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Graphical abstract

Streptococcus pneumoniae utilizes a battery of virulence factors (indicated by the sword) to cause mucosal infections, including 
otitis media and pneumonia, and invasive disease, including bacteremia, meningitis and cardiac lesions (left panel). In addition, 
a naturally competent pathogen, the pneumococcus, can rapidly acquire new genetic content (center panel) that can enable 
vaccine escape variants and spread antibiotic resistance (shield), allowing the pathogen to evade clinical interventions (right 
panel).

Abstract

Streptococcus pneumoniae is a highly adept human pathogen. A frequent asymptomatic member of the respiratory microbiota, 
the pneumococcus has a remarkable capacity to cause mucosal (pneumonia and otitis media) and invasive diseases (bacte-
remia, meningitis). In addition, the organism utilizes a vast battery of virulence factors for tissue and immune evasion. Though 
recognized as a significant cause of pneumonia for over a century, efforts to develop more effective vaccines remain ongoing. 
The pathogen’s inherent capacity to exchange genetic material is critical to the pneumococcus’ success. This feature histori-
cally facilitated essential discoveries in genetics and is vital for disseminating antibiotic resistance and vaccine evasion.
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HISTORICAL PERSPECTIVE
Streptococcus pneumoniae was first isolated in 1881 and was 
established as the causative agent of pneumonia, the new 
‘Captain of the men of death,’ shortly thereafter [1, 2]. Pneu-
mococcal biology, specifically natural competence, facilitated 
seminal advances in genetics, including demonstrating the 
non-heritable exchange of genetic information and the role 
of DNA in transformation [3, 4].

CLINICAL PRESENTATION
A frequent cause of acute otitis media, the pneumococcal 
middle ear infection is characterized by ear pain, swollen 
eardrum, fever and drowsiness. Pneumonia, the most 
common severe form of pneumococcal disease, presents 
with symptoms including fever and chills, cough, difficulty 
breathing and chest pain. Presentation of pneumococcal 
meningitis includes a stiff neck, fever, headache, confusion 
and sensitivity to light. Pneumococcal bacteremia is char-
acterized by fever, chills, and low alertness and can progress 
to sepsis.

MICROBIAL CHARACTERISTICS: PHENOTYPIC 
AND GENOTYPIC FEATURES
S. pneumoniae is a facultative anaerobe. The non-motile, non-
spore-forming, alpha-haemolytic lancet-shaped diplococci 
or chains are resistant to bacitracin and sensitive to optochin 
and bile-mediated lysis. S. pneumoniae is genetically diverse 
with a core genome encoding between 500–1100 clusters of 
orthologues with a species-wide pan-genome predicted to 
encode up to >7000 orthologous genes [5]. Genetic varia-
tion amongst serotypes varies considerably. Some sero-
types have relatively high genetic diversity, whereas others 
have a relatively homogeneous genetic background [6]. S. 
pneumoniae lacks genes required for the complete Entner–
Doudoroff pathway and Krebs cycle. The pneumococci also 
have incomplete biosynthetic pathways for numerous amino 
acids, including cysteine, glycine, histidine, glutamine and 
glutamate [7]. S. pneumoniae primarily relies on carbohydrate 
fermentation coupled to substrate-level phosphorylation for 
energy generation [7].

CLINICAL DIAGNOSIS, LABORATORY 
CONFIRMATION AND SAFETY
Clinical diagnosis
Along with a constellation of clinically compatible signs and 
symptoms, including fever, cough, shortness of breath and 
rapid, shallow breathing, the diagnosis of pneumococcal 
pneumonia is supported by the radiographic demonstra-
tion of lobar consolidation with infiltrates in one or more 
segments within a single lobe on chest imaging. In addition, 
leukocytosis [white blood cells (WBC) >15 000 µl−1 blood] is 
usually associated with pneumococcal infection but may be 
low in severe cases.

Laboratory confirmation
Pneumococcal infection confirmation is most often obtained by 
isolating S. pneumoniae from sputum, blood, respiratory secre-
tions or throat swabs. To distinguish S. pneumoniae from bacteria 
of the normal nasopharyngeal flora, Gram-stained sputum from 
patients must contain predominantly Gram-positive diplococci 
with >25 white blood cells and <10 epithelial cells. S. pneumo-
niae can be isolated and cultured from the blood of patients 
with invasive infections in about 15 h. It is alpha-haemolytic, 
bacitracin-resistant and optochin-sensitive. In addition, it has 
a unique nutritional requirement, namely choline. Rapid diag-
nostic techniques include rapid point-of-care urine immuno-
chromatographic membrane tests that detect pneumococcal 
C-polysaccharide antigen and quantitative PCR detecting the 
presence of the autolysin gene (lytA) from nasal or sputum 
samples. In addition, multilocus sequence typing (MLST) is 
frequently employed to identify clones associated with invasive 
infection [8].

Laboratory safety
S. pneumoniae is classified as Biosafety Level-2 (BSL-2) by 
the Centers for Disease Control and Prevention (CDC) and 
Hazard Level 2 pathogen by the Advisory Committee on 
Dangerous Pathogens. It is also listed as medium priority 
pathogen by the World Health Organization (WHO). Thus, 
appropriate precautions should be taken when handling S. 
pneumoniae.

TREATMENT AND RESISTANCE
Treatment
For mild pneumococcal infections, amoxicillin, second- or 
third-generation cephalosporins, or oral levofloxacin, are 
recommended [9]. Amoxicillin is the first-line therapy for 
healthy children for mild to moderate paediatric pneumo-
coccal pneumonia caused by penicillin-sensitive strains. 
Alternatives include third-generation cephalosporins, 
including ceftriaxone or cefotaxime. For community-
acquired pneumonia in adults, macrolides (azithromycin, 
erythromycin or clarithromycin) or a respiratory fluoro-
quinolone (moxifloxacin, gemifloxacin or levofloxacin) are 
recommended for mild cases with susceptible organisms. In 
severe cases, ceftriaxone or cefotaxime are first-line agents, 
followed by vancomycin for life-threatening infection [10]. 
Ceftriaxone is the first line of therapy to treat pneumococcal 
meningitis caused by susceptible strains.

Resistance
Approximately 30 % of clinical strains harbour resistance 
to at least one antibiotic, and many strains carry multidrug 
resistance [11]. Resistance to β-lactam antibiotics requires 
recombination events between related streptococcal species 
resulting in mosaic penicillin-binding proteins, PBP2b, 
PBP2x and PBP1a, with decreased affinity for β-lactams 
[12]. Macrolide resistance increased strikingly in recent 
years, partially due to the reduced frequency of penicillin-
resistant strains targeted by vaccines [13] and the widespread 
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use of macrolide. The macrolide resistance is due to ribo-
some demethylation to prevent antibiotic binding to 23S 
rRNA and acquisition of macrolide efflux (Mef) pumps 
[14]. Trimethoprim-sulfamethoxazole resistance rates can 
be  >60 % and are often associated with other antibiotic 
resistances [13]. Fitness tradeoffs related to the acquisition 
of resistance coupled with selective targeting of serotypes 
by vaccination are important determinants dictating the 
prevalence of resistance.

PATHOGENIC STRATEGIES
Host range
The only known natural host for S. pneumoniae is humans.

Transmission
S. pneumoniae is transmitted through inhalation of infectious 
aerosols or direct contact with infected mucous membranes or 
secretions. In addition, influenza co-infection can enhance trans-
mission by both contact-dependent and airborne routes [15, 16].

Infection
A typical commensal respiratory flora, the pneumococcus 
can invade and infect numerous organs, including the middle 
ear, lungs, bloodstream, heart and brain, each with distinctive 
disease manifestations.

Host response and evasion
The host response to pneumococcal pneumonia initially 
involves clearance by alveolar macrophages following rapid 
and intense neutrophil infiltration. S. pneumoniae polysac-
charide capsules, of which 100 have been identified, confer 
resistance to phagocytosis-mediated clearance. In addition, 
the high selective pressure imparted by vaccination can result 
in capsular switching to evade vaccines [17]. The pneumo-
coccus can also evade mucosal antibody defenses via IgA1 
metalloprotease, which cleaves the mucosal IgA [18].

Virulence factors
Critical to the invasive capacity of the pneumococcus is its 
ability to adhere to and damage host cells and evade innate 

Fig. 1. Pneumococcal virulence factors. Critical to the success of S. pneumoniae is the capacity to survive within the human host. This 
encompasses mechanisms required for nutrient acquisition such as metal ions and carbohydrate sources, adhesion and evasion of host 
defenses.
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immunity using a multitude of mechanisms (Fig. 1) [19]. 
One major virulence factor is the capsule. The pneumococcus 
contains phosphorylcholine on both the cell-wall teichoic 
acid and the membrane-associated lipoteichoic acid [20]. 
The choline-binding proteins (CBPs) have been implicated 
in several cellular processes, including autolysis, adhesion and 
host-cell invasion [21]. S. pneumoniae is extremely successful 
in circumventing the complement activation pathways by 
preventing opsonization (capsule, PspA, LytA), depleting 
complement components (Ply, PepO, PGK, glyceraldehyde-
3-phosphate dehydrogenase), inhibiting C3 convertase 
formation (Eno, CbpA, PhtS, LytA, PepP) and MAC assembly 
(CbpA and phosphoglycerate kinase) [22]. The primary 
toxin, pneumolysin (PLY protein) produced by all strains, 
is a cholesterol-dependent cytolysin cytotoxic to most host 
cells and interferes with host responses by modulating host 
complement pathways allowing S. penumoniae to evade and 
thrive. PLY induces apoptosis of macrophages and brain cells, 
activates the production of inflammatory cytokines, activates 
NLRP3 inflammasome (implicated in neuroinflammation), 
induces neutrophil extracellular trap (NET) formation, 
among others [23].

EPIDEMIOLOGY, PREVENTION AND RISK 
GROUPS

Epidemiology
Pneumococcal colonization and infection are endemic in all 
geographic regions and are the leading cause of pneumonia 
mortality worldwide [24]. Globally, it is estimated half-a-
million children in the developing world are killed annually 
by S. pneumoniae. Invasive disease, whereby bacteria are 
recovered from normally sterile sites, predominantly impacts 
the young (<2 years) and elderly (>65 years). Following 
the introduction of the pneumococcal conjugate vaccine 
(Prevnar-7), a near-complete replacement of non-vaccine 
types was observed during carriage and reduced the incidence 
of invasive infections [25].

Prevention
The three pneumococcal vaccines: conjugate 7-valent 
(PCV7), 13-valent (PCV13) and pneumococcal polysac-
charide (PPSV23) vaccines, are made of 7, 13 and 23 
polysaccharide types, respectively. PCV77 and PCV13 are 
recommended for those younger than 2 years and those with 
certain medical conditions. The PPSV23 is recommended for 
adults older than 65 years, individuals with specific genetic 
(sickle cell disease) and medical conditions (impaired splenic 
function), and smokers are advised to vaccinate with PPSV23 
to prevent invasive pneumococcal infection (https://www.​
cdc.​gov/​pneumococcal/​vaccination.​html). In addition, 
patients with sickle cell disease, who are highly susceptible to 
invasive pneumococcal disease, are recommended to receive 
penicillin prophylaxis for the first 5 years of life in addition 
to vaccination to reduce the risk of invasive infection further 
[26].

Risk groups
Besides age, other risk factors for the invasive pneumococcal 
disease include alcohol abuse, smoking, chronic lung disease, 
diabetes and asthma [27]. Prior viral co-infection, particularly 
with influenza virus, can exacerbate secondary bacterial pneu-
monia caused by S. pneumoniae and significantly contribute 
to morbidity and mortality in influenza pandemics. Indi-
viduals with genetic (sickle cell and complement deficiency) 
and medical (asplenic and immunocompromised) deficien-
cies and individuals with solid or haematologic malignancies 
are also at high risk of invasive pneumococcal disease [27].

OPEN QUESTIONS
•	 What are the optimal candidates for vaccine development 

to prevent pneumonia and other infections at the mucosal 
surface?

•	 How will the antibiotic resistance, particularly multidrug 
resistance, of circulating strains change over the next 10 
years?

•	 How do determinants of pathogenicity in this genetically 
diverse pathogen vary amongst clinical isolates?
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