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KMT2A (MLL) abnormalities are common in leukemias of various lineages. Specifically, KMT2A chromo-
somal rearrangements are present in about 5% to 15% of all adolescents and young adults diagnosed
with acute lymphoblastic leukemia (ALL) and in 3% of all adult patients with acute myeloid leukemia
(AML).1,2 Thus far, more than 100 KMT2A partner genes have been described, AFF1 (AF4) and MLLT3
(AF9) being the most common ones, mainly associated with ALL and AML, respectively.3 Although the
KMT2A recombinome has been largely studied in B-cell ALL (B-ALL), its characterization in T-cell ALL
(T-ALL) is still limited, with KMT2A rearrangements accounting for about 2% to 5% of all T-ALL cases.4

In T-ALL, in turn, the most frequent partner genes involved in KMT2A rearrangements are MLLT1 (ENL)
and AFDN (AF6).3,4

CBL (also known as c-CBL, casitas B-lineage leukemia) encodes for a ubiquitin-ligase (E3s) involved in
the negative regulation of signaling mediated by multiple tyrosine kinase receptors. This protein is a mem-
ber of the Cbl family of proto-oncogenes, which has 3 members (CBL, CBLB, and CBLC) and is ubiqui-
tously expressed in the cytoplasm of many tissues.5 The protein domain structure of Cbl is presented in
Figure 1A. At its N-terminal portion, there is a tyrosine kinase–binding (TKB) domain, an EF hand, and a
Src homology 2 domain (SH2). Its main function is to bind multiple cytoplasmatic substrates, including tyro-
sine kinase proteins. The zinc-binding Really Interesting New Gene (RING) finger domain, which regulates
the E3 ubiquitin ligase activity of c-Cbl, brings in an E2 ubiquitin-conjugating enzyme and therefore ubiquity-
lates the substrate bound to the TKB domain. Adjacent to the RING domain, there is a proline-rich region
involved in protein/protein interactions via inducible association with SH2 and SH3. At the C-terminal por-
tion, there is a ubiquitin associated/leucine zipper domain (UBA/LZ), crucial for Cbl homodimerization.

Several mutations in CBL have been described in various hematologic disorders, mostly in myeloid
malignancies. The frequency of CBL mutations has been as high as 15% and 4% of adult myelo-
dysplastic/myeloproliferative diseases and myeloproliferative neoplasms, respectively. In AML, its
frequency is lower: approximately 1% to 2%.6 In juvenile myelomonocytic leukemia (JMML), CBL
mutations are also common, with a frequency of 17%.7 In ALL, although rare, a few reports have
described CBL mutations in both T- and B-cell lineages, especially in KMT2A-rearranged leuke-
mias.8,9 CBL mutations consist mostly of point mutations clustering in exons 8 and 9, involving the
linker and RING domain6 (Figure 1A). The proposed oncogenic mechanism of CBL mutations is
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based on intracellular signaling deregulation because of the loss
of CBL inhibitory function.10 Interestingly, in CBL-mutated mye-
loid neoplasms, a loss of the germline CBL allele has been dem-
onstrated, mostly because of uniparental disomy.11

To our knowledge, only 4 reports of hematologic neoplasms harbor-
ing a KMT2A-CBL gene fusion (3 of them under the diagnosis of
AML) have been published.3,12,13 International collaborative efforts,
such as the MLL recombinome database, are crucial to identify and
collect these rare rearrangements. Along with the previously pub-
lished cases, we have now identified 3 new cases with the same
rearrangement but in distinct hematologic malignancies (Table 1). It
has been described that KMT2A breakpoints mostly localize within
exon 9 and intron 11, with an association of intron 9 breakpoints
with AML or older patients and intron 11 with ALL and younger
patients.3 In our cohort, all patients had their breakpoint within the
previous described limits, 4 of them clustering in intron 9, although
establishing associations between age or diagnosis with this finding
seems far-fetched. CBL breakpoints also cluster in intron 9 (Figure 1).
The KMT2A-CBL fusions of patients 2 and 7 are per se out of
frame. However, the reverse transcriptase-polymerase chain reac-
tion (RT-PCR) of case 2 revealed a cryptic exon composed of the
truncated exon 10 of KMT2A and additional filler DNA that

maintains the reading frame. This mechanism could also explain
the KMT2A-CBL rearrangement of patient 7, but this hypothesis
could not be verified because of the lack of material. This study
has been approved by the Ethics Committee of Hospital Cl�ınic de
Barcelona. Code:HCB/2021/0010 and was conducted in accor-
dance with the Declaration of Helsinki.

Despite the limited number of patients, some biological insights
about this rare rearrangement can be extracted from our findings.
We report for the first time that KMT2A-CBL rearrangements are
present not only in AML and B-ALL but also in T-ALL. Moreover, 2
of these cases were secondary neoplasms (JMML and polycythemia
vera; both received prior chemotherapeutic agents), which is also
common in KMT2A-rearranged leukemias. CBL is located in chro-
mosome 11q23, at a distance of 680 kb from KMT2A, suggesting
that KMT2A-CBL rearrangements are necessarily caused either by
an interstitial deletion or by a translocation event occurring between
both homologous chromosomes 11. Split-signal FISH analysis can
reveal these types of rearrangements, whereas conventional cytoge-
netics usually fails to detect them. Subsequently, different diagnostic
techniques can be used to identify CBL as the KMT2A fusion part-
ner, although their implementation in the clinical routine might be dif-
ficult. Targeted next-generation sequencing (NGS) is a feasible
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Figure 1. CBL structure and KMT2A-CBL rearrangements. (A) Structure of the CBL protein and its domains: 4-helix bundle (4H), EF-hand-calcium binding (EF), SRC

homology 2 (SH2), RING finger (RF), proline-rich domain (PR), and ubiquitin-associated domain (UBA). Phosphorylation sites (P) and predicted protein breakpoints for each

patient are also represented. (B) Schematic representation of KMT2A and CBL genes with the breakpoint for each patient.
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alternative to detect this and other rare rearrangements included in
the panel.

In terms of the leukemogenic effect of KMT2A-CBL rearrangements,
to date, there are no specific models that can clearly explain its
mechanism. CBL is a cytoplasmatic protein so its effect in the leuke-
mic cell might be different from that of nuclear factors like AFF1 or
MLLT3.14 In fact, it has been hypothesized that rearrangements of
KMT2A with cytoplasmatic proteins could trigger their oncogenic
effects through dimerization of the chimeric KMT2A protein, enhanc-
ing a specific gene expression program.15 This is supported by the
retention of the UBA domain responsible for the homodimerization of
CBL in all the KMT2A-CBL cases reported in the present study.
Thus, dimerization of KMT2A-CBL through the UBA domains could
be an important leukemogenic mechanism to be explored. Another
alternative explanation is that the translocated protein domains might
exert novel functions in the wrong cellular compartments. In addition,
the resulting truncated CBL protein most likely represents a genetic
“loss-of-function” situation, as already observed in hematological
neoplasms with CBL inactivating mutations.10

To conclude, KMT2A-CBL rearrangements are rare events identi-
fied in leukemias of various lineages. Conventional cytogenetics may
miss such rearrangements but the increasingly widespread use of
targeted sequencing techniques in the diagnostic work-up will prob-
ably increase the number of cases identified. International collabora-
tive efforts are necessary to improve the characterization of the
KMT2A-CBL rearrangement and investigate its prognostic impact.
Ultimately, functional experiments of KMT2A-CBL gain-of-function
models and CD341 hematopoietic progenitor cells may provide fun-
damental knowledge about the leukemogenic potential and the cell-
of-origin of KMT2A-CBL leukemias.
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