increased our knowledge of the bird gut microbiome.
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