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Abstract

The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in
searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising
tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits
with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at
multiple time points). A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling
a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a
two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for
the phenotypes in the significant group(s). In this article, we propose a multivariate extension of generalized multifactor
dimensionality reduction (GMDR) based on multivariate generalized linear, multivariate quasi-likelihood and generalized
estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and
Environment are performed to investigate the properties and performance of the proposed method, as compared with the
univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.
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Introduction

Many complex disorders such as asthma, diabetes, cardiovas-

cular disease, Alzheimer’s disease, hypertension, mental disorders,

and drug addictions are generally multifaceted phenotypes,

measured by a set of scales and/or intermediate phenotypes that

can be correlated as the outputs of a metabolic network with many

interwoven pathways [1–4]. Longitudinal data at multiple time

points may also be gathered for investigating the trajectory of a

phenotype [5]. Furthermore, two-stage multiple testing analysis,

i.e., multivariate analysis for grouped phenotypes followed by

univariate analysis for the phenotypes in the significant group(s),

offers a plausible way to increase statistical power because the

traditional Bonferroni correction is usually overly stringent [6,7].

Thus, a multivariate approach is highly demanded for tracking

down pleiotropic contributors to complex multifaceted disorders

and genetic effects underlying dynamic traits, and for increasing

test power [8–12]. In addition, the multivariate strategy can also

provide an attractive framework for data integration of several

datasets of multi-omics features.

On the other hand, as a natural property of complex networks

and the widespread intermolecular dependence in gene regulation

and biochemical and metabolic systems, the presence of interac-

tions appears to be the norm rather than the exception. Ever-

growing evidence has pointed to the view that risk factors act in

concert, rather than isolated, to affect complex diseases–the joint

actions or interactions of multiple genetic and non-genetic factors

play an important role in the etiology of complex diseases [13–16].

The elusive but ubiquitous interactions present one of greatest

challenges for genetic epidemiologists because they make the risk

factors underlying complex phenotypes elude traditional single

factor-based hunting strategies [14,16,17]. A large amount of

research has been devoted to the development of new analytical

approaches for the detection and investigation of those interactive

determinants involved in complex diseases [18].

The data reduction approaches such as the multifactor

dimensionality reduction method (MDR) [19–21], the combina-

torial partitioning method (CPM) [22], and the restricted partition

method (RPM) [23], represent a promising tool for a better

identification of simultaneous associations and interactions among

multiple risk factors. To circumvent the weaknesses of existing

combinatorial approaches [24], we developed a generalized MDR

(GMDR) statistical framework that is applicable to diverse

phenotypes in population-based and family-based studies and

allows adjustment for covariates [25,26]. To date, however, most
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of the new methods in the literature are univariate, only offering to

run separate analysis on one trait at a time. Such a separate

analytical strategy does not utilize the information contained in

multivariate data. In this article, we propose generalized linear

model-, quasi-likelihood model- and generalized estimating

equations model-based multivariate combinatorial approaches to

detecting gene-gene and gene-environment interactions underly-

ing multiple complex traits. We conduct a series of computer

simulations to demonstrate the powerfulness of the proposed

methodology. Finally, the proposed methodology is illustrated by

an application to a set of real data on nicotine dependence (ND) in

the cohort from the Study of Addiction: Genetics and Environ-

ment (SAGE).

Materials and Methods

Ethics Statement
The datasets used for the analyses described in this article were

obtained from the database of Genotypes and Phenotypes

(dbGaP). All the study protocol and forms/procedures were

approved by the Institutional Review Board of the University of

Alabama at Birmingham.

In the original MDR method for a case-control study [19], a set

of m attributes either genes or discrete environmental factors are

chose to span an m-dimensional contingency table. Each subject is

allocated into a cell in this m-dimensional space based on the

observations on these attributes and every nonempty cell can be

labeled as either ‘‘high-risk’’ if the ratio of cases to controls in the

cell is larger than a pre-specified threshold or ‘‘low-risk’’ otherwise.

A new dichotomous attribute (i.e., a classification model) is formed

by pooling the high-risk cells and the low-risk cells into the high-

risk group and the low-risk group, respectively, thus changing the

space of the data from originally higher dimensions to one

dimension. The resulting model is evaluated in its ability to classify

the phenotype; accuracy, defined as the proportion of the correct

classifications (i.e., cases in the high-risk group and controls in the

low-risk group), is a commonly used measure. Cross-validation

and/or permutation testing can be integrated into the above

process for evaluation of model, and the optimal subset(s) of

features can be selected in terms of the classification ability

measured by accuracy or its derivatives such as p-value.

While sharing the same variable construction algorithm as in

MDR, GMDR uses a general statistic, instead of affection status,

to classify the two divergent groups. The statistic of an individual

corresponding to a certain cell in a given contingency table can be

generally expressed as the product of its membership coefficient

belonging to this cell and its residual under the null hypothesis,

which will be elaborated in the following subsections, respectively.

2.1. Statistical models and residuals under the null model
Multivariate traits can be represented by an appropriate

statistical model corresponding to data nature; generalized linear

model (GLM) [27], quasi-likelihood model (QLM) [28] and

generalized estimating equations (GEE) model [29] are the

commonly used models. All the GLM, QLM and GEE model

have the same form of linear predictor and link function.

Considering a. -dimensional response vector

Y~(Y1, Y2, � � � , YC)T , denote the expectation of Y by

E(Y)~ mið Þ~m. Assume that a set of explanatory variables

influence the outcomes and there is an invertible link function

l(m)~g relating the mean to the linear predictor, which can be

expressed as,
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g~Ib0zXtbtzXcbc~Xb, ð1Þ

where b is the effect vector probably consisting of b0, bt and bc for

the intercept(s), the target effects of interest (i.e. gene-gene and/or

gene-environment interactions), and the covariate effects, respec-

tively, X is the corresponding design matrix consisting of block

matrices I, Xt and Xc, and I is an identity matrix.

The linear predictor can be used for various scenarios. For a

repeated measurement study, Yi may have the same parameters b
and regressor values x, and thus the design matrix

X~ x, x, � � � , xð ÞT . In a clustered design or a longitudinal study,

the components of Y may share the same b, but have their own

regressors xis, and thus X~ x1, x2, � � � , xCð ÞT . For grouped

phenotypes in a two-stage multiple testing, each Yi has the

component-specific predictor values and parameters including xi

and b(i), and thus resulting in the block effect vector and block

incidence matrix, respectively, as follows,

b~

b(1)

b(2)

..

.

b(C)

0
BBBB@

1
CCCCA,

and

X~

xT
1 0 � � � 0

0 xT
2 � � � 0

..

. ..
.
� � � ..

.

0 0 � � � xT
C

0
BBBB@

1
CCCCA:

In application to detection of overall effects and/or pleiotropic

effects on multiple traits, the components of Y may share the same

regressor x, but have component-specific parameters b(i).

The residuals can be computed under the null hypothesis of no

target effects, i.e., bt~0, and the estimation methods for different

models are summarized as follows.

2.1.1. Multivariate generalized linear model. A GLM is

characterized by three parts: the response distribution, the linear

predictor, and the link function between the linear predictor and

the mean of the response variable. Specifically, the density

function of a GLM has such a general form,

f (Y; h,Q)~ exp
YT h{b(h)

a(Q)
zc(Y,Q)

� �
,

where h is the location parameter vector, Q is the dispersion or

scale parameter vector, a(:), b(:), and c(:) are known functions to

specify a member of the exponential family. The expectation and

variance of Y are, respectively,

E(Y)~m~b0(h),

and

Var(Y)~a(Q)b00(h),

where b0(h)~
Lb(h)

LhT
~

Lb(h)

Lhi

� �
and b00(h)~

L2b(h)

LhLhT
~

L2b(h)

LhiLhj

 !

are the first-order and second-order derivatives of b(h), respec-

tively. Denote V (m)~b00(h), called variance function, to highlight

that b00(h) depends on m. The link function l(m)~g relates the

mean to the linear predictor in Equation (1).

The score of likelihood for a set of independent observations yi

(i~1, 2, � � � , N) is,

U(b)~
L ln L

LbT
~
XN

i~1

1

a(Q)
XT

i DT
i V{1

i (yi{mi),

where Xi’s are the design matrices of observation i,

Vi~b00(hi)~V (mi), and Di~
Lmi

Lgi

.

Figure 1. Quantile-quantile plot of significance level and Type I error rate. The Type I error is evaluated by GEE-GMDR method with digenic,
trigenic and tetragenic models in presence of no gene-gene interaction and no residual correlation. The reference line is a diagonal line with unit
slope through the origin. An unbiased method is expected to give the points falling on or near the reference line (i.e., Type I error rate is very close to
the nominal level).
doi:10.1371/journal.pone.0108103.g001
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The GLM can be fitted by maximum likelihood (ML)

estimation method. Note that estimation of b does not require

knowledge of Q, implying that one may first estimate b and then

estimate Q based on the estimate b̂b. The ML estimator can be

derived by setting the score equal to zero and solving the resulting

estimating equations. The Newton-Raphson method and the

Fisher’s scoring method are two well known methods implemented

with iteratively weighted (or reweighted) least squares method

(IWLS) for finding ML estimates in GLMs when there is no closed

form of ML estimates available.

The unknown scale parameter Q can be estimated separately

from b after computing residuals using b̂b. Although this parameter

can, in principle, be estimated by maximum likelihood as well, it is

more common to use a ‘‘method of moments’’ estimator.

Unbiased estimator of Q can be obtained via Pearson’s Chi-

square statistic as,

a(Q̂Q)~
1

N{p

XN

i~1
yi{m̂mið ÞT V{1

i yi{m̂mið Þ,

where p is the number of independent parameters estimated in b
(p~0 if b is known).

Under the null hypothesis of no target effects (i.e., bt~0), we fit

b̂b0 and b̂bc as well as Q̂Q to data. Then, the residuals can be

computed by,

ri~
1

a(Q̂Q)
D̂DT

i V{1
i yi{m̂mið Þ, ð2Þ

where m̂mi~l{1(Ib̂b0zXcib̂bc) and D̂Di is an estimate of Di in which

b̂b0, 0 and b̂bc are used in place of b0, bt and bc, respectively.

2.1.2. Multivariate quasi-likelihood model. QLM can be

used when only partial information on the data features is

available: how the mean is related to the explanatory variables and

how the variance of an observation is related to its mean.

Compared to GLM, QLM only specifies the link function and the

relationship between the first two moments but does not

necessarily specify the complete distribution of the response

variable. In QLM, quasi-likelihood function is constructed to

mimic a proper likelihood function. A quasi-likelihood has the

same properties as log-likelihood and the quasi-score function can

be formulated by differentiating the quasi-likelihood function. The

quasi-score behaves like the score in GLMs. Quasi-likelihood

models can be fitted using a straightforward extension of the

algorithms used to fit GLMs. The estimating equation for the

residuals under the null hypothesis is the same as Equation (2).

2.1.3. Generalized estimating equations model. GEE

model is an extension of GLM and QLM [29–31]. GEE model

requires only specifying a functional form for relationships

between the outcome variable and the explanatory factors and

between the mean and the variance of the marginal distribution,

avoiding the need to model the multivariate distribution and

covariance structure for data. Specifically, letting Y be a group of

response variables, suppose that (1) there is a link function relating

the expectation of Y to a linear predictor in Equation (1), l(m)~g;

and (2) the variance is a function of the mean,

Var(Yi)~ai(wi)Vi(mi), wi is the scale parameter, and ai(:) and

Vi(:)i are some known functions.

Considering a set of data yT~(yT
1 , yT

2 , � � � , yT
N ) that is

decomposed into N strata and the yi’s are uncorrelated with

each other, the estimating equations are formed via a set of K
score or quasi-score equations,

U(b)~
XN

i~1
DT

i S{1
i (yi{mi),

Where Di~
Lmi

Lb
~DiXi, Di~

Lmi

Lgi

, Si~A
1
2
i R(a)A

1
2
i is a working

variance with a given correlation structure,

Ai~diag aj(Qj)Vj(mij)
h i

, a diagonal matrix with aj(Qj)Vj(mij) as

the j th diagonal element, and R(a) is a working correlation matrix

that may depend on some unknown parameter vector a. Si does

not need to be equal to the true covariance matrix, although the

closer it is to the true one, the better precision the estimates will

achieve.

The estimates of b can be found by solving U(b)~0. Estimation

is typically accomplished through a series of iterations between a

modified Fisher’s scoring algorithm for b and moment estimation

of correlation parameters a and scale parameter Q. Given current

estimates âa and Q̂Q of the nuisance parameters, the following

modified iterative procedure is for b,

b̂b(tz1)~b̂b(t)z
XN

i~1
D̂DT

i ŜS{1
i D̂Di

� �{1 XN

i~1
D̂DT

i ŜS{1
i (yi{m̂mi)

h i
:

The working correlation matrix Ri(a) and Q are estimated by

the method of moments. Using the current values of parameters

calculates the current Pearson residuals defined as,

rP
ij ~

yij{m̂mijffiffiffiffiffiffiffiffiffiffiffiffiffi
V (m̂mij)

p :

Then, Q can be estimated by,

a(Q̂Q)~

PN
i~1

PKi
j~1 rijPN

i~1 Ki{p
:

The specific estimator for a depends on the choice of R(a); the

general approach is by the function of,

R̂Ruv~

PN
i~1 riuriv

N{p
:

After fitting the model under the null hypothesis, the residuals

can be computed for several different purposes, e.g., a repeated

measurement study, a longitudinal study, a clustered design, and

multivariate analysis,

ri~D̂DT
i ŜS{1

i (yi{m̂mi), ð3Þ

where m̂mi, D̂Di and ŜSi are, respectively, the GEE estimates of the

mean, matrices Di and Si under the null hypothesis, bt~0. When

all the components of yi have the same target effect parameter bt

as in a repeated measurement study, the residuals can be further

averaged over these measurements for a better estimation,

rij~
1

C
1T ri , j~1, 2, � � � , C, (4)
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where 1 is a vector of which all components are 1 and C is the

dimensionality of yi.

2.2. Membership coefficient
Membership coefficients that form matrix Xt in Equation (1) are

used to characterize to which cell(s) a subject can be allocated in

the space spanned by a set of target factors. To simplify our

presentation, we consider here the samples coming from a

homogeneous population. For other cases such as samples from

an admixed population and family samples, please refer to our

reports elsewhere. The membership coefficient of an unrelated

subject is defined as an indicator variable,

pij~
1 if the subject i is allocated to cell j

0 otherwise

	
: ð5Þ

2.3. Multifactor Dimensionality Reduction Algorithm
The statistic can be defined for various scenarios. In the case

where the components of yi have the same target effects bt

whether or not the predictor vectors of the components are

distinct, the statistic of component j in observation i with respect to

cell k in a given contingency table can be computed by (treating as

Table 2. Comparison of Cross-Validation Consistency (CVC) and Test Accuracy (TA) between GEE-GMDR and the GMDR method for
two simulated continuous traits.

GEE-GMDRd (Mean±SEM) GMDR-T1e (Mean±SEM) GMDR-T2f (Mean±SEM)

Model and No. of
loci CVC TA CVC TA CVC TA

Digenica:

1 9.01061.446 .5736.025 8.44561.886 .5466.035 8.50061.616 .5466.027

2 10.0006.000 .6656.019 9.9406.433 .6176.023 9.9756.211 .6186.021

3 6.68062.056 .6476.024 6.79062.147 .5976.032 6.46062.025 .5946.029

4 5.55062.126 .6246.029 5.48562.141 .5756.037 5.43562.071 .5766.031

5 5.23062.131 .6036.033 5.10561.911 .5576.035 4.82062.066 .5546.032

6 5.05062.017 .5836.033 4.69561.844 .5436.033 4.76561.915 .5426.034

7 4.97061.977 .5626.035 4.82562.165 .5306.037 5.19561.999 .5356.034

8 5.34062.036 .5506.040 5.46562.140 .5286.044 5.25062.034 .5266.038

9 6.70562.110 .5456.050 6.50062.088 .5246.050 6.72062.178 .5336.052

Trigenicb:

1 8.62561.700 .5516.029 8.09562.017 .5336.034 7.72062.020 .5276.031

2 7.80562.017 .5686.031 6.65562.142 .5366.034 6.53562.117 .5306.034

3 9.9406.409 .6306.023 8.65562.031 .5736.038 8.58562.031 .5726.035

4 6.76562.069 .6076.027 6.32062.250 .5596.037 6.09062.110 .5566.033

5 5.68561.996 .5826.030 5.21061.989 .5416.035 5.02062.096 .5406.034

6 5.37562.075 .5656.033 4.72062.008 .5296.035 4.80561.922 .5276.033

7 5.09062.048 .5446.035 4.58562.016 .5206.035 4.94062.041 .5226.034

8 5.39562.020 .5346.041 5.46062.083 .5216.041 5.33562.169 .5196.041

9 6.77062.066 .5356.052 6.54562.147 .5186.052 6.74062.247 .5266.050

Tetragenicc:

1 8.06061.764 .5376.029 7.73062.076 .5246.036 7.46562.025 .5376.029

2 7.00062.271 .5466.034 6.41562.284 .5266.036 5.87062.251 .5186.035

3 6.33062.291 .5486.037 5.28562.302 .5226.035 5.24562.135 .5196.033

4 8.58062.132 .5876.037 5.72562.420 .5286.041 5.71562.213 .5266.034

5 6.10562.125 .5646.037 4.86562.126 .5246.036 4.98061.985 .5216.030

6 5.19062.068 .5436.038 4.67561.995 .5196.033 4.60561.967 .5176.035

7 4.86061.881 .5306.036 4.83061.881 .5166.032 4.84062.087 .5156.035

8 5.28062.101 .5256.042 5.35062.109 .5146.041 5.19562.034 .5116.038

9 6.84562.030 .5276.050 6.47062.126 .5156.051 6.72562.203 .5216.050

aThe genotypes with two uppercase-letter alleles (i.e., AAbb, AaBb, aaBB) are set as high-risk group and the rest as the low-risk group.
bThe genotypes with three uppercase-letter alleles are set as high-risk group and the rest as the low-risk group.
cThe genotypes with four uppercase-letter alleles are set as high-risk group and the rest as the low-risk group.
dGEE-GMDR is the GEE-GMDR analysis for the simulated bivariate traits.
eGMDR-T1 is the unvariate GMDR analysis for trait 1.
fGMDR-T2 is the univariate GMDR analysis for trait 2.
doi:10.1371/journal.pone.0108103.t002

Detection of Multifactor Interactions for Multivariate Phenotypes

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e108103



individual ij and cell k),

Sijk~rijpijk, ð6Þ

where pijk is the membership coefficient denoting component j in

observation i pertaining to cell k in a given contingency table; all

rij s of observation i (j~1, 2, � � � , C) are the same in a repeated

measurement study; and all pijk s of observation i (j~1, 2, � � � , C)

for cell k are the same in a repeated measurement study and

probably in a longitudinal study. In application to detecting the

overall effects and/or pleiotropic effects of determinants on a

group of multivariate phenotypes, the statistic is considered as

(treating as individual i and cell jk),

Sijk~rijpik, ð7Þ

where pik is the membership coefficient denoting individual i
belonging to cell k in a given contingency table. In detection of the

pleiotropic effects, the aggregation is also suggested to use for each

individual [32],

Si:k~
XC

j~1
Sijk, ð8Þ

For convenience of notation, we use Sxy~rxpxy hereinafter to

denote the statistic of individual x pertaining to cell y by treating ij
as a new individual xo and cell k as y in (6), and treating cell jk as

a new cell y and individual i as x in (7).

The statistic defined above reflects a putative association

between the phenotype(s) of interest and the target factor(s),

offering a possibility for variable construction to create plausible

new attributes that maximize the residual phenotypic correlation.

When the null hypothesis holds true, the association is expected to

be zero and the classification model is formed purely by chance.

The variable construction process is illustrated with the t-fold

cross-validation procedure although such a cross-validation is not

always necessary as other techniques such as permutation testing

may determine whether a classification model is beyond chance.

The MDR process is described briefly as follows.

In Step 1 the data are randomly split into t equal or nearly equal

parts for t-fold cross-validation. One subset is used as the testing

set and the remained as the independent training set. Then, Steps

2 through 5 are run for the training set to construct a new

dichotomous attribute and Step 6 for the testing set to evaluate the

fitness of the new attribute(s). In Step 2, a subset of m factors is

selected from all M genetic and/or discrete environmental factors,

giving rise to a total of
M

m

� �
distinct subsets. In Step 3, each such

subset corresponds to a m-way contingency table and each

membership component of a subject does to one cell in the table.

The statistic value of each nonempty cell can be averaged over by

�SS:k~

PN
i~1 SikPN

i~1 Dpik D
for cell k. Each nonempty cell is labeled either

high-valued if its average statistic value is not less than some

threshold T (T~�SS::~

PN
i~1

P
k~1 SikPN

i~1

P
k~1 Dpik D

by default), or low-valued

otherwise. In Step 4, a new attribute is created by pooling high-

valued and low-valued cells into two contrasting (i.e., high-valued

and low-valued) groups, representing that best captures the

correlation between this set of classification factors and the

phenotype(s). In Step 5, the classification accuracy, defined below,

can be assessed for each contingency table. The best model(s) can

be identified among all the possible m-way contingency tables

based on classification accuracy. In Step 6, the independent testing

set is used to evaluate the testing accuracy for the best model

among those with different dimensionalities identified in Step 5. If

the classification model is formed purely by chance, it will give a

null testing accuracy of 0.5. The significance test can be

implemented based on permutation testing, nonparametric sign

testing and asymptotical normal test for testing accuracy.

Figure 2. Comparison of statistical power between univarate GMDR method and GEE-GMDR under digenic, trigenic and tetragenic
interaction models. The horizontal axis represents different residual correlations. The empirical statistical power is defined as the proportion of
significant true models at 5% level in 200 simulations.
doi:10.1371/journal.pone.0108103.g002
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The accuracy is defined by,

Accuracy~
TPzTN

TPzFPzTNzFN
,

where TP is True Positive, defined as having a high value in the

high-valued group, TN is True Negative, defined as having a low

value in the low-valued group, FP is False Positive defined as

having a low value in the high-valued group, and FN is False

Negative defined as having a high value in the low-valued group.

The balanced accuracy [33] is also used,

Balanced Accuracy~0:5
TP

TPzFN
z

TN

TNzFP

� �
:

The statistic is by nature quantitative. However, the above

accuracy, measured by the proportion of correct classifications in

all classifications, only makes use of the qualitative information in

the statistics, i.e., whether or not the statistic value of an individual

in the high-valued (low-valued) group is larger (less) than the

threshold. As an alternative, the accuracy may also quantitatively

be measured by the differences in the averaged statistic values

between the high-valued and the low-valued groups [26].

2.4. Simulation Study
To verify the validity and demonstrate the high statistical power

of the new approach, we performed extensive simulations for

continuous phenotypes. To simplify our exposition, here we

considered a total of 10 unlinked loci with equi-frequent causative

alleles, including two, three, and four disease-causing genes.

Hardy-Weinberg equilibrium and linkage equilibrium were

assumed in the simulations. Genotype data were simulated for

1,000 individuals with minor allele frequency of 0.3. Bivariate

traits were simulated under the digenic espistatic (i.e. two

functional loci involved), trigenic (i.e. three functional loci

involved), and tetragenic (i.e. four functional loci involved)

interaction models commonly used in simulation studies, for

example antidiagonal model (i.e., genotypes AAbb, AaBb and

aaBB were considered as high-value groups and the rest as a low-

value group), 3 uppercase-letter model (3ULM) (i.e., genotypes

with three uppercase were set as a high-valued groups and the rest

as a low-valued group), 4 uppercase-letter model (4ULM) (i.e.,

genotypes with four uppercase letters were set as high-value groups

and the rest as a low-value group), in which the marginal effects of

each disease locus were close to zero. For each individual, two

continuous traits were simulated conditional on genotype data,

interaction model, heritability of each trait and correlation

between traits. Phenotypes were generated based on the following

multivariate linear model,

yij~mjzgijzeij ,

where yij denotes phenotype j of individual i, mj is the population

mean of phenotype j, gij is the joint effects of surveyed genes (or

target environmental factor when GE interactions are involved) in

subject i on phenotype j, and eij is the residual effects with

distribution N(0,sej
2).

Genetic effect gij is defined as follows,

gij~
mgjz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{p)|sgj

2=p
p if the subject is allocated

to the high-valued group

mgj{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p|sgj

2=(1{p)
p

otherwise

8><
>: ,

where mgj is the mean genetic effect of the phenotype j, sgj
2 is

Figure 3. The principal components analysis for SAGE. The first
two principal components are plotted to represent genetic background
of the SAGE.
doi:10.1371/journal.pone.0108103.g003

Table 3. Interaction SNPs detected among CHRNB2, NTRK2, BDNF, and CHRNA4.

Modela TAb psign valuec pperm valued

rs2072660-rs1209068-rs11030134-rs6011770

GEE-GMDR .5780 ,10e-04 2.62e-04

GMDR FTND
e .5411 6.30e-02 9.87e-02

GMDR ND
f .5283 2.41e-02 2.40e-01

GMDR MC
g .5128 5.40e-01 7.86e-01

aIn the model, from left to right, the SNPs are located in CHRNB2, NTRK2, BDNF, CHRNA4, respectively.
bTA denotes test accuracy.
cpsign values were from the sign test after Bonferroni correction.
dpperm values were from the permutation test after Bonferroni correction.
eFTND denotes the Fagerstrom Test for Nicotine Dependence.
fND denotes the DSM4 Nicotine Dependence.
gMC denotes the Maximum number of Cigarette.
doi:10.1371/journal.pone.0108103.t003
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genetic variance of joint effects for the phenotype j, p is the

multilocus genotype frequency of the high-valued group.

In the simulations, the multiple functional loci affected the two

simulated traits simultaneously. Thus we could generate the

phenotypic values of the two simulated traits of an individual i via

a bivariate normal distribution with the mean
m1zgi1

m2zgi2

� �

and the variance-covariance matrix
se1 0
0 se2

� �
|

1 r
r 1

� �
|

se1 0

0 se2

� �
, where r is the residual correlation coefficient. In the

present simulations, the targeted gene-gene interaction controlled

each trait equally (m1~m2~0, s2
g1~s2

g2~1, s2
e1~s2

e2~19),

responsible for 5% (h2~sg
2=(sg

2zse
2)~5%) of the total

phenotype variance for each trait. The residual effects were

responsible for the remaining 95% of the phenotypic variance

and different residual correlations (i.e., r~{0:9,
{0:6, {0:3, 0, 0:3, 0:6, 0:9) were considered in the simulations.

Other shared factors were not considered here.

The statistics of all individuals for GEE-based GMDR (GEE-

GMDR) were computed based on equation (8) using R software

package geepack [34]. Then the GEE score statistics were input

into the GMDR software to identify the best interaction model.

For the purpose of comparisons, separate analysis of phenotypes

was also performed using the original GMDR method. A

threshold of 0 was used to determine whether a cell is high-

valued or low-valued in both the methods in the subsequent

analysis. We conducted an exhaustive search with 10-fold cross-

validation for all possible one- to nine-locus models in our

simulations. The average cross-validation consistency (CVC) and

test accuracy (TA) as well as their standard error means (SEMs)

were summarized based on 200 simulation replicates. Addition-

ally, Type I error rate and statistical power were also calculated on

the basis of the null TA distribution for each scenario under GEE-

GMDR and GMDR, respectively. The thresholds for TA at 5%

and 1% significance levels were determined through an empirical

distribution of TA constructed from permutation testing with

1,000 replicates. We randomly permuted the score statistics to

generate pseudo samples for its null distribution in which the

potential association between the multilocus genotype and the

phenotypes of interest. And then the cross-validation GMDR was

performed with the permuted samples, namely, the training data

were used to identify the model and the testing data were used to

evaluate the model. As the testing samples are independent of the

training samples in which the model selection is involved, the TA

will randomly fluctuate around 0.5 under the null of no target

effects. The TAs from the permutations formed an empirical null

distribution. Power and Type I error rate were calculated based on

the proportion of the significant models detected in 200 and 1,000

simulations, respectively, with its TA values no less than the cutoff

point for each scenario across seven levels of the residual

correlation.

2.5. A Case Study on Nicotine Dependence
To illustrate use of the GEE-GMDR approach proposed here, a

real data set from the Study of Addiction: Genetics and

Environment (SAGE) was analyzed to identify interactions among

genes. A large proportion of SAGE samples were unrelated except

a few siblings. After quality control, a total of 3,897 individuals

from three subsamples: the Collaborative Study on the Genetics of

Alcoholism (COGA) (1,178 individuals), the Collaborative Study

on the Genetics of Nicotine Dependence (COGEND) (1,427

individuals) and the Family Study of Cocaine Dependence (FSCD)

(1,292 individuals) were obtained. Using Illumina Human 1M

platform, 1,069,796 SNP markers were genotyped for each

participant. Self-reported ethnicities indicate that about 35% of

the participants are black and 65% are white. Detailed genotype

information and demographic characteristics of SAGE cohort can

be obtained from the database of Genotypes and Phenotypes

(dbGaP) through dbGaP accession number phs000092.v1.p.

Three common different measurements of ND were selected from

the recorded traits: the lifetime score on FagerstrÖm Test for

Nicotine Dependence (FTND), the DSM4 Nicotine Dependence

(DSM4ND) and the largest number of cigarettes smoked in 24

hours (MC).

We excluded SNPs that had missing genotype rate .0.1, minor

allele frequency ,0.05 and a Hardy-Weinberg equilibrium test

p,1027 using PLINK software [35]. In total, 744,511 SNP

markers were left after quality control. A total of 2,082 individuals

were available for the phenotypic traits and also passed the quality

control. We also generated a pruned subset of SNPs that are in

approximate linkage equilibrium with each other using PLINK

software. With the SNP information (dbSNP, Build 135) and the

remained SNPs passing the control process, 5 SNP markers in the

nicotinic acetylcholine receptor (nAChR) a4 subunit (CHRNA4),

3 in the nAChR b2 subunit (CHRNB2), 56 in the neurotropic

tyrosine kinase receptor 2 (NTRK2, also known as the tyrosine

kinase receptor gene, TrkB), and 18 in the brain derived

neurotropic factor (BDNF) were chosen to detect gene-gene

interactions among the four genes. In total, 15,120 (563656618)

tetragenic interactions with one SNP from each of the four genes

were examined.

Owing to the fact that self-identified ethnicity often partially

reflects one’s genetic ancestral origins, especially for populations

that have complicated migration or admixture histories, the

principal components analysis was performed using GCTA

software for the SAGE data in which both unrelated samples

and relatives are included to identify the population structure [36].

The residual score statistics of GEE-GMDR were computed using

Table 4. Information on the SNPs in the best model identified using GEE-GMDR method.

SNP Gene Chromosome Domain Physical Position Allelesa Reported MAFb

rs2072660 CHRNB2 1 3UTR 152815345 C/T .319

rs1209068 NTRK2 9 Intron 86530338 C/T .096

rs11030134 BDNF 11 59 Flanking 27743050 C/T .282

rs6011770 CHRNA4 20 Intron 61447875 C/T .054

aThe nucleotide of each SNP shown in bold represents the minor allele as given in dbSNP (build 138).
bThe minor allele frequency (MAF) presented in dbSNP (build 138).
doi:10.1371/journal.pone.0108103.t004
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methods described in the above subsection with gender and the

top five principal components as covariates. Permutation testing

was conducted to obtain empirical distribution of test accuracy

based on 1,000 shuffles. According to the central limit theory, the

p-value can be approximately calculated under the null distribu-

tion by the approximated Z score, which is Z~
TA{E(TA)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(TA)
p . Due

to the computational burden for permutations, only the tetragenic

model, passing the sign test for test accuracy implemented in the

GMDR software at the significant level of 0.05, would be

evaluated using permutation testing. For the purpose of compar-

ison, we also used GMDR to analyze the three traits individually.

Results

Computer Simulations
The Type I error rates under no residual correlation are

presented in Table 1 for the digenic, trigenic and tetragenic

interactions of GEE-GMDR and GMDR approach. All the

estimates of Type I error were close to the nominal levels. The

Figure 4. The interaction pattern among rs2072660-rs1209068-rs11030134-rs6011770. The left bar in each nonempty cell denotes a
positive score and the right bar a negative score. High-risk cells are indicated by dark shading, low-risk cells by light shading, and empty cells by no
shading. Note that the patterns of high-risk and low-risk cells differ across each of the different multilocus dimensions, presenting evidence of
epistasis.
doi:10.1371/journal.pone.0108103.g004
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Type I error rates at the 0.05 significance level were 0.040, 0.054

and 0.048 with the digenic, trigenic and tetragenic interactions for

GEE-GMDR method. The Q-Q plot of significance level vs. Type

I error rate was well consistent with the theoretical expectation for

GEE-GMDR method (Figure 1). The results with different

residual correlations were similar (data not shown). The simulation

results suggested that the new algorithm had correct Type I error

rates, supporting the validity of the proposed procedure.

Table 2 displays the means and SEMs of both test accuracy and

cross-validation consistency for two simulated continuous traits

under no residual correlation. As expected, both bivariate analysis

of GEE-GMDR and univariate analysis of GMDR always reach

maximum test accuracy and cross-validation consistencies at the

particular multilocus models with the same gene number as the

simulated models, suggesting that the models with two, three and

four functional genes could be correctly identified. Compared with

the univariate analysis of GMDR, the GEE-GMDR bivariate

analysis had higher test accuracy and cross validation consistency

under the correct analytical model, for example, the means of test

accuracy and cross validation consistency with GEE-GMDR are

0.665 and 10.000 for digenic model, 0.630 and 9.940 for trigenic

model, 0.587 and 8.580 for tetragenic model, respectively, whereas

those with GMDR for trait 1 (trait 2) are 0.617 (0.618) and 9.940

(9.975) for digenic model, 0.573 (0.572) and 8.655 (8.585) for

trigenic model, 0.528 (0.526) and 5.725 (5.715) for tetragenic

model. The results show that the GEE-GMDR method can utilize

more information of multiple phenotypes and effectively improve

test accuracy and cross-validation consistency. The test accuracy,

cross validation consistency, and power (Fig. 2) seemed to be

decreased for these three interactions patterns (i.e., digenic,

trigenic, tetragenic) and this may be partly due to a lower

frequency of the high value group and inflation of sampling error

with increasing multilocus genotype given a limited sample size.

Figure 2 presents the comparison of the power of the two

different analysis approaches to detect gene-gene interactions with

pleiotropic effects based on a variety of residual correlation

coefficients under digenic, trigenic, and tetragenic models. It

indicated that the increase in power for multivariate analysis of

GEE-GMDR, relative to univariate analysis of GMDR, depended

on the residual correlation for trigenic, tetragenic models and the

improvement is dramatic in some situations. GEE-GMDR

performs particularly better for negative residual correlation

coefficients. This observation is consistent with the previous results

of multivariate research [6,37–39]. However, the trend is not so

apparent for digenic model. It may mostly be due to the extremely

high power of digenic model (both approximate 100%) under our

simulation set and the difference in power between two analytical

methods cannot be distinguished. In some simulated cases with

reduced allele frequency or genetic variance, however, we

observed the same trend of power decrease with increase in the

residual correlation (data not shown).

In summary, GEE-GMDR method maintains appropriate Type

I error rate and thus is a valid test. The comparison of the

multivariate analysis of GEE-GMDR with the univariate analysis

of GMDR to identify combinations of multiple target genes

demonstrates that the GEE-GMDR has higher or at least equal

power in most situations. The GEE-GMDR method is able to

substantially improve test accuracy, cross-validation consistency

and power with inclusion of covariance structure of multiple

phenotypes in GEE model.

Application to Nicotine Dependence Data
Figure 3 from the principal components analysis shows that the

SAGE cohort could be clearly separated into three groups that are

roughly consistent with self-reported ethnicity (black, white, and

admixed). Although the race and ethnicity are thought to reflect

unobserved environmental factors such as diet and family

information, the self-reported race and ethnicity are not clearly

defined and may not reflect the underlying complexity of them.

Thus, it is more appropriate to estimate genetic background from

genotype data, such as PCA, and use such information in the

analysis [40]. The average correlations among the three pheno-

types are 0.52 and they are highly correlated with each other.

Using our new multivariate method and univariate method,

15,120 tetragenic interaction models were examined with one

SNP from each gene. The normal distribution of the test accuracy

was consistent with our expectation (data not shown). The GEE-

GMDR method detected the most significant tetragenic interac-

tion model (rs2072660- rs1209068- rs11030134- rs6011770) with

an empirical p value of 2.62e-04 and test accuracy of 0.5780,

supporting our hypothesis of a possible interaction among

CHRNB2, NTRK2, BDNF, and CHRNA4 underlying ND

(Table 3). Detailed information on the SNP of the most significant

tetragenic interaction model was given in Table 4. The p value of

the identified model using univariate analysis was less significant

and the test accuracy was lower. Figure 4 displays high-risk and

low-risk distribution for each multilocus genotype combination of

the identified tetragenic model. The interaction patterns of high

risk and low risk cells varied across each of the different multilocus

dimensions, which showed evidence of epistasis, or gene-gene

interaction.

Recent evidence revealed genetic associations between ND and

CHRNA4 [41,42], NTRK2 and BDNF [43]. Biochemical studies

have showed that the a4b2-containing nAChR subtype make up

the majority of the high-affinity nicotine-binding sites in our brain

and that the expression of genes of both subunits are increased in

the case of chronic nicotine exposure. The binding of NTRK2 to

BDNF regulates the short-term synaptic functions and long-term

potentiation of brain synapses. Biological interactions of BDNF
with NTRK2 and CHRNA4 with CHRNB2 have been

constructed experimentally under vitro and animal models.

Statistical interactions among CHRNA4, CHRNB2, BDNF and

NTRK2 underlying ND had been discovered in our previous

studies [25,44,45]. Our research results using novel multivariate

method indicate that there are potential interactions among these

four genes. The finding requires further investigation both through

in silico analysis and laboratory verification in future.

Discussion

Identification of epistatic and/or gene-environment interactions

underlying complex traits variation is one of the important and

challenging tasks in human genetics and epidemiology studies. In

the literature, joint actions of multiple factors are the norm rather

than the exception in the genetic architecture of complex traits

[13–16]. Compared with traditional methods established by an

extension of single-factor-based statistical linear model, recently

emerging combinatorial approaches such as MDR, the CPM, the

RPM and the GMDR could bridge between statistical interaction

and biological mechanism, and take biological plausibility into

account. Relative to a wealth of univariate methods available,

however, the statistical methods for detecting interactions under-

lying multiple traits are less well developed for these combinatorial

approaches.

Complex diseases can be multidimensional and defined by a set

of intermediate phenotypes that cluster together and are correlat-

ed. Complex traits can often be grouped into symptom groups. In

some cases, data are collected from longitudinal studies. Using a
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univariate analysis, instead of multivariate analysis, will substan-

tially reduce the power or likely yield a misleading result. It is

desirable to to extend GMDR method for multivariate data to

analyze complex multifaceted disorders and longitudinal data

and/or toincrease test power. Here, we have proposed a natural

extension of GMDR to multiple phenotypes based on GLM,

QLM and GEE models in terms of the nature of data available,

named multivariate GMDR approaches. In GLM, we need to

specify all the probability distribution, the relationship between the

mean and the variance, and the covariance. In QLM, we only

need to specify the relationship between the mean and the

variance, and the multivariate correlation structure. GEE model

requires only the relationship between the mean and the variance

of the marginal distribution. GEE, the extension of GLM and

QLM, is more flexible, and has been widely applied to correlated

multivariate data because of its robustness and no need for

specifying the exact covariance structure [29,30,46]. GEE can

yield consistent and efficient estimation of coefficient parameters

for the multivariate data, even though the assumed working

correlation structure is incorrect and the data are missing

completely at random [29]. The GEE-GMDR can therefore

handle a variety of multivariate data with different correlation

structures, for example, repeated data, longitudinal data, cluster

data and multiple phenotypes, under the assumption of estimation

of arbitrary subset of the covariance parameters [46]. In

conclusion, we propose a comprehensive statistical framework

for detection of interactions underlying multivariate phenotypes.

Within this framework, various kinds of phenotypes with diverse

correlation structures, such as categorical data and continuous

data can be analyzed. The original GMDR can be regard as a

special case of multivariate GMDR, when the cluster size of

multivariate data is equal to one.

One of the key advantages of the proposed method, as shown in

both the simulation and the real data analyses of this study, is that

this new multivariate approach is more powerful via borrowing

information across multiple correlated phenotypes. We have

compared the power of GEE-GMDR with the univariate GMDR

method through Monte Carol simulations under the digenic,

trigenic and tetragenic interaction models. Remarkable increase in

power has been observed using our proposed multivariate method

in the simulations, especially for trigenic and tetragenic models.

The lower power of identifying high order interaction may mostly

be attributed to smaller sample size, low allele frequency and low

genetic variance [26]. Here, the multivariate method can be an

appropriate and promising approach to search for weak associ-

ations of high order combination of multiple factors underlying

complex traits, which may be missing when each phenotype is

considered independently. Consistent with other multivariate

techniques, we also observed that the power of GEE-GMDR

depends on the size and the structure of residual correlation

between phenotypes [6,37–39]. The power to identify a pleiotro-

pic gene-gene interaction is greatly improved in a case with a

negative residual correlation. Such a pattern is observed in

different interaction models.

The proposed approach has been applied to the SAGE sample

with inclusion of multiple phenotypes related to ND. Conventional

single-marker methods that separate interacting genes from their

context fail to interpret the whole genetic architecture and seem to

be inefficient. It is appropriate and powerful to identify high order

gene-gene interaction underlying the ND, which is controlled by a

large number of genes with a modest effect size, as demonstrated

in our study and previous reports [25,44,45]. In human genetic

studies, we often collect many correlated phenotypes. Correction

for multiple testing is also required in individual analyses for

multiple phenotypes. However, the proposed method analyzes all

of the traits simultaneously and jointly in a unified statistical

model, offering a protected overall significance level.

Very recently a multivariate GMDR method based on GEE

was just proposed in the literature [32]. However, our statistic is

more general and powerful and that method [32] can be viewed as

a special case of our approaches. For data from repeated

measurement study, our method is identical to that approach,

but will be different for longitudinal data, cluster data and multiple

phenotypes. Given the difference of joint genetic effect of genes on

multiple phenotypes, the proposed score statistic is more

appropriate to model relationships between phenotypes. In

addition, our proposed method is evaluated through simulation

studies and the real data analysis for quantitative traits; whereas

the method in Chio and Park [32] is only assessed by the real data

studies for few binary traits. The performance of high-order

interactions and the influence of residual correlation on power

using GEE-GMDR method are also investigated in our study.

Further, we also corrected for population stratification in the real

data analysis. In this way our proposed method is a unified GEE-

GMDR that can handle a variety of data.

As is the same as the original GMDR, computational limitations

for high dimensional interactions still remain with our proposed

method, especially for identifying high order interaction for data of

the genome wide association studies (GWAS). However, Zhu et al
have developed a graphics processing unit (GPU)-based GMDR

program (GMDR-GPU) [47], which can handle GWAS data and

run more faster than the original GMDR software. Through

combination of our GEE-GMDR algorithm with GMDR-GPU

program, the problem of computational expense can be alleviated.

GEE statistic used in our GEE-GMDR approach makes use of

all dimensions of data but sometimes a part of them will dilute

useful information. The possible directions for future research are

to explore constructing an overall or extracting few summary

statistics by multivariate statistical techniques (e.g., principal

components analysis and canonical correlation analysis). Principal

components may be useful, in particular, when the phenotypes of

interest are highly correlated and/or highly dimensional, i.e.,

nearly collinear or degenerated multivariate data. The principle is

to construct the test statistic based on the first few principal

components from a principal components analysis or canonical

correlation analysis, instead of all components. Principal compo-

nents analysis or canonical correlations, as a kind of statistical

method of linear transformations, are effective to reduce the

number of phenotypes surveyed.
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