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Abstract
Gut	microbiome	contributes	to	host	health	by	maintaining	homeostasis,	 increasing	
digestive	efficiency,	and	facilitating	the	development	of	immune	system.	Wild	grey-
lag geese (Anser anser)	and	ruddy	shelducks	(Tadorna ferruginea),	migrating	along	the	
central	Asian	flyway,	appear	to	be	one	of	the	most	popular	species	in	the	rare	birds	
rearing	industries	of	China.	However,	the	structure	and	function	of	the	gut	microbial	
communities	associated	with	these	two	bird	species	remain	poorly	understood.	Here,	
for	the	first	time,	we	compared	gut	metagenomes	from	greylag	geese	to	ruddy	shel-
ducks	and	investigated	the	similarities	and	differences	between	these	two	bird	spe-
cies	 in	 detail.	 Taxonomic	 classifications	 revealed	 the	 top	 three	 bacterial	 phyla,	
Firmicutes,	Proteobacteria, and Fusobacteria,	 in	both	greylag	geese	 and	 ruddy	 shel-
ducks.	Furthermore,	between	the	two	species,	12	bacterial	genera	were	found	to	be	
more	abundant	in	ruddy	shelducks	and	41	genera	were	significantly	higher	in	greylag	
geese.	A	total	of	613	genera	(approximately	70%)	were	found	to	be	present	in	both	
groups.	Metabolic	categories	related	to	carbohydrate	metabolism,	metabolism	of	co-
factors	and	vitamins,	lipid	metabolism,	amino	acid	metabolism,	and	glycan	biosynthe-
sis	 and	 metabolism	 were	 significantly	 more	 abundant	 in	 ruddy	 shelducks,	 while	
greylag	geese	were	enriched	in	nucleotide	metabolism	and	energy	metabolism.	The	
herbivorous	 greylag	 geese	 gut	microbiota	harbored	more	 carbohydrate-	active	 en-
zymes	than	omnivorous	ruddy	shelducks.	 In	our	study,	a	range	of	antibiotic	resist-
ance	categories	were	also	identified	in	the	gut	microbiota	of	greylag	geese	and	ruddy	
shelducks.	 In	addition	to	providing	a	better	understanding	of	the	composition	and	
function	 of	wild	 birds	 gut	microbiome,	 this	 comparative	 study	 provides	 reference	
values	of	the	artificial	domestication	of	these	birds.
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1  | INTRODUC TION

Animals	are	colonized	by	 rich	and	complex	communities	of	micro-
organisms,	 both	 externally	 (e.g.,	 on	 skin	 and	 feathers)	 and	 inter-
nally	 (e.g.,	 in	 the	gastrointestinal	and	reproductive	tracts)	 (Colston	
&	 Jackson,	 2016;	 McFall-	Ngai	 et	al.,	 2013).	 Advances	 in	 next-	
generation	 sequencing	 and	 bioinformatic	 technologies	 permit	 the	
study	of	 these	microorganisms,	 their	 genes,	 and	 their	metabolites	
(termed	 the	microbiome)	 at	 an	 unprecedented	 scale	 (Eisen,	 2015;	
Jovel	et	al.,	2016).	Trillions	of	microbes	 inhabit	the	gastrointestinal	
tract	of	animals,	forming	a	dynamic	ecological	community	within	the	
gut,	which	is	termed	the	“gut	microbiome”	(Ley	et	al.,	2008;	Lloyd-	
Price,	 Abu-	Ali,	 &	 Huttenhower,	 2016).	 A	 wealth	 of	 studies	 have	
shown	that	gut	microbiome	plays	an	important	role	in	several	fun-
damental	and	crucial	processes	 in	humans	and	other	animal	hosts,	
such	as	development	(Malmuthuge,	Griebel,	&	Guan,	2015),	immune	
homeostasis	 (Ahern,	 Faith,	 &	Gordon,	 2014),	 nutrient	 assimilation	
(Kau,	Ahern,	Griffin,	Goodman,	&	Gordon,	2011),	vitamins	synthesis	
and	sterols	metabolism	 (O’Mahony,	Clarke,	Borre,	Dinan,	&	Cryan,	
2015),	 and	 diseases	 (e.g.,	 obesity,	 diabetes,	 and	 cancer)	 (Kinross,	
Darzi,	&	Nicholson,	2011;	Lee	&	Hase,	2014).	Given	these	 import-
ant	findings,	many	gut	microbiome	projects	have	been	launched	in	
several	countries	(Pylro,	Mui,	Rodrigues,	Andreote,	&	Roesch,	2016;	
Stulberg	et	al.,	2016).	However,	most	of	these	projects	and	studies	
describe	the	microbiota	of	humans	and	some	mammalian	animals;	a	
major	gap	identified	was	that	there	was	no	project	for	the	vast	ma-
jority	of	ecologically	relevant	taxa,	birds.

Compared	to	other	mammalian	vertebrates,	several	characteristics	
make	birds	some	of	the	most	interesting	and	useful	models	for	study-
ing	the	gut	microbiome.	First,	bird	brood	parasites	lay	their	eggs	in	the	
nests	of	appropriate	brood	hosts,	thus	offering	a	unique	and	power-
ful	model	 to	 investigate	 the	 influence	of	 genetic	 and	environmental	
factors	 on	 the	 colonizing	 process	 of	 gut	microbiota	 (Hird,	Carstens,	
Cardiff,	Dittmann,	&	Brumfield,	2014).	Second,	whereas	mammals	ac-
quire	important	maternal	microbes	during	the	birth	process,	many	birds	
regurgitate	 food	 to	 their	 young,	 providing	 a	mode	of	 vertical	 trans-
mission	of	gut	microbiome	across	generations	(Godoy-	Vitorino	et	al.,	
2010;	 Putignani,	 Del	 Chierico,	 Petrucca,	 Vernocchi,	 &	 Dallapiccola,	
2014).	Third,	birds	possess	a	cloaca,	serving	dual	functions	for	excre-
tion	and	sexual	copulation.	Thus,	the	gastrointestinal	tract	microbiota	
of	birds	provide	another	avenue	for	exploring	the	potential	exchange	
of	 components	of	 the	endogenous	microbiome	during	 reproduction	
(Kreisinger,	Cizkova,	Kropackova,	&	Albrecht,	2015).

Currently,	there	are	two	main	strategies	for	the	analysis	of	gut	
microbiome	 using	 next-	generation	 sequencing,	 shotgun	metage-
nomics,	 and	16S	 rRNA	gene	 sequencing.	 The	metagenomics	 ap-
proach,	in	which	all	the	DNA	fragments	in	a	sample	are	sequenced	
rather	than	only	16S	rRNA	amplicons,	results	 in	greater	in-	depth	
coverage	 and	 more	 informative	 sequencing	 datasets	 (Turaev	 &	
Rattei,	 2016).	 Analyses	 of	 these	 datasets	 will	 help	 to	 elucidate	
the	 composition	 of	 microbial	 communities	 and	 are	 valuable	 re-
sources	 for	 identifying	 carbohydrate-	active	 enzymes	 and	 antibi-
otics	resistance	genes	present	in	gut	communities.	To	the	best	of	

our	 knowledge,	 only	 very	 limited	 metagenomic	 analyses	 of	 the	
functional	 aspects	 of	 avian	 gut	 microbiota	 have	 been	 reported	
(Danzeisen,	Kim,	 Isaacson,	Tu,	&	 Johnson,	2011;	Godoy-	Vitorino	
et	al.,	 2012;	 Lu,	 Santo	Domingo,	&	 Shanks,	 2007;	Wang,	 Zheng,	
et	al.,	 2017;	Wang,	 Song,	 et	al.,	 2017).	 A	meta-	analysis	 of	 these	
studies	showed	that	the	gut	microbiota	of	birds	were	dominated	
by	four	major	phyla,	Firmicutes,	Proteobacteria,	Actinobacteria, and 
Bacteroidetes	(Waite	&	Taylor,	2014,	2015).

In	this	study,	metagenomic	sequencing	was	performed	to	com-
pare	 the	 gut	 microbial	 compositions	 and	 functions	 of	 two	 bird	
species,	greylag	geese	(Anser anser)	and	ruddy	shelducks	(Tadorna 
ferruginea).	These	birds	belong	to	the	same	family	(Anatidae)	and	
are	two	ecologically	and	economically	important	waterfowl.	grey-
lag	geese	and	ruddy	shelducks	have	worldwide	distributions	and	
migrate	 along	 the	 central	 Asian	 flyway	 between	 their	 breeding	
and	 wintering	 areas	 (Takekawa	 et	al.,	 2013).	 In	 addition,	 these	
two	species	are	artificially	reared	in	several	provinces	of	China	to	
meet	market	demands	(e.g.,	meat	and	eggs)	and	for	conservation	
purposes.	The	results	of	 this	study	provide	a	deeper	exploration	
of	the	gut	microbiomes	of	wild	geese	and	ducks	and	may	provide	
useful	information	for	the	further	application	of	probiotic	strains	
(isolated	from	the	feces	of	wild	geese	and	ducks)	 in	the	artificial	
rearing	of	these	birds.

2  | MATERIAL S AND METHODS

2.1 | Ethics statement

This	study	conformed	to	the	guidelines	 for	 the	care	and	use	of	
experimental	animals	established	by	the	Ministry	of	Science	and	
Technology	of	the	People’s	Republic	of	China	(Approval	number:	
2006-	398).	 The	 research	 protocol	was	 reviewed	 and	 approved	
by	 the	 Ethical	 Committee	 of	 Qinghai	 University.	 In	 this	 study,	
only	feces	of	greylag	geese	and	ruddy	shelducks	were	collected	
for	 relevant	 molecular	 studies.	 No	 direct	 capture	 or	 hunting	
involved.

2.2 | Sampling

Fecal	samples	were	taken	from	three	wild	greylag	geese	(in	text	ab-
breviation:	GG	group)	 and	 three	wild	 ruddy	 shelducks	 (in	 text	 ab-
breviation:	 RSD	 group)	 from	 the	 Gengga-	hai	 Lake	 (N36°11′59.8″	
E100°05′39.7″,	 elevation	 2,800	m)	 on	 the	 northeastern	 Qinghai-	
Tibet	Plateau,	Qinghai	Province,	China.	We	chose	the	sampling	sites	
utilized	by	these	birds	as	stopover	in	autumn	during	migration	and	
waited	when	they	were	foraging	in	the	farmlands	where	only	a	single	
species	was	 present	 in	 the	morning.	 Fresh	 fecal	material	was	 col-
lected	and	stored	in	sterile	tubes.	The	fecal	samples	were	collected	
at	a	minimum	distance	interval	of	five	meters	to	ensure	that	all	fresh	
droppings	were	expelled	from	different	individuals.	All	samples	were	
transported	 to	 the	 laboratory	 using	 a	 −20°C	portable	 freezer	 and	
stored	at	−80°C	until	further	treatment.



     |  3 of 11WANG et Al.

2.3 | DNA extraction and metagenomic sequencing

Metagenomic	 DNA	 was	 isolated	 from	 approximately	 1	g	 of	 fecal	
sample,	 using	 the	 E.Z.N.A.®	 stool	 DNA	 Kit	 (Omega	 Bio-	tek,	
Norcross,	GA,	USA)	following	the	manufacturer’s	instruction.	DNA	
concentration	and	quality	were	assessed	by	Qubit	fluorometer	and	
agarose	gel	electrophoresis,	respectively.	The	high-	quality	DNA	was	
then	used	 to	 create	 an	 Illumina	DNA	 library	 and	 sequenced	using	
Illumina	NovaSeq	(2	×	125	bp)	(Illumina,	USA)	platform	at	Novogene	
Bioinformatics	Technology	Co.	Ltd	(Beijing,	China).

2.4 | Sequence analyses and metagenome assembly

To	obtain	the	clean	data	for	subsequent	analysis,	the	raw	data	from	
the	 Illumina	 NovaSeq	 sequencing	 platform	 were	 processed	 using	
Readfq	 (V8,	 https://github.com/cjfields/readfq).	 The	 specific	 pro-
cessing	steps	were	as	follows:	(a)	removed	reads	which	contain	low-	
quality	bases	 (default	quality	 threshold	value	 less	than	or	equal	 to	
38)	 above	 a	 certain	portion	 (default	 length	of	40	bp);	 (b)	 removed	
reads	 in	 which	 the	 N	 base	 reached	 a	 certain	 percentage	 (default	
length	of	10	bp);	(c)	removed	reads	which	shared	the	overlap	above	
a	certain	portion	with	Adapter	(default	length	of	15	bp).	To	filter	the	
reads	that	were	of	host	origin,	clean	data	were	then	blast	against	the	
host	 database	 using	 SoapAligner	 software	 (soap2.21,	 http://soap.
genomics.org.cn/soapaligner.html).	The	parameters	were	as	follows:	
identity	greater	than	or	equal	to	90%,	-	l	30,	-	v	7,	-	M	4,	-	m	200,	-	x	
400	(Law	et	al.,	2013).	Then,	the	high-	quality	reads	of	each	sample	
were	assembled	by	the	SOAPdenovo	software	(V2.04,	http://soap.
genomics.org.cn/soapdenovo.html)	 (Luo	 et	al.,	 2012),	 with	 the	 pa-
rameters	-	d	1,	-	M	3,	-	R,	-	u,	-	F,	-	K	55	(Qin	et	al.,	2014).	After	de	novo	
assembly	 for	 each	 sample	 independently,	 all	 reads	 that	 not	 used	
from	all	samples	were	combined	and	performed	mixed	assembly	in	
order	 to	maximize	 the	 usage	of	 data.	 Subsequently,	we	broke	 the	
assembled	Scaffolds	from	N	connection	and	obtained	the	Scaftigs.	
At	last,	the	fragments	longer	than	500	bp	in	all	of	Scaftigs	were	used	
for	further	analysis.

2.5 | Gene prediction and 
construction of the nonredundant gene set

We	 used	 MetaGeneMark	 (V2.10,	 http://topaz.gatech.edu/
GeneMark/)	 to	 predict	 ORFs	 from	 the	 Scaftigs	 assembled	 from	
each	 sample	 as	 well	 as	 the	 Scaftigs	 from	 the	 mixed	 assembly.	
Then,	 the	 ORFs	 with	 length	 <100	bp	 were	 filtered	 out.	 For	 the	
predicted	ORFs,	 CD-	HIT	 software	 (V4.5.8,	 http://www.bioinfor-
matics.org/cd-hit)	was	used	to	reduce	sequence	redundancy	 (Fu,	
Niu,	 Zhu,	Wu,	&	 Li,	 2012)	 and	 the	 unique	 initial	 gene	 catalogue	
(the	genes	here	refer	to	the	nucleotide	sequences	coded	by	unique	
and	 continuous	 genes)	was	 obtained	 (Sunagawa	 et	al.,	 2015).	 To	
obtain	 the	gene	catalogue	 (Unigenes)	eventually	used	 for	subse-
quently	analysis,	 the	clean	data	of	each	sample	were	mapped	to	
the	 unique	 initial	 gene	 catalogue	 using	 SoapAligner	 (soap	 2.21).	
Based	 on	 the	 number	 of	mapped	 reads	 and	 the	 length	 of	 gene,	

the	abundance	 information	of	each	Unigene	 in	each	 sample	was	
statistically	analyzed.

2.6 | Gene taxonomic prediction

DIAMOND	 software	 (V0.7.9,	 https://github.com/bbuchfink/dia-
mond/)	was	used	to	blast	the	unigenes	to	the	sequences	of	bacteria,	
fungi,	archaea,	and	viruses	which	were	all	extracted	from	the	NR	da-
tabase	(version:	20161115,	https://www.ncbi.nlm.nih.gov/)	of	NCBI	
with	the	parameter	of	blastp,	-	e	1e-	5	(Buchfink,	Xie,	&	Huson,	2015).	
To	identify	bacterial	taxa,	the	lowest	common	ancestor	(LCA)	algo-
rithm	 in	MEGAN	 software	 was	 used	 (Huson,	Mitra,	 Ruscheweyh,	
Weber,	&	Schuster,	2011).	The	exhibition	of	PCA	(R	ade4	package,	
version	2.15.3)	(Avershina,	Trine,	&	Knut,	2013)	and	NMDS	(R	vegan	
package,	 version	 2.15.3)	 (Rivas	 et	al.,	 2013)	 decrease-	dimension	
analyses	was	based	on	the	abundance	of	each	taxonomic	hierarchy.	
Analysis	 of	 similarities	 (ANOSIM)	was	 performed	 using	 the	 vegan	
package	in	R	(version	2.15.3).	Metastats	analyses	were	used	to	look	
for	the	different	species	between	groups.	Venn	diagram	analyses	at	
the	genus	level	were	performed	using	VennDiagram	package	in	the	
software	R	(2.15.3).

2.7 | Functional gene annotation

Functional	 annotation	 of	 metagenomes	 was	 conducted	 using	
DIAMOND	software	 (V0.7.9)	 to	blast	 unigenes	 to	KEGG	database	
(version	201609,	http://www.kegg.jp/kegg/)	(Kanehisa	et	al.,	2014),	
CAZy	database	(version	20150704,	http://www.cazy.org/)	(Cantarel	
et	al.,	2009),	and	the	Comprehensive	Antibiotic	Resistance	Database	
(https://card.mcmaster.ca/)	 with	 the	 parameter	 setting	 of	 blastp,	
evalue	≤	1e	-		30	(Jia	et	al.,	2017).	For	each	sequence’s	blast	result,	the	
best	Blast	Hit	was	used	for	subsequent	analysis.	The	relative	abun-
dance	of	each	functional	hierarchy	equaled	the	sum	of	relative	abun-
dance	annotated	to	that	functional	level.	Based	on	the	abundance	of	
each	hierarchy,	heat	map	of	hierarchy	cluster	and	Metastats	analy-
sis	were	performed.	Permutation	test	between	groups	was	used	in	
Metastats	analysis,	and	the	p	value	was	corrected	by	controlling	the	
false	discovery	rate	using	the	Benjamini–Hochberg	method	(White,	
Nagarajan,	&	Pop,	2009).

3  | RESULTS

3.1 | Summary of the metagenomic datasets

A	 total	 of	 six	 metagenomes	 were	 sequenced	 using	 an	 Illumina’s	
NovaSeq	 platform	 (2	×	150	bp).	 The	 output	 data	 encompassed	 a	
total	of	38,306.65	Mb	of	raw	reads,	with	an	average	of	6,384.44	Mb	
per	 sample	 (Supporting	 Information	 Table	 S1).	 Then,	 these	 se-
quenced	 raw	 reads	were	 filtered	 to	 obtain	 clean	 reads	 by	 remov-
ing	 the	 short	 and	 low-	quality	 reads,	 adaptors	 and	 any	 eukaryotic	
sequences.	As	a	result,	a	total	of	36,473.30	Mb	of	clean	reads	were	
generated	(Supporting	Information	Table	S1)	for	further	clear	assem-
bly	and	annotation	analyses.	The	de	novo	assembly	of	these	clean	
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reads	 resulted	 in	 a	 total	 of	 320.93	Mb	 of	 scaftigs	 (with	 the	 total	
length	ranging	from	14.49	to	117.78	Mb),	with	an	N50	of	1150.67	bp	
(Supporting	Information	Table	S1).	Based	on	these	scaftigs,	a	total	of	
310,560	unigenes	with	an	average	length	of	550.27	bp	and	an	aver-
age	GC	 content	 of	 42.93%	were	 predicted	 using	 the	 gene-	finding	
algorithm	MetaGeneMark	(Supporting	Information	Table	S1).	These	
unigenes	were	then	used	for	taxonomic	analysis	and	functional	an-
notation,	and	the	results	of	which	were	summarized	 in	Supporting	
Information	Table	S2.

3.2 | Comparison of the composition of the 
metagenome- based microbial communities in greylag 
geese and ruddy shelducks

To	 investigate	 the	 gut	 microbiome	 compositions	 of	 both	 greylag	
geese	and	 ruddy	 shelducks,	 based	on	 the	BLAST	 results,	 approxi-
mately	 150,882.57	 unigenes	 were	 further	 classified	 into	 phyla	
and	down	to	species	level	using	the	MEGAN	software	(Supporting	

Information	 Table	 S2).	 The	 top	 four	 phyla	 in	 greylag	 geese	 were	
Firmicutes	(31.64%),	Proteobacteria	(11.51%),	Tenericutes	(6.34%),	and	
Fusobacteria	(0.96%)	(Figure	1a	and	Supporting	Information	Table	S3).	
In	the	ruddy	shelducks	group,	Firmicutes also held the overwhelm-
ing	predominance,	with	the	average	relative	abundance	of	39.99%,	
followed	 by	 Bacteroidetes	 (15.66%),	 Proteobacteria	 (3.93%),	 and	
Fusobacteria	 (3.40%)	 (Figure	1a	 and	 Supporting	 Information	 Table	
S3).	Sequences	that	could	not	be	classified	into	any	known	groups	
and	that	were	detected	with	low	abundance	were	grouped	as	“oth-
ers.”	The	proportion	of	these	unclassified	sequences	varied	between	
11.19%	 and	 83.09%	 among	 the	 different	 samples	 (Figure	1a	 and	
Supporting	Information	Table	S3).	This	indicated	that	a	great	number	
of	unknown	bacteria	were	present	in	the	guts	of	these	two	species	of	
birds.	The	most	abundant	genus	was	Streptococcus	(7.25%),	followed	
by Escherichia	(5.72%),	Mycoplasma	(5.34%),	Romboutsia	(5.27%),	and	
Staphylococcus	 (2.60%)	 in	greylag	geese	 (Figure	1b	and	Supporting	
Information	Table	S4).	In	contrast,	the	dominant	microbial	genera	in	
ruddy	shelducks	were	Enterococcus	 (16.70%),	Bacteroides	 (10.87%),	

F IGURE  1 Taxonomic	profiles	of	the	microbial	communities	at	the	phylum	level	(a)	and	genus	level	(b)	in	each	sample.	GG	refers	to	the	
greylag	geese	group;	RSD	refers	to	the	ruddy	shelducks	group

F IGURE  2 The	beta	diversity	results	of	PCA	plot	(a)	and	NMDS	plot	(b)	indicating	the	microbial	phyla	distribution	between	the	groups.	
GG	refers	to	the	greylag	geese	group	samples;	RSD	refers	to	the	ruddy	shelducks	group	samples
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Streptococcus	 (7.17%),	Megamonas	 (2.22%),	 and	Lactobacillus (1.85) 
(Figure	1b	and	Supporting	Information	Table	S4).

Differences	 in	 bacterial	 community	 composition	 between	 the	
two	groups	were	estimated	using	principal	component	analysis	(PCA)	
and	 nonmetric	multidimensional	 scaling	 (NMDS)	 (Figure	2).	 At	 the	
phylum	level,	greylag	geese	populations	were	observed	to	demon-
strate	 a	 visually	 distinct	 profile	 from	 the	 ruddy	 shelducks.	 These	
dissimilarities	 in	microbial	communities	were	 further	confirmed	by	
performing	 genus-	level	 PCA	 and	 NMDS	 calculations	 (Supporting	

Information	 Figure	 S1).	 Furthermore,	 analysis	 of	 similarities	
(ANOSIM)	was	performed	to	determine	whether	the	total	variation	
in	the	gut	microbiome	was	due	to	the	differences	within	or	between	
groups.	The	results	showed	that	differences	observed	within	group	
outweighed	that	occurring	between	groups	(Supporting	Information	
Figure	S2).	These	 interindividual	variances	may	be	partially	due	 to	
the	unequal	and	relatively	small	sample	size	of	this	study.

Metastats	 analyses	 were	 performed	 to	 detect	 differentially	
abundant	genera	between	the	two	groups	(Supporting	Information	
Table	 S5).	 A	 total	 of	 12	 genera	were	 found	 to	 be	more	 abundant	
in	RSD	group	and	41	genera	were	significantly	higher	in	GG	group	
(Supporting	Information	Table	S5).	A	Venn	diagram	showed	that	613	
genera	were	assigned	to	both	groups,	while	273	and	228	bacterial	
genera	were	only	assigned	to	the	RSD	and	GG	groups,	respectively	
(Figure	3).

3.3 | Functional profiling of the gut metagenome

Metagenome	 sequencing	 has	 the	 inherent	 advantage	 of	 allowing	
for	 an	 examination	 of	 gene	 content	 of	 the	 microbial	 populations	
and	allows	the	direct	 inference	of	 the	metabolic	capacity	of	 these	
populations.	To	explore	the	overall	functional	profiles	of	the	gut	mi-
crobiome,	a	total	of	141,279	out	of	310,560	unigenes	(45.49%)	were	
identified	 by	 the	 KEGG	 database	 (Supporting	 Information	 Table	
S2).	Of	these	unigenes,	82,371	(26.52%)	could	be	assigned	to	7,021	
KEGG	ortholog	group	(KOs)	and	49,795	(16.03%)	could	be	assigned	
to	384	KEGG	pathways	(Supporting	Information	Table	S2).	The	uni-
genes	matching	 to	 level	1	 and	 level	2	KEGG	 functional	 categories	
were	shown	in	Figure	4.	In	detail,	the	dominant	functional	categories	

F IGURE  3 Venn	diagrams	showing	the	unique	and	shared	
microbial	genera	between	Group	GG	and	Group	RSD.	GG	refers	to	
the	greylag	geese	group;	RSD	refers	to	the	ruddy	shelducks	group

F IGURE  4 Summary	of	unigenes	
matched	to	each	KEGG	functional	
categories (level 1 and level 2) present in 
the	gut	metagenome	datasets
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identified	 included	metabolism	 (59.89%),	 genetic	 information	 pro-
cessing	(13.37%),	and	environmental	information	processing	(9.65%).	
The	 cumulative	 proportion	 of	 these	 three	 categories	 was	 above	
82.91%	for	all	assigned	unigenes.	This	indicated	that	the	metabolic	
potential	of	the	gut	microbiota	related	to	these	two	species	of	birds	
was	highly	active.	The	proportions	of	KEGG	categories	 (level	1)	 in	
each	sample	were	shown	in	Figure	5.

3.4 | Comparison of functionality of the greylag 
geese and ruddy shelducks gut metagenomes

Due	to	differences	 in	genetics	and	diet	compositions,	 significantly	
different	 abundances	 of	 functional	 genes	 and	 pathways	were	 ex-
pected	to	be	observed	in	greylag	geese	and	ruddy	shelducks.	A	heat	
map	 of	 a	 hierarchical	 clustering	 analysis	 of	 the	 top	 35	 abundant	
KEGG	functional	 categories	 (level	2)	 showed	 that	 increased	meta-
bolic	 categories	 involved	 in	 carbohydrate	metabolism,	metabolism	
of	cofactors	and	vitamins,	lipid	metabolism,	amino	acid	metabolism,	
and	glycan	biosynthesis	and	metabolism	in	RSD	group,	whereas	the	
GG	group	were	enriched	in	nucleotide	metabolism	and	energy	me-
tabolism	 (Figure	6).	 Furthermore,	 among	 the	 detected	 384	 KEGG	
pathways	(level	3),	nine	pathways	were	found	to	be	significantly	dif-
ferent	between	GG	and	RSD	groups	 through	a	Metastats	analysis	
(Supporting	Information	Table	S6).

3.5 | Diversity profile of CAZymes

Carbohydrate-	active	enzymes	(CAZymes),	encoded	by	gut	microbes,	
play	 a	 crucial	 role	 in	 the	 breakdown	 of	 complex	 dietary	 carbohy-
drates into components that can be absorbed by the host intestinal 
epithelium.	To	determine	the	gut	CAZymes	profiles,	we	performed	
a	CAZymes	analysis	using	the	metagenomic	data	from	both	greylag	
geese	and	ruddy	shelducks.	In	total,	9,060	putative	genes	were	iden-
tified	(Supporting	Information	Table	S2).	The	majority	of	these	genes	
identified	 were	 assigned	 to	 glycoside	 hydrolases	 (5,491,	 57.78%).	
In	the	RSD	group,	a	total	of	210	CAZymes	were	identified,	 includ-
ing	five	auxiliary	activities	(AAs),	43	carbohydrate	binding	modules	
(CBMs),	 12	 carbohydrate	 esterases	 (CEs),	 89	 glycoside	 hydrolases	
(GHs),	52	glycosyl	transferases	(GTs),	and	nine	polysaccharide	lyases	
(PLs).	A	total	of	196	CAZymes	were	found	in	the	GG	group,	including	
five	AAs,	38	CBMs,	10	CEs,	78	GHs,	58	GTs,	and	seven	PLs.	The	pro-
portions	of	each	CAZymes	were	compared	using	Metastats	analysis.	
GH24,	99,	104	and	GT33,	72,	73,	80	were	found	to	be	significantly	
higher	 in	GG	group	 (p	<	0.05)	 than	 that	 in	RSD	group,	while	 three	
CAZymes	had	higher	proportions	in	RSD	group	(p	<	0.05),	including	
GH27,	GT10,	and	CBM20.

3.6 | Antibiotic resistance profiles

The	high	concentrations	of	antibiotics	used	 in	clinical,	agricultural,	
livestock,	 and	poultry	 settings	provide	a	 strong	 selective	pressure	
that	favors	the	exchange	of	antibiotic	resistance	genes	 (ARGs)	be-
tween	pathogens	and	gut	microbes.	To	investigate	the	ARGs	present	

in	 the	 gut	 microbiota	 of	 greylag	 geese	 and	 ruddy	 shelducks,	 the	
unigenes	 identified	 in	 the	 metagenome	 data	 were	 screened	 for	
antibiotic	 resistance	 factors	 using	 the	 Comprehensive	 Antibiotic	
Resistance	Database	 (CARD).	A	 total	 of	598	unigenes	were	 anno-
tated	in	CARD	and	125	antibiotic	resistance	ontologies	(AROs)	were	
identified	 (Supporting	 Information	 Table	 S2).	 Of	 these	 detected	
AROs,	the	top	20	most	abundant	AROs	in	each	sample	were	shown	
in	 Figure	7.	 A	 range	 of	 antibiotic	 resistance	 categories	 were	 also	
identified,	 including	 resistance	 to	 rifampin,	mupirocin,	 novobiocin,	
pulvomycin,	fosfomycin,	norfloxacin,	ciprofloxacin,	acriflavine,	pleu-
romutilin,	 amoxicillin,	daptomycin,	aminocoumarin,	 and	polymyxin.	
These	AROs	were	further	analyzed	for	their	microbial	origin.	In	the	
GG	group,	approximately	50%	of	the	AROs	were	highly	enriched	in	
phyla Firmicutes	 (32%),	 Proteobacteria	 (12%),	 and	 Tenericutes	 (6%)	
(Figure	8a).	 In	 the	 RSD	 group,	 approximately	 60%	 of	 AROs	 were	
found	to	be	enriched	in	phyla	Firmicutes	(40%),	Bacteroidetes	(16%),	
Proteobacteria	(4%),	and	Fusobacteria	(3%)	(Figure	8b).	These	results	
indicate	that	different	types	of	gut	microbes	contribute	differently	
to	the	occurrence	of	antibiotic	resistance	genes.

4  | DISCUSSION

The	results	presented	in	this	study	represent	the	first	gut	metagen-
omic	characterizations	of	both	greylag	geese	and	ruddy	shelducks.	
To	date,	although	several	datasets	are	available	for	the	gut	metagen-
omes	of	domestic	birds	(e.g.,	chickens	and	ducks)	(Day,	Ballard,	Duke,	
Scheffler,	&	Zsak,	2010;	Delforno	et	al.,	2017;	Lu	et	al.,	2007),	rela-
tively	little	information	is	available	concerning	the	metagenomes	of	
wild	birds’	gut	microbiota	(Godoy-	Vitorino	et	al.,	2008,	2012;	Wang,	
Zheng,	et	al.,	2017;	Wang,	Song,	et	al.,	2017).	Therefore,	this	study	
provides	 a	 significant	 contribution	 to	 the	 vast,	 yet	 little	 explored,	
field	of	wild	birds’	gut	microbiome.	Additionally,	knowledge	of	 the	
gut	microbiomes	of	these	two	wild	bird	species	could	also	provide	
a	helpful	 reference	 for	 improving	 the	 rearing	performance	of	wild	
birds	in	artificial	rearing	industries.

It was a logical choice to compare greylag geese samples with 
the	 ruddy	 shelducks’	 gut	 microbiota,	 because	 these	 two	 species	
of	 birds	 inhabit	 the	 same	 region	 and	 share	 part	 of	 the	 same	 food	
items.	 Based	 on	 the	 taxonomic	 classification,	 the	 gut	microbiotas	
of	greylag	geese	and	ruddy	shelducks	differed	substantially	at	 the	
phylum	 and	 lower	 taxonomic	 levels.	 The	 reasons	 for	 these	 differ-
ences	 were	 not	 clear.	 Maybe	 the	 different	 genetic	 backgrounds	
were	responsible	for	these	differences.	Support	for	a	host	genetic	
effect	 on	 the	 gut	microbiome	 comes	mostly	 from	 large	 compara-
tive	 studies.	 For	 instance,	Hird	 et	al.	 sampled	 116	 intestines	 from	
59	 neotropical	 bird	 species	 and	 found	 that	 host	 taxonomic	 cate-
gories	were	most	 frequently	able	 to	 significantly	explain	 the	most	
variations	in	the	gut	microbiotas	of	birds	(Hird,	Sánchez,	Carstens,	&	
Brumfield,	2015).	In	mammals,	such	studies	had	also	shown	that	host	
taxonomy	was	strongly	associated	with	gut	microbiotas	 (Ley	et	al.,	
2008).	 Additionally,	 our	 study	 identified	 some	 common	 bacterial	
microbiota	present	 in	both	greylag	geese	and	 ruddy	shelducks.	At	
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F IGURE  5 Relative	abundance	of	different	KEGG	functional	categories	present	in	each	sample.	GG	refers	to	the	greylag	geese	group;	
RSD	refers	to	the	ruddy	shelducks	group

F IGURE  6 Heat	map	of	hierarchical	clustering	analysis	of	the	top	35	abundant	KEGG	functional	categories	(level	2)	in	Group	GG	and	
Group	RSD.	GG	refers	to	the	greylag	geese	group;	RSD	refers	to	the	ruddy	shelducks	group
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the	phylum	 level,	Firmicutes,	Proteobacteria, and Fusobacteria were 
found	 to	be	present	 at	high	abundance	 in	each	 sample.	Firmicutes 
and Proteobacteria,	 the	most	widespread	 intestinal	phyla,	are	com-
monly	 observed	within	 gut	 environments	 of	many	 birds	 (Waite	&	
Taylor,	 2014;	Wang,	 Cao,	 Li,	 et	al.,	 2016;	Wang,	 Cao,	 Yang,	 et	al.,	
2016;	 Wang,	 Zheng,	 et	al.,	 2016).	 Members	 of	 these	 two	 phyla	
were	frequently	studied	for	their	food	digestion	roles.	For	example,	
Firmicutes	members	were	 associated	with	 insoluble	 fiber	degrada-
tion	(Berry,	2016),	and	Proteobacteria members were associated with 
cellulose	activity	(Reid,	Addison,	Macdonald,	&	Lloyd-	Jones,	2011).	A	
rich	community	of	Fusobacteria	was	frequently	reported	in	the	guts	
of	carnivorous	and	omnivorous	birds	(Waite	&	Taylor,	2014).	In	our	
study,	the	guts	of	ruddy	shelducks	contained	3.4%	Fusobacteria. As 
an	omnivorous	bird,	 ruddy	shelducks	feed	mainly	on	fish,	shrimps,	
crabs,	aquatic	plants,	and	cereals.	The	appearance	of	Fusobacteria in 
the	greylag	geese	gut	microbiome	is	an	 interesting	avenue	for	fur-
ther	study,	since	this	species	was	considered	as	an	herbivorous	bird,	
consuming	a	diversity	of	foods	that	includes	leaves,	roots,	and	seeds	
(Olsen,	2015).	At	the	genus	level,	the	results	showed	that	about	70%	
of	genera	were	assigned	to	both	greylag	geese	and	ruddy	shelducks	
groups.	These	common	genera	may	be	shaped	by	 the	overlapping	
food	items	between	two	groups.	Diet	is	a	factor	that	directly	affects	

gut	microbial	community	composition	(Zarrinpar,	Chaix,	Yooseph,	&	
Panda,	2014).	However,	 the	fundamental	characteristics	of	 the	re-
lationship	between	the	diets	and	the	wild	birds’	gut	microbiome	are	
unknown.	 It	 should	 be	 of	 great	 research	 and	 practical	 application	
values	to	analyze	these	common	genera	to	develop	probiotics	that	
may	meet	the	demands	of	the	artificial	rearing	industries	for	greylag	
geese	and	ruddy	shelducks,	helping	to	accelerate	the	domestication	
of	these	birds.

An	Analysis	of	the	overall	functional	profiles	in	the	present	study	
indicated	that	the	gut	microbes	associated	with	these	two	bird	spe-
cies	exhibited	high	metabolic	activities.	These	results	were	consis-
tent	 with	 earlier	 studies	 on	 the	 gut	 metagenomes	 of	 bar-	headed	
geese (Anser indicus)	(Wang,	Zheng,	et	al.,	2017;	Wang,	Song,	et	al.,	
2017). This high metabolic rate may be related to the energy con-
sumption	required	to	fulfill	the	demands	of	flight.	Avian	metabolism	
was	 reported	 to	 be	 approximately	 60%	 higher	 than	 that	 those	 of	
most	mammals	(Scanes	&	Braun,	2012).	The	further	comparison	of	
the	functional	profiles	of	the	datasets	from	greylag	geese	and	ruddy	
shelducks	revealed	many	remarkable	differences,	which	suggested	
that	 not	 only	 the	 bacterial	 compositions	 but	 their	 functionalities	
were	 important.	 For	 example,	 functions	 related	 to	 carbohydrate	
metabolism,	 lipid	 metabolism,	 amino	 acid	 metabolism,	 and	 glycan	

F IGURE  8 Circos	plots	representing	alignment	of	the	proportion	of	different	antibiotic	resistance	ontology	and	microbial	phyla	in	Group	
GG	(a)	and	Group	RSD	(b).	The	inner-	ring	refers	to	the	distribution	of	different	antibiotic	resistance	ontology	in	corresponding	microbial	
phyla.	The	outer-	ring	refers	to	the	relative	abundance	of	different	phyla	in	each	group.	GG	refers	to	the	greylag	geese	group;	RSD	refers	to	
the	ruddy	shelducks	group

F IGURE  7 Relative	proportion	of	
the	top	20	most	abundant	antibiotic	
resistance	ontology	in	each	sample.	GG	
refers	to	the	greylag	geese	group	samples;	
RSD	refers	to	the	ruddy	shelducks	group	
samples
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biosynthesis	 and	metabolism	were	 significantly	more	 abundant	 in	
ruddy	shelducks	than	that	 in	greylag	geese.	 It	 is	 reasonable	to	hy-
pothesize	 that	 the	microbiota	 of	 the	 omnivorous	 ruddy	 shelducks	
is	probably	specialized	to	degrade	more	diverse	types	of	foods	than	
that	of	the	herbivorous	greylag	geese,	which	eats	a	more	homoge-
nous	type	of	food.	Several	KEGG	pathways	(level	3)	with	different	
abundance	 dynamics	 in	 ruddy	 shelducks	 vs.	 greylag	 geese	 appear	
to	be	associated	with	the	acclimation	of	microbiota	to	the	nutrients.	
For	example,	we	observed	 increases	 in	 the	abundance	of	pentose	
and	 glucuronate	 interconversions	 [ko00040]	 in	 ruddy	 shelducks	
that	may	contribute	to	host	glucose	metabolism.	We	also	observed	
increases	 in	 the	abundance	of	pathways	associated	with	 limonene	
and	 pinene	 degradation	 [ko00903]	 and	 carotenoid	 biosynthesis	
[ko00906]	in	greylag	geese	that	may	contribute	to	the	degradation	
and	fermentation	of	plant	material.

From	these	metagenome	data,	we	also	identified	9,060	putative	
carbohydrate-	active	 genes.	 Conforming	 to	 expectations,	 the	 her-
bivorous	greylag	geese	gut	microbiota	harbor	more	CAZymes	than	
that	of	the	omnivorous	ruddy	shelducks.	These	detected	CAZymes	
would	allow	greylag	geese	and	ruddy	shelducks	to	make	extensive	
use	of	plant	material	as	a	source	of	nutrients	through	the	enzymatic	
activities	of	the	gut	microbes.	The	majority	of	the	CAZymes	genes	
identified	 were	 assigned	 to	 glycoside	 hydrolases	 in	 each	 sample.	
GHs	are	the	most	abundant	enzymes	used	to	break	down	polysac-
charides	into	smaller	products	(Berlemont	&	Martiny,	2016).	Of	the	
total	detected	GHs,	GH24	(predominant	activity	is	lysozyme),	GH99	
(predominant	 activity	 is	 glycoprotein	 endo-	α-	1,2-	mannosidase),	
and	 GH104	 (predominant	 activity	 is	 peptidoglycan	 lytic	 transgly-
cosylase)	were	found	to	be	significantly	increased	in	greylag	geese	
group,	 while	 the	 proportion	 of	 GH27	 (predominant	 activity	 is	 α-	
galactosidase)	was	significantly	increased	in	ruddy	shelducks	group.	
These	increased	GHs	in	each	group	indicated	an	enrichment	of	dif-
ferent	 gut	microbes	 that	were	 specialized	 in	 utilization	 of	 diverse	
plant polysaccharides.

Due	to	unmonitored	application	of	antibiotics,	the	widespread	of	
antibiotic	 resistance	genes	 (ARGs)	and	antibiotic	 resistant	bacteria	
has	become	a	great	public	concern	 (Wright,	2007).	 In	our	study,	a	
range	of	antibiotic	resistance	categories	were	also	identified	in	the	
gut	microbiota	of	greylag	geese	and	ruddy	shelducks.	The	existence	
of	these	antibiotic	resistance	genes	in	wild	birds	supported	the	view	
that	antibiotic	resistance	was	naturally	originated.	Soil	was	increas-
ingly	recognized	as	a	vast	repository	of	antibiotic	resistance	genes	
(Forsberg	et	al.,	2012).	Consequently,	it	is	difficult	to	find	a	bird	that	
has	never	been	exposed	to	antibiotic	polluted	environments.	Based	
on	the	analysis	of	the	origin	of	these	antibiotic	resistance	genes,	ARGs	
profiles	were	found	to	be	correlated	with	microbial	community	com-
positions.	For	instance,	the	majority	of	ARGs	in	greylag	geese	origi-
nated	from	the	dominant	phyla	Firmicutes and Proteobacteria,	and	in	
ruddy	shelducks	from	the	phyla	Firmicutes and Bacteroidetes. These 
phyla,	known	as	prevalent	antibiotic	producing	bacteria,	were	also	
reported	to	be	present	in	the	gut	microbiota	of	four	songbird	species	
(Carter	et	al.,	2018).	These	results	indicated	that	highly	mobile	wild-
life,	 such	as	migratory	birds,	might	enable	 the	spread	of	antibiotic	

resistant	bacteria	when	they	are	exposed	to	previously	unexposed	
environments	(Viana,	Santamaría,	&	Figuerola,	2016).	These	results	
also	indicated	that	manure	management	was	important	in	wildfowl	
artificial	rearing	industries.	Thus,	it	is	necessary	to	reduce	potential	
environmental contamination risks associated with antibiotic resis-
tance	from	feces	of	these	birds	and	the	abuse	of	antibiotics.

The	 present	 study	 had	 several	 limitations	 that	 should	 be	 ac-
knowledged.	First,	 the	relatively	small	sample	size	may	reduce	the	
accuracy	 of	 partial	 results.	 Second,	 because	 of	 feces	 used	 in	 this	
study	were	collected	from	wild	birds,	some	physiological	indexes	of	
these	birds	remain	unknown.	Therefore,	large	variances	existed	be-
tween	individuals.	Lastly,	large	datasets	under	captive	environments	
are	needed	to	investigate	potential	mechanisms	driving	diets–micro-
biota	interactions	in	the	birds’	gut.

In	summary,	we	used	metagenomics	to	gain	an	insight	into	both	
the	compositional	 (profiles	of	microbiota)	and	the	functional	capa-
bilities	 (KEGG	functional	categories,	carbohydrate-	active	enzymes,	
and	antibiotic	resistance	genes)	of	the	gut	microbiomes	of	two	wild	
bird	species,	greylag	geese	and	ruddy	shelducks.	By	comparing	the	
gut	metagenomes	of	these	two	species,	we	also	identified	both	sub-
stantial	overlap	and	differences	in	microbial	composition	and	func-
tion.	Although	it	remains	unclear	to	what	extent	these	changes	were	
determined	by	host	genetics	and/or	diets,	these	results	substantially	
increased	our	knowledge	of	the	bird	gut	microbiome.
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